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Abstract17

Convection-generated gravity waves (CGWs) transport momentum and energy, and this18

momentum is a dominant driver of global features of Earth’s atmosphere’s general cir-19

culation (e.g. the quasi-biennial oscillation, the pole-to-pole mesospheric circulation). As20

CGWs are not generally resolved by global weather and climate models, their effects on21

the circulation need to be parameterized. However, quality observations of GWs are spa-22

tiotemporally sparse, limiting understanding and preventing constraints on parameter-23

izations. Convection-permitting or -resolving simulations do generate CGWs, but val-24

idation is not possible as these simulations cannot reproduce the CGW-forcing convec-25

tion at correct times, locations, and intensities.26

Here, realistic convective diabatic heating, learned from full-physics convection-permitting27

Weather Research and Forecasting (WRF) simulations, is predicted from weather radar28

observations using neural networks and a previously developed look-up table. These heat-29

ing rates are then used to force an idealized GW-resolving dynamical model. Simulated30

CGWs forced in this way did closely resemble those observed by the Atmospheric InfraRed31

Sounder in the upper stratosphere. CGW drag in these validated simulations extends32

100s of kilometers away from the convective sources, highlighting errors in current grav-33

ity wave drag parameterizations due to the use of the ubiquitous single-column approx-34

imation. Such validatable simulations have significant potential to be used to further ba-35

sic understanding of CGWs, improve their parameterizations physically, and provide more36

restrictive constraints on tuning with confidence.37

Plain Language Summary38

Thunderstorms generate waves in the atmosphere that can generate turbulence at39

commercial aircraft cruising altitudes and further aloft. At these higher altitudes, they40

eventually break, not only generating turbulence, but also exerting forces that affect the41

large-scale flows in the middle atmosphere. While these waves have been known to be42

important since at least the 1980s, they are difficult to observe. They can be simulated,43

but weather models do not simulate thunderstorms in the correct locations at the right44

times, meaning the simulated waves cannot be directly compared against observations.45

Here, weather radar observations are used as input to a look-up table and a neural net-46

work to force realistic thunderstorm motions and waves within a simplified weather model.47

This method was able to reproduce a satellite-observed case with notable skill. In one48

of the first simulations of thunderstorm-generated waves comparable to satellite obser-49

vations, these waves travel 100s of kilometers away from the thunderstorms, conflicting50

with assumptions made in weather and climate models.51
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1 Introduction52

Atmospheric gravity waves (GWs), or buoyancy waves, are mesoscale phenomena53

(≈ 10 − 1000 km wavelength), that transport momentum from lower to upper atmo-54

sphere layers and drive features in large-scale atmospheric circulation (Alexander et al.,55

2010). Convection is a primary source of atmospheric GWs, particularly in the tropics56

(C. C. Stephan et al., 2019a; Corcos et al., 2021; Liu et al., 2022) and summer extrat-57

ropics (Hoffmann et al., 2013; Plougonven et al., 2015; C. Stephan et al., 2016; C. C. Stephan58

et al., 2019b), but also in winter hemisphere subtropical regions (Holt et al., 2017). In59

particular, convection-generated GWs (CGWs) are primary drivers of the stratospheric60

quasi-biennial oscillation (QBO) (Baldwin et al., 2001; Holt et al., 2016; Bushell et al.,61

2022), which influences tropospheric predictability in the tropics (Yoo & Son, 2016; Mar-62

shall et al., 2017; Abhik & Hendon, 2019; Martin et al., 2021; Anstey et al., 2021) and63

extra-tropics (Gray et al., 2018; Garfinkel et al., 2018). CGWs also play a role in the equator-64

to-pole Brewer-Dobson Circulation (Alexander & Rosenlof, 2003; C. Stephan et al., 2016),65

which is a primary driver of ozone and water vapor concentrations in the stratosphere66

