10th DoD HPC' User Group Conference, June 2000, Albuquerque, NM. 1

Structure Functions in Stratified Shear Turbulence

Joseph Werne* and David C. Fritts
Colorado Research Associates

Boulder, CO 80301

Abstract

Shear turbulence induced by the Kelvin-Helmholtz (KH) instability in a stratified fluid
is simulated in support of the AirBorne Laser (ABL) project using the DoD Cray T3E’s
at CEWES and NAVO. Analysis of the resulting turbulent flow is carried out via decom-
positions into horizontal-mean, spanwise-averaged, and fluctuating components. Transport,
production and dissipation terms are evaluated for each of the flow components as functions
of the vertical direction and time. Fits are obtained for second-order structure functions
in streamwise and spanwise directions, allowing us to obtain structure-function coefficients
and power-law exponents as well as the turbulence inner length scale for all of the flow
fields. Our main results are: 1) temperature fluctuations are nearly stationary in the mid-
dle of the shear layer where mixing is vigorous, while the entrainment zones at the layer’s
edges are non-stationary throughout the layer’s evolution; 2) velocity fluctuations are non-
stationary in the middle of the shear layer for as long as the primary KH vortex is active
(=~ 6 buoyancy periods); 3) temperature structure-function power-law exponents concentrate
between the theoretical values of o = 2/5 and 2/3 for stratified and unstratified turbulence,
respectively; however, 4) exponents for the longitudinal and transverse velocity structure
functions also tend between a = 2/5 and 2/3 (or assume even lower values for some velocity
components and directions), despite the larger theoretical prediction for strongly stratified
flow (a = 6/5); ) structure-function coefficients for the streamwise, spanwise and vertical
velocity components obtained in the middle of the turbulent shear layer are consistent with
so-called “universal constants” of ' = 2.1, 1.6 and 0.9, respectively (note, the Kolmogorov
constant (1 is related to C' via Cy = 0.76C'); 6) the equivalent universal constant for the tem-
perature field Cy is found to be consistent with Cy = 3.3; and 6) estimates of the turbulence
inner scale from the temperature structure function are consistent with ¢, ~ 7.4(y, where
lx is the Kolmogorov length scale. Coefficients obtained from velocity structure functions
are larger than 7.4. These results, combined with in-situ balloon, tethered kite, and remote
radar backscatter measurements, will be used by Dr. Bill Brown to refine the turbulence
phase screens needed to conduct ABL optical propagation simulations.

Introduction

The main objective of the ABL program is to develop adaptive optical systems capable
of focusing laser energy on a target through a few hundred kilometers horizontally in the
upper troposphere and lower stratosphere. Two facets of the ABL program are currently
being carried out with the aid of HPCMO Challenge allocations: optical propagation sim-
ulations through modeled stratospheric turbulence directed by Dr. Bill Brown address the
design issues associated with the ABL optical system; our companion effort concentrates on
improving the understanding of stratospheric turbulence phenomena so that more realistic
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models may be used for atmospheric-propagation-simulation input. In this report we con-
centrate on characterizing turbulence induced by wind shear. Future and continuing work
will address turbulence resulting from breaking gravity waves.

Atmospheric Turbulence

Turbulence in the lower stratosphere and upper troposphere, where ABL will operate, is
spatially and temporally complex. Single balloon ascensions from the ground to above the
tropopause typically report 10 to 20 well-defined turbulent layers, in various states of activity,
which range from 100 m to 1 km in depth (Coulman et al. 1995). Successive balloon launches
give some idea about the temporal variability, with intense mixing occurring over roughly an
hour and evidence of previously active mixing layers existing for up to a few days (lerkic et al.
1990, Coulman et al. 1995). In addition, radar backscatter measurements of turbulent layers
that drift with the horizontal mean flow give an indication of horizontal spatial coherence:
Events containing O(10) KH vortices (or billows) of roughly 5 km wavelengths have been
observed, indicating horizontal coherence over as much as 50 km (Riister and Klostermeyer

1983, Chilson et al. 1997).

