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 Early synoptic instruments made it very clear very early on that 
automated data-reduction algorithms were required, including 
ambiguity resolution.

U.Hawai`i's Haleakala Stokes Polarimeter, 
Imaging Vector Magnetograph; 
NAOJ/Mitaka's Flare Telescope, 
MSFC's vector magnetograph, BBSO's video magnetograph.
Observer-driven instruments: less data and less automation needed. Human-based 
interactive approaches were possible.  

 With high-resolution and high-cadence data (Hinode, ATST, SDO/HMI, 
SOLIS), algorithm(s) are required with high performance value (courtesy 
C. Henney):

Accurate enough for science goals

Stable for conditions of interest (e.g. Full-disk)

Fast relative to inversion time,
(define Time= InversionTime / AmbigTime)

Is the algorithm automatic? 
If yes, (set Auto= 1, otherwise Auto= ∞)

Merit = (% accuracy * Stability + Time) / Auto 



 Zeeman effect: magnetic field induces 
both energy-level splitting and 
polarization to emergent light of 
magnetically sensitive lines.  
Splitting proportional to |B|:
Split components are polarized:

For B┴:  π components are polarized 
parallel to B┴ , σ components are 
polarized perpendicular to B┴
For B║:   π components are not 
visible, and σ components are 
circularly polarized.

Final shape of polarization spectra and 
degree of polarization due to: strength, 
direction of magnetic field, 
thermodynamics of plasma, spatial and 
spectral resolution.

Quick reference:
B║: ≈ V
B┴: ≈ (Q2 + U2)1/2

Φ  ≈  tan-1(U/Q) →  -90¡ < Φ< 90¡

Measuring the photospheric magnetic field: 
Stokes spectropolarimetry:



    Btrans direction is chosen 

↓↓↓↓↓↓↓
Bt is ambiguous; direction
choice influences B, and radial
component Bz, true magnetic 
neutral (“inversion”) line, etc.

Line of sight



 Results are only physical after ambiguity resolution and expressed as 
heliographic B

  Heliographic B results, azimuth 
resolved (note shift in neutral line)

 Significant differences 
between Bi and Bh can be 
observed as little as 10° 
from disk centre.



 Simple (and very common) approach: 
potential-field acute-angle comparison 

Compute a potential field using the Blos as boundary
choose azimuth to be closest to computed potential field, 
i.e. require  Btpot · Btobs > 0
Fast for planar approximation (use FFTs)
Good for simple, round sunspots
Not so good for complex regions.

 More sophisticated algorithms needed for 
non-potential active regions, for example:

Initial resolution based on potential or 
constant-α force-free fields.
Iterate, minimizing:

vertical currents
the divergence
angle between neighboring pixels 
other appropriate function

Both images: red/blue 
contours of +/- radial 
magnetic field, arrows of 
horizontal field, 
green/yellow contours of 
+/- vertical current density.



 All methods follow same two steps:
Assume a model field

Choose the azimuth which best matches the model field:  Btmodel · Btobs > 0

 Differences come in model chosen,....
Potential field, non-potential field

There are different ways to compute a potential field....
Same at all scales? Or a different model for large- and small-scale structures?
Most consistent with ____________ (div(B)? Jz=0? Multi-fractal?)

 ... and how to implement “best match”.
Manually evaluate (“by my eye”)

Iteratively pixel-by-pixel with (or without) neighboring pixel results?

Optimize a global function

Down-hill gradient, Multi-dimensional conjugate gradient, 

Genetic, Amoeba, others....



Just a few different approaches:
 Potential-field acute-angle

Using FFTs (K. Leka, J. Jing) with/without flux balance, boundary padding
Based on Green's Function solution (J. Li, V. Yurchyshyn)

 Large-Scale Potential method (A. Pevtsov)
assumes large-scale fields are potential, deviations increase with spatial resolution

 Linear Force-Free Acute-Angle method (H.N. Wang)
Best-fit to LFFF field consistent with coronal-loop observations

 Uniform Shear Method (Y.J. Moon)
assumes shear angle follows a normal distribution

 Magnetic Pressure Gradient (J. Li)
assumes magnetic pressure decreases with height

 Minimum Structure (M. Georgoulis)
Minimize a component of current analytically, then numerical smoothing

 NonPotential Magnetic Field Calculation (M. Georgoulis)
Finds the distribution of Bz whose potential extrapolation plus a calculated non-potential 
component best matches the observed heliographic field.

 Pseudo-Current Method (A. Gary)
Minimizes Jz2 by locating sources of non-potentiality

 U. Hawai`i Iterative Method (Metcalf, Fan & Leka)
Iterates locally to minimizes Jz and div(B), then acute-angle neighbor smooths

 Minimum-Energy solution (Metcalf)
Global optimization of J and div(B), numerous weighting options

 



Summary

 Ambiguity resolution a necessary evil for full utilization of  vector magnetic 
field data

 Evaluating is really only possible using sophisticated “hare and hound” 
approaches to test recognized failure modes.

 A method must perform better than potential-field acute-angle algorithms to 
have value.

Caveat: there are differences even between potential-field methods!

 Additional requirements (stability, automation) to evaluate merit

 Metrics required for inter-comparison

Good metrics are easy to understand intuitively, and provide 
distinguishing information, and can be difficult to construct in some cases.

 All methods presented here make assumptions about the solar magnetic 
field.  Using height information to ensure ∇∘B=0 removes assumptions. 

 Best algorithm may depend on data source and question being asked.
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