(Hegglin & Shepherd, 2009).67

Despite the importance of CGWs in climate and seasonal prediction, they remain68

largely unresolved in global prediction models, and their forcings on large-scale circu-69

lations must be parameterized (Richter et al., 2020; Bushell et al., 2022). The sparsity70

of quality observations of CGWs has prevented development of quantitative constraints71

on parameterizations (Alexander et al., 2021; Lee et al., 2022). As a result, these param-72

eterizations are highly simplified using numerous idealizations and typically tuned to min-73

imize a handful of global error metrics depending on the application (Richter et al., 2022).74

Instead of using observations to further fundamental understanding of CGWs and im-75

prove parameterizations, convection-permitting and -resolving simulations do internally76

generate CGWs and could be used. However, such simulations cannot reproduce the tim-77

ings, locations, and intensities of actual convective sources, preventing validation of such78

simulations against the few CGW observations that exist. Without validation of such79

simulations, it is difficult to make progress in CGW research with confidence.80

Here, a recently developed method is used to force an idealized GW-resolving model81

with reasonably-realistic diabatic heating at the correct locations and times in order to82

have a chance at simulating CGWs in a way that can be directly compared with obser-83

vations following Grimsdell et al. (2010); C. Stephan and Alexander (2015); C. C. Stephan84

et al. (2016); Bramberger et al. (2020). This diabatic heating is predicted from weather85

radar observations of actual cases. Two methods are used to predict diabatic heating:86

the previously-developed look-up table (LT) method of Bramberger et al. (2020) and a87

new simple neural network (NN) model. This radar-derived heating is then provided to88

a GW-resolving idealized configuration of the Weather Research and Forecasting (WRF)89

model, which responds dynamically to the diabatic forcing in all ways the non-linear dy-90

namical core and resolution allow. This method is tested against Atmospheric InfraRed91

Sounder (AIRS) and Project Loon super-pressure balloon observations in two cases. These92

two cases highlight the methods’ abilities to reproduce observed CGWs. Previous work93

suggested the gravity wave spectrum above convection in WRF simulations was only mod-94

estly sensitive to the choice of microphysics parameterization (C. Stephan & Alexan-95

der, 2015), while the depth and strength of the convective latent heating are key deter-96

minants of the gravity wave spectrum (Bramberger et al., 2020). Our study also addresses97

how sensitive the CGW are to LT and NN methods based on specific locations/conditions.98

The overall method to simulate actual cases of CGWs, the two tools used to pre-99

dict convective diabatic heating, and the training data sets used for both tools are de-100

scribed in Section 2. The skill of the look-up table and NN models in predicting WRF-101

simulated diabatic heating profiles is presented in Section 3. Idealized model runs forced102

with the different diabatic heatings are then performed and compared to two cases of103

observed CGW: One observed by AIRS and one with Loon super-pressure balloon data104
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in Section 4. Finally, Section 5 is a discussion of the results and conclusions. Details on105

the accessibility of data, NNs, WRF source codes, and analysis codes are given in Sec-106

tion 6.107

2 Methods and Models108

2.1 Overall Summary of the Method109

CGWs are simulated within an idealized WRF configuration solely forced by con-110

vective diabatic heating. This diabatic heating, Q, is derived from the Multi-Radar, Multi-111

Sensor (MRMS) dataset, which merges numerous radar-derived quantities from all weather112

radars in the contiguous United States onto a single 0.01o latitude, longitude (≈ 1-km113

resolution) grid every two minutes (Zhang et al., 2016). Similar methods have been pre-114

viously used to force CGWs from other weather radar data sets over the mid-latitude,115

Midwestern US (C. Stephan & Alexander, 2015; C. C. Stephan et al., 2016) and near116

Darwin, Australia (Grimsdell et al., 2010; Bramberger et al., 2020).117

2.2 Predicting Convective Diabatic Heating from Weather Radar118

2.2.1 Training Data119

Two methods are used to predict profiles of Q given radar-observed quantities: the120

look-up table method of Bramberger et al. (2020) and a neural network (NN) method121

developed here. While radar reflectivities provide observations of falling convective pre-122

cipitation, there are no observations of Q for training the methods. To work around this123

issue, the two methods are trained on full-physics, realistic convection-permitting (∆x =124