Stable density stratification throughout the atmosphere is responsible for both the lay-
ering of turbulence with height and its episodic nature. In addition, wind shear and/or
a source of large-amplitude gravity waves (e.g., flow over complex topography) is needed
to instigate turbulence in the stably stratified atmosphere. Hence, large-scale anisotropy
and non-stationarity are necessarily components of atmospheric turbulence, and therefore
modification to homogeneous and isotropic turbulence theory is required. Characterizing
time-evolving inhomogeneous and anisotropic turbulence through canonical instability pro-
cesses relevant to atmospheric turbulence is the focus of this work. Our current results must
be combined with 1-D observational (e.g., balloon, kite, and radar) information to develop
an understanding of the spatial and temporal structure of turbulence along 100 km paths
through the atmosphere. In addition, improved characterization resulting from this work of
atmospheric turbulence at small spatial scale could be used to improve sub-grid models in
meso-scale simulations, so that atmospheric turbulence forecasts might be made.

Problem Formulation

In order to study turbulence in stratified environments, two canonical instability processes
that give rise to turbulence are currently under study: shear instability and gravity-wave
breaking. Here we report our results for shear flow.

Instability is initiated by exciting the most-unstable asymptotic linear eigenmode for an
initial hyperbolic-tangent shear profile U = Ujtanh(z/h) and linear temperature T' = z.
U,, h and 3 are the maximum initial flow velocity, half of the initial shear-layer depth, and
the background temperature gradient, respectively. Small-amplitude noise is also added to
the initial condition so that 3D flow structures may develop.

Solutions are obtained in a horizontally periodic domain contained by stress-free top and
bottom boundaries by time-integrating the Fourier coefficients of the spectrally represented
flow fields. The basic progression is 1) growth of the initial eigenmode to a well-defined,
large-amplitude, non-linear vortex, to 2) development of streamwise aligned vortex-tube
structures when the primary KH vortex overturns and develops local regions of unstable
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stratification, to 3) erosion of the KH vortex and modification of the background mean by
small-scale turbulence. The numerical method, basic evolution of the shear layer, and code
performance have been documented elsewhere (Werne and Fritts 1998, 1999a,b; Werne et al.
2000a,b). Here we describe analysis of the resulting turbulent layer as it evolves from and
coexists with the primary vortex.

Flow Decomposition
To facilitate analysis of the turbulence and KH vortex, we employ the decomposition T' =
T + T +T', where T is the 3D temperature field, T is the horizontal spatial average of T,
and T is the spanwise average of T'— T. Note that we also use the notation (TY=T. An
identical decomposition is used for the velocity field.

Because the primary vortex is initially two dimensional, we suggest T  represents the
temperature of the evolving KH billow. T' represents the evolving mean. 7" is the remainder,
which we interpret as small-scale fluctuations. We caution the reader that 7' is only a
rough guide to the temperature associated with billow dynamics because 1) the evolving
billow can (and does) possess 3D features, and 2) other contributions to T besides the KIH
billow are possible (e.g., turbulent entrainment at the edges of the shear layer). Despite
these difficulties, the mathematical decomposition T = T + T 4+ T' can be carried out in a
straightforward manner, and potential- and kinetic-energy (PE and KE) evolution equations
for each component can be derived. In the interest of brevity, we present only the PE
evolution equations below.

0T )2 = —o, (ﬁj )2+ 0T T+ UT T - Pe'o,T" /2)
+U;T0,T + UT0;T — Pe™'9;,T0,T (1)
oIT/2 = —0, (@ TT/2+ OT/2+ UT'T — pe—laﬁ/z)
+UITO;T — U;TOT — Pe™0;,T0;T (2)
T2 = —0, (7]« T2+ U;T'T" /2 + UT'T — Pe_laj—T’T’/Q)
U0, T — UT'O;T — Pe™*9;T°0,T" (3)

