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» Early synoptic instruments made it very clear very early on that
automated data-reduction algorithms were required, including
ambiguity resolution.

@ U.Hawai i's Haleakala Stokes Polarimeter,

* Imaging Vector Magnetograph;

@ NAQOJ/Mitaka's Flare Telescope,

@ MSFC's vector magnetograph, BBSO's video magnetograph.
@ Observer-driven instruments: less data and less automation needed. Human-based
interactive approaches were possible.

» With high-resolution and high-cadence data (Hinode, ATST, SDO/HMI,
SOLIS), algorithm(s) are required with high performance value (courtesy
C. Henney):

@ Accurate enough for science goals

@ Stable for conditions of interest (e.g. Full-disk)

@ Fast relative to inversion time,
(define Time= InversionTime / AmbigTime)

@ [s the algorithm automatic?
If yes, (set Auto= 1, otherwise Auto= o)

» Merit = (% accuracy * Stability + Time) / Auto



Measuring the photospheric magnetic field:

Stokes spectropolarimetry:

@ Zeeman effect: magnetic field induces
both energy-level splitting and
polarization to emergent light of
magnetically sensitive lines.

@ Splitting proportional to |BJ:

@ Split components are polarized:

@ For BL: m components are polarized

parallel to BL, 6 components are
polarized perpendicular to BL
@ For B |: 7 components are not

visible, and 6 components are
circularly polarized.

@ Final shape of polarization spectra and
degree of polarization due to: strength,
direction of magnetic field,
thermodynamics of plasma, spatial and
spectral resolution.

@ Quick reference:
°* B|:=V
o Bl: = (QZ + U2)1/2
° @ = tan-1(U/Q) — -90° < ®<90°
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Brans direction is chosen
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Bt is ambiguous; direction

choice influences B, and radial A2 Line of sight B

component Bz, true magnetic E‘

neutral (“inversion”) line, etc. E O
B, .
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@ Results are only physical after ambiguity resolution and expressed as

helio
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» Significant differences
between Bi and Bh can be
observed as little as 10°
from disk centre.
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Heliographic B results, azimuth
resolved (note shift in neutral line)
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» Simple (and very common) approach: PR L
K i TLEE
potential-field acute-angle comparison s o)
» Compute a potential field using the Bj, as boundary = 7
# choose azimuth to be closest to computed potential field, =2 L
i.e. require Bgot - Bobs > () e =i
» Fast for planar approximation (use FFTs) e =
» Good for simple, round sunspots B =
» Not so good for complex regions. s S
Both images: red/blue e - : :£
contours of +/- radial [ =2 - Tt
magnetic field, arrows of ;H__‘:’f;:; .
horizontal field, ey A
1 green/yellow contours of |~ 277 0 RS
t 221 +/- vertical current density.[; [ “}117 PP s T
y L T wa SO 2 b LTS LR L VST k

» More sophisticated algorithms needed for

non-potential active regions, for example:
@ Initial resolution based on potential or
constant-a force-free fields.
@ [terate, minimizing:
@ vertical currents
 the divergence
» angle between neighboring pixels
@ other appropriate function




@ All methods follow same two steps:
@ Assume a model field
s Choose the azimuth which best matches the model field: Bgmodel - Bobs > ()

@ Differences come in model chosen,....
» Potential field, non-potential field
® There are different ways to compute a potential field....
@ Same at all scales? Or a different model for large- and small-scale structures?
@ Most consistent with (div(B)? Jz=0? Multi-fractal?)
@ ... and how to implement “best match”.

@ Manually evaluate (“by my eye”)

@ [teratively pixel-by-pixel with (or without) neighboring pixel results?
@ Optimize a global function

@ Down-hill gradient, Multi-dimensional conjugate gradient,

@ Genetic, Amoeba, others....



Just a few different approaches:

@ Potential-field acute-angle

@ Using FFTs (K. Leka, J. Jing) with/without flux balance, boundary padding
@ Based on Green's Function solution (J. Li, V. Yurchyshyn)
@ Large-Scale Potential method (A. Pevtsov)
@ assumes large-scale fields are potential, deviations increase with spatial resolution
@ Linear Force-Free Acute-Angle method (H.N. Wang)
@ Best-fit to LFFF field consistent with coronal-loop observations
@ Uniform Shear Method (Y.J. Moon)
@ assumes shear angle follows a normal distribution
@ Magnetic Pressure Gradient (J. Li)
@ assumes magnetic pressure decreases with height
@ Minimum Structure (M. Georgoulis)
@ Minimize a component of current analytically, then numerical smoothing
@ NonPotential Magnetic Field Calculation (M. Georgoulis)
@ Finds the distribution of Bz whose potential extrapolation plus a calculated non-potential
component best matches the observed heliographic field.
@ Pseudo-Current Method (A. Gary)
@ Minimizes Jz< by locating sources of non-potentiality
@ U. Hawai i Iterative Method (Metcalf, Fan & Leka)
@ [terates locally to minimizes Jz and div(B), then acute-angle neighbor smooths
@ Minimum-Energy solution (Metcalf)
@ Global optimization of J and div(B), numerous weighting options



Summary

@ Ambiguity resolution a necessary evil for full utilization of vector magnetic
field data

@ Evaluating is really only possible using sophisticated “hare and hound”
approaches to test recognized failure modes.

@ A method must perform better than potential-field acute-angle algorithms to
have value.

» Caveat: there are differences even between potential-field methods!
@ Additional requirements (stability, automation) to evaluate merit
@ Metrics required for inter-comparison

* Good metrics are easy to understand intuitively, and provide
distinguishing information, and can be difficult to construct in some cases.

@ All methods presented here make assumptions about the solar magnetic
field. Using height information to ensure Vo B=0 removes assumptions.

@ Best algorithm may depend on data source and question being asked.
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