2-km, ∆z < 500-m resolution) WRF simulations of observed convective events. Within125

these simulations, the two methods are trained to predict simulated diabatic heating given126

simulated radar-observable quantities.127

Two sets of full-physics, realistic WRF simulations were used for training: simu-128

lations of a case of significant deep tropical convection used by Bramberger et al. (2020)129

over Darwin, Australia (hereafter the Darwin run) and a simulation of typical diurnal130

convection over Florida (hereafter the Florida run).131

The Darwin run simulated a 48-hour period, beginning 11 Jan 2003 at 12 UTC.132

The inner-most domain used a ∆x = 2-km resolution, was 408 km by 408 km wide, and133

was run three times with three slightly different model tops, effectively producing three134

ensemble members of the same case. A 10-km-deep upper sponge layer was used to pre-135

vent GW reflection off the top of the domain. The tropical physics suite was used (https://136

www2.mmm.ucar.edu/wrf/users/physics/ncar tropical suite.php). Initial and bound-137

ary conditions were provided by the ERA-Interim reanalysis. All three “ensemble mem-138

bers” of this case were included in the training and are together referred to as the Dar-139

win run. The outer 20 km of the 2-km resolution domain were excluded from training,140

as were the first 12 hours of the simulations while initial imbalances dissipate and con-141

vection becomes well-developed. For complete details, see Bramberger et al. (2020).142

The Florida run was completed as part of this work using WRFv4.4. A single ∆x =143

2-km resolution domain was set up, with initial and boundary conditions from the ERA5144

reanalysis (Hersbach et al., 2020). The domain was 1200 km by 1200 km wide, had a top145

at 1 hPa (z ≈ 45 km), and 110 vertical levels resulting in a nearly constant resolution146

of ∆z ≈ 500 m above the tropopause. A 10-km-deep upper sponge layer was again spec-147

ified. The tropical physics suite was again used. The period simulated was 72 hours, be-148

ginning 14 June 2018 at 12 UTC. Given large difference in resolution between the forc-149

ing reanalysis used for boundary conditions (∆x ≈ 31 km) and WRF (∆x = 2 km),150

the outermost 200-km of the domain were excluded from training. The first 12 hours of151

the simulation were also excluded.152
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To train the two methods described below, simulated radar quantities (i.e. inputs)153

and diabatic heating profiles (outputs) were paired at each grid point and time, but only154

for convective grid points. Grid points were deemed convective if the simulated rain rate155

exceeded 1 mm (10 min)−1. In the Darwin and Florida runs, 1558031 and 180247 con-156

vective grid points were extracted, respectively.157

2.2.2 Look-Up Table158

The look-up table (LT) used here was the same as used by Bramberger et al. (2020).159

Briefly, to create their LT, convective grid points were binned by rain rate (RR) and echo160

top height (ET). Simulated diabatic heating profiles were then averaged within the sim-161

ulated RR and ET bins. Then, given a RR and ET, a diabatic heating profile, Q(z), is162

predicted via 2-D linear interpolation. The LT used here was trained only on the Dar-163

win run, referred to as “DALT” in the figures.164

2.2.3 Neural Networks165

The LT method likely introduces errors due to the averaging applied within RR166

and ET bins, the dimensions of which are imposed. Additionally, it is not straightfor-167

ward to expand the look-up table to take advantage of additional radar-observable quan-168

tities. Neural network architectures, and machine-learning methods in general, can pro-169

vide a few advantages over a LT method. For example, NN training provides a flexible170

framework to increase the number of input quantities and more fully make use of avail-171

able data. Additionally, averaging or compositing of heating profiles over RR and ET172

is not imposed, which may allow NNs to be more sensitive to input variables and dis-173

tinguish between different diabatic heating regimes. Finally, the inherently non-linear174

nature of using an NN for prediction has potential in to increase skill by being better175

able to represent the complex structures of heating profiles. Here, five radar-observable176

quantities were used to predict diabatic heating profiles at a given point: radar reflec-177

tivities at 0 C, -10 C, and -20 C isotherms in addition to RR and ET used by the LT178

method. Prior to use with the NNs, all input variables and diabatic heatings were de-179

meaned and then normalized by their standard deviations.180

Here, a 40-neuron-wide, 6-layer-deep fully-connected NN with a hyperbolic tangent181

activation function was used to predict diabatic heating profiles gridpoint by gridpoint.182