The first set of terms on the right-hand side of each equation represents transport processes.
They are divergences of energy flux, and are zero in homogeneous, isotropic flow. Because
the problem we study is neither homogeneous nor isotropic, these terms are not zero. The
next two terms on the right hand side of each equation are deformation-work (also called
production) terms. They quantify transfer between the mean and the fluctuations (W@ﬁ),

the mean and the spanwise average (UjfajT), and the spanwise average and the fluctuations

(U]‘T’ajf). The final term on the right-hand side of each equation is the dissipation term.
Pe = U,h/k is the Peclet number; it is the thermal equivalent of the Reynolds number
Re = U,h/v. v and &k are kinematic viscosity and thermal diffusivity. For our highest- Re
simulations we set Re = Pe = 2500. The actual Reynolds number Re;, = UL/v of the
turbulent shear layer after it has grown to its final full depth L is roughly Re; = 30,000.
Here U = 2U, is the velocity difference across the full shear-layer depth.
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Figure 1: Temperature and velocity variance profiles through simulated stratified shear layers
with Re = 1024 (lower panel), 2000 (middle panel) and 2500 (upper panel) corresponding
to Reyp =~ 12,000, 24,000 and 30,000. <TT> and (T"T") are indicated by solid and dashed

lines, respectively. Similar line styles are used for <(7JU]> and <U]’U]’> Profiles are shown
for t = 117, 134, 142, 165, 183, 202 and 220 in units of A/U,. In the upper troposphere,
assuming a 5 minute buoyancy period, ¢t = 220h/U, corresponds to roughly 40 minutes.

Temperature and Velocity Variance

Fig. 1 shows temperature- and velocity-variance profiles at seven times during the flow
evolution after the primary KH vortex has made the transition to 3D morphology. (See
previous DoD User Group Meeting papers (Werne and Fritts 1998, 1999) for details of the
flow evolution at earlier time.) Results for Re = 1024 (bottom), 2000 (middle) and 2500 (top)
are presented. Note that despite the differing values of Re in each of the simulations, the mid-
layer statistics (—1.5 < z < 1.5) are similar in magnitude and shape. This is because the KH
eigenmode grows essentially inviscidly and is nonlinearly saturated by density stratification,
not viscosity. Hence, for sufficiently large Re, the statistical behavior of the large-scale flow
is nearly independent of Re.

The temperature statistics in the edge regions of the shear layer do not exhibit the same
degree of Re independence as the layer interior. This is because the edges of the shear
layer near z = +2.5 are nonstationary and are associated with the rapid evolution of sharp
(i.e., small scale) spatial gradients. Hence, we should not expect statistical similarity in the

edge regions for different dynamical realizations, even at the same value of Re, let alone at
different values.

Mean, Spanwise-Average, and Turbulence Production

Fig. 2 shows profiles for production rates in the top six panels for mean, spanwise-average
and fluctuation PE and KE for Re = 2500. The lowest two panels depict total fluctua-
tion production and dissipation rates. The figure indicates vigorous exchange between the
mean and the 2D billow KE (upper right panel) out to ¢ = 165. Similar exchange of PE in
the layer edges is evident for all times reported (upper left panel). Rapid variation of the
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Figure 2: Production and dissipation rates of PE and KFE for mean, spanwise average and
fluctuations for Re = 2500. Top panels show mean-flow production by spanwise-averaged
field. The next set of panels depict mean-flow production by fluctuations. The third set
shows production of spanwise-average fields by 3D fluctuations. The bottom set superposes
the sum of fluctuation production (solid) with fluctuation dissipation (dashed).

large-scale flow caused by mean-flow /spanwise-average interactions prohibits equilibration of
turbulence production and dissipation rates (bottom panels) for PE in the layer edges and
KE at midlayer. Contributions from gradient transport terms (not shown) indicate redistri-
bution of mean, billow, and fluctuation rates in KE near the middle of the layer for t < 165
and in PE near the layer edges for all . When the primary KH vortex is drained of KE (by
t & 174), midlayer exchange of KE and PE is dominated by erosion of the mean by turbulent
fluctuations, and midlayer fluctuation production and dissipation balance. In contrast, the
edge-region statistics of the temperature field exhibit persistent interaction among all three
components of the flow (mean, spanwise average, and fluctuations), and fluctuation PE pro-
duction and dissipation do not balance here. This is because the edge regions are associated
with persistent entrainment dynamics as turbulent interior fluid punches into outer quiescent
fluid. The flow in the edge regions is non-stationary throughout the full course of evolution,
and it is clear that a statistical characterization will be most challenging here.