Given the two sets of simulations to train on, three NNs were trained to predict diabatic183

heating: one trained on the Darwin run only, one trained on the Florida run only, and184

one trained on both, represented by “DANN”, “FLNN”, and “DAFLNN”, respectively.185

The DANN was trained on all Darwin run convective grid points. The FLNN was trained186

on 90% of the Florida run convective grid points. The DAFLNN was trained on convec-187

tive grid points from both simulations. Given the much smaller number of convective188

grid points in the Florida run, the Florida run profiles were duplicated until the num-189

ber of Florida profiles was equal to the number of Darwin profiles to avoid data imbal-190

ance. A mean-squared error (MSE) loss function and a learning rate of 0.005 were used191

for training. Weights were updated after every batch of 10000 input-output pairs. Train-192

ing continued until the epoch-accumulated MSE reduced by less 0.01%. These three NNs193

trained on the two training sets allow some inference of how generally applicable a NN194

trained on a single case of deep, tropical convection (e.g. the Darwin run) might be when195

used, for example, on a case of subtropical convection over the southeast US.196

Limited hyperparameter optimization was performed in this problem. An NN with197

double the neurons (80 neurons, 6 layers) and an NN with an extra two layers (40 neu-198

rons, 8 layers) were trained on Darwin run profiles to predict a subset of convective pro-199

files, also from the Darwin run. Changes in validation profiles (similar to Fig. 2, not shown)200

were minute, so the 40 neuron wide, 6 layer deep NN architecture was chosen. Further201

hyperparameter optimization is left to future work.202
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Figure 1. Individual profiles of WRF-simulated (black) and predicted (colors) latent heating.

Profiles were randomly chosen from within the five, 5-mm rain rate bins from the Florida run.

The tropopause was near z = 15 km for this case.

3 Evaluations of Diabatic Heating Predictions203

The four methods of predicting diabatic heating are tested against the 10% of the204

Florida run profiles withheld from training. These withheld profiles were compiled by205

first binning all of the Florida-run convective grid points into RR bins of 5 mm (10 min)−1
206

and then withholding a randomly chosen 10% of the profiles in each RR bin for testing.207

This process ensures the RR probability density function of the testing data is the same208

as in the training data and also ensures that the rarest, but most important profiles with209

the highest rain rates do not all end up being withheld from training. Rain rate is a good210

proxy for the magnitude of the diabatic heating above, which forces CGWs. Note that211

the two NNs that include profiles from the Florida run in training are being evaluated212

against Florida run profiles withheld from the same simulation.213

WRF-simulated diabatic heating profiles and predictions from the four methods214

are shown for five randomly chosen profiles within the five RR bins in Fig. 1. By eye,215

the NNs predict WRF-simulated Q similarly. The DALT predictions are somewhat dis-216

tinct, being more smooth in the vertical, which might be expected given the averaging217

inherent in the LT method. Encouragingly, all of the NNs represented the negative heat-218

ings near the surface due to evaporative cooling in the smallest RR profiles (Fig. 1a), whereas219

the DALT did not. While the DALT did not represent this feature here, look-up tables220

can be constructed to represent it (Lang & Tao, 2018; Tao et al., 2019).221

Profiles of mean absolute error (MAE) and bias (MAE = N−1
∑N

i=1 |Ei|, bias =222

N−1
∑N

i=1 Ei, where Ei = Qi,pred−Qi,WRF and Q is diabatic heating) validation statis-223

tics are presented in Fig. 2. Here, the bin-mean WRF-simulated diabatic heating pro-224

file is shown in black for reference, averaged over the number of profiles given in each225

panel title. In the smallest RR bin, all methods perform the worst, with MAE signifi-226

cantly larger than the bin-mean diabatic heating. This lack of predictive skill may be227

due insufficient information within the input quantities. Also, at these low RRs, not all228

of the profiles might be convective in nature, leading to errors when trying to predict a229

non-convective diabatic heating profile. At larger rain-rates (Fig. 2b-e), diabatic heat-230
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Figure 2. Validation statistics plotted as a function of height for the three NNs and the LT.

All methods are tested against Florida run convective profiles from WRF (e.g. Fig. 1) that were

withheld from training. Mean-absolute errors (MAE) are plotted as solid, colored lines. Mean

errors (i.e. biases) are dashed. The mean latent heating profiles within the 5 mm (10 min)−1 bins

are plotted in solid black.

ings are much larger and all methods perform much better, with MAEs smaller than the231

mean heating rates.232

Fig. 2 allows the predictive skill of the Darwin-trained LT and the Darwin-trained233

NN to be compared. Across all larger RR bins with more of a signal to predict, the two234

methods have very similar performance. Perhaps the DALT has slightly better skill than235

the DANN, with incrementally higher MAE by the DANN near the diabatic heating max-236

ima apparently due to a weak bias in heating. However, the NNs perform notably bet-237

ter than the DALT for the smallest RRs, with smaller MAEs and biases in the lower half238

of the troposphere. Perhaps this is a reflection of the NNs’ abilities to better represent239

more complex profiles of heatings, due to less averaging or compositing of the majority240

of profiles at these smaller RRs used in training, or a result of more information about241

the profile being used as input (i.e. reflectivities at 0C, -10C, and -20C used by the NNs242

and not the DALT).243

Comparison of the validation profiles for the DANN, FLNN, and DAFLNN allow244

some inferences to be made on how generally applicable a NN trained on a single case245

of deep, tropical convection might be. In all RR bins except the lowest, the FLNN out-246

performs the DANN, with MAE reduced by about 33% relative to DANN. This might247

not be too surprising as the FLNN was trained on the same run from which these test-248

ing data were withheld. For all but the highest RR bin, including the Darwin-run pro-249

files in the NN training did not change the predictive skill much. However, at the high-250

est RRs, inclusion of the Darwin profiles in training did notably increase the predictive251

skill of the NN. This is likely due to the fact that the Darwin run included much stronger252

(RRs 65+ mm (10 min)−1) and deeper (tropopause at z = 18 km near Darwin vs z =253

15 km over Florida) convection, having more convective grid points at these higher rain254

rates from which to learn.255
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To summarize, convective diabatic heating exhibits significant point-to-point vari-256

ability and is a challenge to predict skillfully given only a handful of radar-observable257

quantities. Both the LT and NN methods have similar predictive skill at larger RRs. The258

NNs appear to be better able to predict the complex heating profiles at the smallest RRs.259

More representative training data (e.g. from the Florida run) increases predictive skill.260

Finally, as largely expected, more training data (i.e. including both runs in the train-261

ing) can further increase skill incrementally.262

4 Evaluations of Simulated CGWs263

4.1 Idealized WRF Configuration264

The four tools described above were used to predict convective diabatic heating from265

MRMS data. Then, these heatings were supplied to the same idealized configuration of266

WRF used by C. Stephan and Alexander (2015) and Bramberger et al. (2020). Briefly,267

the 3-D super cell idealized case within WRFv3.7 was the starting point. The initializa-268

tion code was modified to remove the default initial warm bubble. All physical param-269

eterizations were disabled. WRF’s “open” boundary conditions were used, designed to270

allow small-amplitude GWs to propagate out of the domain without affecting the inte-271

rior solution. The Coriolis parameters were constant across the domain and set using a272

latitude of 28.5 degrees north. The namelist parameter “pert coriolis” was set to true273

to only allow the Coriolis forces to be applied to the wind speed deviations from the ini-274

tial profiles. Initial profiles were taken from MERRA2 (Gelaro et al., 2017), averaged275

between 25 and 34 degrees latitude, -77 and -84 degrees longitude at times closest to the276

measurements of interest (see cases below). A key modification was made to the WRF277

variable registry, which allowed WRF to read the internal diabatic heating variable, “h diabatic”,278

from a file via an auxiliary input stream. The modified WRF source code, along with279

a diff relative to the original source code, are provided. See the Open Research section280

below for details.281

The four tools were used to create 3-D diabatic heating files readable by WRF on282

the 2-km resolution WRF grid every two minutes. Heatings were only provided within283

the dashed box in Fig. 3e, tapered from zero to the full amounts between the dashed and284

solid boxes. Additionally, the small heatings produced by the NNs above the echo top285

heights (e.g. Fig. 1) were set to zero. These heating files were read by WRF, updating286

the constant diabatic heating used to force changes in temperature every two minutes.287