Phase-Screen Construction from Second-Order Structure Functions

ABL optical-propagation simulations employ the so-called phase-screen approximation in
which the cumulative effects of atmospheric refractive-index variations are represented by



10th DoD HPC' User Group Conference, June 2000, Albuquerque, NM. 6

2D planes that specify random phases for electromagnetic waves propagating normal to the
planes. Free-space propagation is computed between the screens. At the screens, the phase
of the laser beam is adjusted according to the spatially-dependent value specified by the
phase screen.

The form of the second-order structure functions (defined below) of the index-of-refraction
field (or, equivalently, the temperature field) must be assumed when generating phase screens
for ABL optical propagation simulations (see Brown 1997, 1998, 1999). Currently, phase
screens are constructed assuming homogeneous and isotropic turbulence statistics with spa-
tially varying amplitudes that are consistent with observed variations in atmospheric turbu-
lence intensity, either from in-situ balloon or kite measurements or from aircraft data. Since
the observations are necessarily limited to 1D paths through complex atmospheric flow fields,
only partial information about the 3D structure and time evolution of atmospheric turbu-
lence is directly available from observations. The turbulence simulations reported here offer
a 3D characterization of evolving stratified shear turbulence which can be used to augment
1D atmospheric observations. By using both 1D observational and 3D simulation results to
refine the specification of temperature structure functions, improved phase screens can be
generated for optical propagation work.

Fitting Simulated Structure Functions
The second-order structure function for 7' is defined by AT? = (T(Z+7) — T(Z))*). 7

is the spatial separation of two points in the 3D field, and () indicates averaging over Z.
For ¥ — 0, AFT? = <(6T - 7#)%)r?, where 7 is a unit vector in the 7 direction. For larger
spatial separations, the dependence of A#1'? on 7 is determined by the spatial statistics of
T. For example, if the fluctuations in 1" are generated by homogeneous/isotropic turbulence,
then A, 1% = CZe="/3yr?/3 for r in the inertial subrange. Similarly, A,U? = (/323 for
the turbulent velocity field U (Monin and Yaglom 1975). C' and Cj are universal constants.
€ =2v (s;;8;;) and x = £ (0;T0;T) are the viscous and thermal dissipation rates, respectively.
sij = (Oyu; + 0ju;)/2 is the strain-rate tensor.

Bolgiano (1959) investigated theoretical spectra for T and U when stable stratification
dominates the dynamics (and e is assumed to be unimportant). In this case two different
power laws are suggested: A, T? = CLRi=2P\*/5:2/% and A U? = C'Ri*/>\¥*r%/5. Ri =
ga3/(0.U)* is the Richardson number; g, o and 9,U are acceleration due to gravity, the
thermal expansion coefficient of the fluid and the vertical gradient of horizontal velocity,
respectively.

Fig. 3 shows compensated (i.e., divided by r?) second-order structure functions for T
and all velocity components near midlayer obtained from simulations with Re = 2500 at
t =183h/U,. U,V and W are the streamwise-, spanwise- and vertical-velocity components,
respectively. The horizontal dashed line indicates the measured value of the mean squared
horizontal gradient. The sloped dashed line represents a least-squares fit of the structure
function to C'3r® between three times the inner scale ¢, and L,/4. Here A in C'% denotes
the field being fit (T, U, etc.). Also L, is the streamwise extent of the simulation domain,
and /, is defined as the intersection point of the r? and r® curves. The values for the fit
parameters in the figure are as follows:
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Figure 3: Compensated (i.e., divided by r?) second-order structure functions for 7', U, V
and W near midlayer for Re = 2500 at ¢t = 183h/U,. The dashed lines indicate the measured
value of the mean squared horizontal gradient (horizontal line) and a least-squares fit (slanted
line) to C3r* between three times the inner scale ¢, and L./4. A denotes the field being fit
(e.g., T, U, etc.).