As WRF integrates forward in time (a ∆t = 10 s was used), WRF’s dynamical core re-288

sponds to this heating in every way the governing equations and resolution allow. Con-289

vective updrafts and compensating subsidence are forced. All mechanisms that gener-290

ate CGWs (i.e. diabatic heating, obstacle, mechanical oscillator) act to the extent pos-291

sible, as forced by the provided diabatic heating.292

4.2 Evaluation against AIRS293

4.2.1 The Case of Interest294

In order to evaluate the idealized WRF simulations, an attempt was made to re-295

produce CGWs observed by the Atmospheric InfraRed Sounder (AIRS) in the strato-296

sphere. Brightness temperature perturbations from AIRS radiance measurements aver-297

aged over 42 channels with wavelengths near 4 µm and 2 channels with wavelengths near298

15 µm are shown in panel (a) of Figs. 3 and 4. For details on the brightness tempera-299

ture products, see Hoffmann et al. (2013, 2014, 2017). Vertical observational filter ker-300

nels, averaged over all channels included in each product, are shown in Fig. 5, which de-301

pict the relative importance of different altitudes in emitting radiation at the selected302

wavelengths to the AIRS sensor. The 4µm channel set is most sensitive to stratospheric303

temperature perturbations at about 30 – 40 km of altitude. The 15µm channel set is most304
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Figure 3. Maps of observed (a) and WRF-simulated (b-e) T ′
b. AIRS observations shaded in

(a) were collected over 18:41 to 18:45 UTC on 22 July 2018. The WRF-simulated T ′
b were com-

puted using output at 18:50 UTC. Approximate vertical and horizontal AIRS observational filters

were applied to WRF in (b-e). Diabatic heating, Q, supplied to WRF was limited to within the

boxes in (e), with a cosine ramp transitioning predicted Q from zero to its full amount between

the dashed and solid lines.

sensitive at about 40 – 45 km. Note the different vertical width and sensitivity of the two305

kernel functions.306

In both of these products, small-scale perturbations within eastward-directed semi-307

circular GWs are apparent just north of the gulf coast and over northern Florida. These308

observations are consistent with localized convective sources below, which was the case309

as seen in the MRMS lowest reflectivity mosaic at 18 UTC (2 pm local) on 22 July 2018310

in Fig. 6, valid about 40 minutes prior to the AIRS data being collected overhead. Ear-311

lier analyses of reflectivities indicate these two convective features initiated approximately312

six hours earlier (8 am local) and so were rapidly developing up to the time of the AIRS313

overpass.314

To simulate this case, the idealized WRF model was configured with 110 evenly-315

spaced vertical levels extending up to z = 80 km (∆z ≈ 727 m), with a 10-km deep316

GW-absorbing sponge at the top. This depth was chosen in order to cover as much of317

the AIRS observational kernels within a physically-interpretable portion of the domain318

as possible. The idealized model was initialized 6 UTC, 22 July 2022 with the wind (Fig. 7)319

and stability (not shown) profile from MERRA2 and integrated forward 30 hours in time.320

Four simulations were completed, forced by diabatic heatings produced by the four tools321

described above updated every two minutes. Variables were output every 10 minutes322

.323

4.2.2 Application of AIRS Observational Filters to WRF Output324

In order to validate the four runs against AIRS data, both vertical and horizon-325

tal observational filters were applied to the WRF output to approximate the brightness326

temperature perturbations that would be seen by the AIRS sensor viewing through the327

simulated atmosphere. The vertical observational filter was applied first by taking the328
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Figure 4. As in Fig. 3, but for the 15 µm product. Note the gray-shading range is twice that

in Fig. 3.
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Figure 5. Average vertical observational filters for the 4 µm and 15 µm brightness temper-

ature perturbation products. The 4 (15) µm kernel plotted here is the average of kernels of 42