C2=0031 a=040 (,=0.13
C2=0018 a=047 (,=0.20
C2 =002 a=034 (=018
CZ =0.018 a=038 (,=0.16

These values are typical, with « for T" and U lying between 0.4 and 0.66, and with « for V and
W somewhat smaller. Though this range is consistent with the limiting cases for stratification
dominated (Bolgiano 1959) and homogeneous/isotropic turbulence (Kolmogorov 1941) for
A,T?, they are lower than that predicted for A, U? and the other velocity components. More
work is required to understand this behavior of the simulated flow fields.

Fig. 3 presents results for a single depth in the shear layer at a particular time. However,
we can gage the variation in the fit parameters if we explore the depth and time depen-
dence. Such a study is undertaken in Fig. 4, where profiles of o, C# and (, are plotted at
seven different times for Re = 2500. Panels on the left (right) show results for structure
functions computed with streamwise (spanwise) spatial separations r. The top row of pan-
els depicts the exponent a. Predictions for homogeneous/isotropic turbulence (dashed line)
and stratification-dominated turbulence (dotted line) are also included. The middle row of
panels depicts the coefficient C'# (solid curve). The dashed curve shows the value predicted
for homogeneous isotropic flow C% 096_1/3)( with (g set to 3.3. The bottom row shows 7,
(solid curve) along with the estimate Cplf, where (5 = (1/3/6)1/4 and C, is set to 7.4.

Unlike experimental determinations of the parameters involved, € and y are not estimated,
but are directly computed from the 3D simulation fields. As a result, determination of Cyy and
Cy 1s simplified in our case. Our result Cy &~ 3.3 is consistent with atmospheric measurements
of Cy = 3.34+0.3 (Kaimal et al. 1972), Cy &~ 3.5 (Gurvich and Zubkovskii 1966), and Cy ~ 3.3
(Paquin and Pond 1971). Similarly, C; ~ 7.4 is also observed in atmospheric measurements
(Hill and Clifford 1978 and references therein). We note that careful observation of Fig. 4
will detect a slightly larger value of {, from r = z than from r = y. This departure from
perfect isotropy and the slight increase in streamwise spatial scales relative to spanwise scales
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Figure 4: Profiles of temperature structure-function fit parameters at ¢ = 117, 134, 142, 165,
183, 202 and 220 in units of ~/U,. Left panels show structure-function fits for streamwise
spatial separations r, while right panels show fits for spanwise separations. The top row
of panels show « through the shear layer. Dotted and dashed lines indicate @ = 2/5 and
2/3, respectively. The middle panel depicts C7 (solid curve). The dashed curve shows
C2% = Cge™'3y predicted by Kolmogorov 1941 theory with Cj set to 3.3. The bottom panel
depicts the measured inner scale (, (solid curve) along with 7.4(v*/¢)/4.

results from the background shear (U(z)). Previously, we quantified the magnitude of this
departure to be (9,7T0,) ~ 1.1(0,T0,T), suggesting an increase in the streamwise length
scale of 5% (Werne and Fritts 1999b).