(2) individual channels (Hoffmann et al., 2013, 2014, 2017) to reduce noise. These kernels were

computed assuming climatological midlatitude atmospheric conditions.
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Figure 6. Multiple Radar, Multiple Sensor (MRMS) mosaic of lowest weather radar reflectiv-

ity valid 18 UTC on 22 July 2018, approximately 40 minutes prior to the AIRS observations in

Figs. 3 and 4.
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Figure 7. MERRA2 wind components area-averaged between 25N and 34N, 77W and 84W,

valid 18 UTC on 22 July 2018. This wind (and stability, not shown) profile was used to initialize

all idealized WRF simulations.
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vertically-weighted average of WRF temperature perturbations (T ′) using the kernels329

in Fig. 5 as weights. Temperature perturbations were computed by first applying spa-330

tial high-pass filtering following Kruse and Smith (2015) to retain scales smaller than331

500 km, similar to the high-pass filtering applied when removing background brightness332

temperature (Tb) from AIRS swaths (Hoffmann et al., 2013, 2014).333

After application of the vertical observational filter, the simulated T ′
b field is still334

at 2-km horizontal resolution, containing small-scale, large amplitude T ′
b. However, the335

field of view of individual AIRS footprints is ≈ 13.5 km × 13.5 km at nadir, increas-336

ing to 41 km × 21.4 km at the edges of cross-track scans within an AIRS swath (Aumann337

et al., 2003; Hoffmann et al., 2013). Cross-track scans are ≈ 18 km apart, leading to a338

slight underlap of footprints in this direction. To roughly approximate the AIRS hor-339

izontal observational filters and scanning geometries, the 2-km resolution WRF-simulated340

T ′
b were coarsened to 16-km resolution.341

4.2.3 WRF Validation Against AIRS342

The WRF-simulated T ′
b approximately visible to the AIRS sensor are shown in pan-343

els (b-e) in Figs. 3 and 4. The model output time was 18:50 UTC, ≈ 7 minutes after344

the AIRS overpass over the region. Overall, the CGWs in WRF do resemble the CGWs345

emanating from the two regions of convection in the AIRS observations.346

Small-scale T ′
b features are apparent in both the observations and all WRF sim-347

ulations. The larger-scale eastward propagating GW to the east of the convective sources348

also closely resembles those seen in the data. The minimum and maximum T ′
b in WRF,349

due to the small-scale perturbations right above convection, are very comparable to those350

in the observations. Though, in the WRF output, T ′
b minima and maxima were very sen-351

sitive to the degree to which WRF was coarsened. For example, coarsening to 20-km res-352

olution reduced the simulated extrema by about half, due to significant small-scale CGW353

variability unresolved by AIRS. The amplitude of the CGW features to the east of the354

convection is quite comparable to that seen in the observations and not sensitive to the355

degree to which output was coarsened.356

Several differences between the models and the observations can be noted as well,357

however. Phase-lines of the CGWs southeast of the convection appear slightly rotated358

clockwise relative to those in WRF. This might be due to latitudinal variations in the359

background flow (e.g. ∂yU , ∂y ∂zU) in reality that were unrepresented by the horizontally-360

homogeneous profiles used to initialize WRF (i.e. Fig. 7). Additionally, observed large-361

scale GWs with northeast-southwest-oriented phase lines in the northern part of the do-362

main are not present in the models. These GWs are likely due to sources outside of the363

spatiotemporal domain represented by WRF or outside of the region where convective364

forcing was supplied (Fig. 3e) and, hence, were not represented. Finally, the observations365

include significant noise, particularly in the 15 µm product (Fig. 4), where only two AIRS366

channels were averaged.367

Brightness temperature perturbations along 29N are shown in Fig. 8. East of 79W,368

the CGW amplitudes and phases are very similar to the observations, at least in the 4369