Fig. 5, presents the same profiles as Fig. 4 for the streamwise velocity field. Comparison
of C% and Kolmogorov predictions C% = Ce*? for r = 2 and CH = 4/3C e for r = y
are made with € set to 2.1. For t < 174, the simulated solutions and predictions for ho-
mogeneous/isotropic flow do not agree. Specifically, different values of C' are required for
streamwise (r = x) and spanwise (r = y) structure functions. Also, C' must vary with
height for measured and predicted values of CZ for r = y to agree at ¢t = 165. Clearly
the non-stationarity of KE for ¢ < 174 (see Fig. 2 and associated discussion) complicates
the mid-layer dynamics, and simple homogeneous/isotropic arguments cannot be trivially
applied. In contrast, once the mean-flow/spanwise-average interaction <U]ﬁ2> 0; (U;) sub-
sides after ¢ = 165, dissipation balances production for the fluctuations as we’ve already
noted (see Fig. 2), and the longitudinal and transverse structure functions of the streamwise
velocity then agree better with predictions for homogeneous/isotropic flow. Furthermore, at
these later times, the value we obtain for the universal constant C' & 2.1 is consistent with
atmospheric observations: C' ~ 2.04+0.1 (Kaimal et al. 1972), C' &~ 2.1+0.2 (Wyngaard and
Coté 1971), C' ~ 2.1 £ 0.1 (Wyngaard and Pao 1971), and C' ~ 2.1 (Gibson 1962, 1963).
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Figure 5: Profiles of streamwise-velocity structure-function fit parameters. See caption for
Fig. 4 for details. In the middle row the dashed curve depicts C3 = Ce?/® for r = x (left
column) and C% = 4/3C€*/® for r = y (right column) with the constant C' chosen to be
C =21. Cyis set to 11.3 for r = x and 8.0 for r = y.

The determination of €y ~ 8.0 from the transverse structure function of U is larger than
that for the temperature. The value C; ~ 11.3 obtained from the longitudinal structure
function is larger than €, ~ 8.0 by the factor V2. This increase in scale for ¢, for the
longitudinal structure function is expected for isotropic turbulence, wherein (9,U0,U) =
2(0,U0,U), and hence, the smallest spatial scale in x for U should be larger than the
smallest spatial scale in y by v/2. Deviations from this isotropic result cannot be detected
with the data presented in Fig. 5 as the natural variability of (, obtained from A,U? is
apparently too large.

Figures similar to Figs. 4 and 5 for A, V? and A,W? have been computed, but are not
shown here. The results share similarities with those already presented, but they also present
differences. The major differences exhibited by A, V? and A, W? from A,U? are as follows:
1) a for W with r = y is lower than for U, with nearly all values in the middle of the layer
below o« = 0.4 for ¢t > 174; 2) « for both V and W are significantly lower than o = 0.4 (with
a=0.21t00.3) forr =2a;3) C =09 (1.6) for W (V); and 4) C; ~ 10.5 (12.0) for W (V),
again, with slightly larger values of Cy for r = z than for r = y. We note that values for
C ~ 1.6 and C =~ 0.9 have been reported in the literature (Monin and Yaglom 1975), but
further analysis is required to determine the significance of the results in our solutions.

Conclusions

The simulations presented exhibit large-scale flow dynamics which are approximately in-
dependent of Re (see Fig. 1), indicating that sufficiently high Re has likely been attained
numerically to approximate similar processes as they appear in the atmosphere. Analysis



10th DoD HPC' User Group Conference, June 2000, Albuquerque, NM. 10

of the solutions demonstrate mean-flow /billow interactions that decay with time, eventually
producing approximately stationary small-scale fluctuation dynamics for which production
balances dissipation in the middle of the shear layer. Fvaluation of universal constants €' and
Cy and the structure function exponents o and the turbulence inner scale ¢, for temperature
T and streamwise velocity U in the middle of the shear layer are in good agreement with
atmospheric measurements, where available. Values for the parameters when obtained for
the spanwise V' and vertical velocity W, however, exhibit noteworthy differences from those
obtained with U, indicating anisotropic influences of stratification and/or shear. Further
work is required to understand these differences.

The edge regions of the shear layers remain challenging to characterize. The entrainment
dynamics in the interface region between turbulent and quiescent fluid is observed to be
non-stationary throughout the evolution of the layer. Previous results (Werne and Fritts
1999b) demonstrate this region to be highly anisotropic at small-scales in T'. Because this
region also exhibits the largest values of C7 (see Fig. 4), it has the greatest impact on
optical propagation. Nevertheless, despite the inherent difficulty in characterizing this region
statistically, its impact on ABL design can be anticipated by combining these simulation
results with results from in-situ and remote atmospheric observations.

This work is sponsored by AFRL F19628-98-C-0030, AFOSR F49620-98-C-0029, and
ARO DAAD191-99-C-0037.
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