µm T ′
b (panel a). The comparison east of 79W is not as good in the 15 µm product (panel370

b), though, the significant noise in the observations (∼ 0.3K), potentially of similar am-371

plitude to the CGWs according to WRF, obscures the comparison. While the CGWs do372

not obviously emerge from noise in such a transect, CGWs are visible through the noise373

when plotted spatially in Fig. 4a. (Note noise in the 4 µm channel is smaller ∼ 0.1 K.)374

The simulated CGWs (Fig. 4 (b-e)) do resemble those visible through the noise in the375

observations. West of 79W, the high-amplitude, small-scale perturbations in WRF do376

not match in phase with those observed (Fig. 8). Simulated perturbation amplitudes are377

similar to the observations, being similar in the 4 µm product and slightly smaller in the378

15 µm product. Perhaps the simulated amplitudes could be made more comparable with379
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Figure 8. Brightness temperature comparison along 29N over Florida and to the east. WRF

output was coarsened to 16-km to approximate an average horizontal observational filter of

AIRS.

the observations with a more realistic treatment of AIRS footprint geometries and sizes380

and/or the addition of noise to the WRF output, however, this was not performed here.381

Still, the exact locations and phases of these small-scale CGWs right above the sources382

are likely inherently unpredictable, meaning matching simulated phases with observa-383

tions may not be realistic.384

While the evaluations of diabatic heating predictions by the four tools could sug-385

gest one tool is better than the other (e.g. comparing MAE from the DANN versus the386

DAFLNN in Fig. 2), the CGWs produced by all four diabatic heatings are quite simi-387

lar between the four runs (Figs. 3, 4, 8). It is unclear if the small differences in AIRS-388

visible simulated CGWs between the four simulations are significant, being attributable389

to differences in the diabatic heatings, or if these differences are essentially within an en-390

semble spread where only diabatic heatings were purturbed (i.e. indistinguishable). As391

such, it is difficult to claim one tool is better than the other when validating the sim-392

ulated CGWs against the AIRS observations. However, the similarity of CGWs between393

the four solutions, all resembling the observations quite well, allows the conclusion that394

if a reasonable diabatic heating, in this case learned from a microphysics parameteriza-395

tion within a covection-permitting and not convection-resolving simulation, is supplied396

to a GW-resolving model at correct locations and times, the CGWs resulting from this397

forcing can be quite realistic.398

4.3 WRF Validation Against Loon Super-Pressure Balloons399

For further evaluation, another case was simulated using the modified idealized WRF400

configuration. Here, a case of typical diurnal convection over Florida was simulated that401
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Figure 9. Horizontal cross-section of u′ at z = 19400 m at 22 UTC on 16 June 2018. Here,

the entire WRF domain is shown. The idealized WRF model was initialized 10 hours prior to

the valid time. The two Loon super-pressure balloon tracks are shown during the 24 hour pe-

riod beginning at 12 UTC, 16 June 2018. The circles indicate the positions of the super-pressure

balloons at the valid time. The height was chosen to be an approximate average height of the

balloons (c.f. Fig. 10).

happened to have two super-pressure balloons, flown by Project Loon (hereafter Loon),402

advecting from east-to-west overhead near z = 19.4 km. Loon was a Google project,403

and later an Alphabet subsidiary, that flew 2131 super-pressure balloons nearly globally404

in order to provide wireless internet access to rural areas (Rhodes & Candido, 2021). Loon405

balloons carried a payload with instruments measuring pressure, temperature, and hor-406

izontal velocities from GPS (Friedrich et al., 2017) at 1 Hz. These balloons also had the407

capability of changing their density, allowing some altitude control and steering by catch-408

ing winds at different altitudes. A flag recorded when vertical maneuvering occurred. These409

data have been used in a handful of studies up to this point (Friedrich et al., 2017; Schoe-410

berl et al., 2017; Conway et al., 2019; Lindgren et al., 2020). Only the 1 Hz location, height,411

and horizontal wind observations are used here.412

For this case, an 800 km × 800 km × 55 km domain was used at ∆x = 2-km hor-413

izontal resolution and ∆z = 500 m vertical resolution via 110 evenly spaced vertical414

levels. The idealized configuration was initialized at 12 UTC on 16 June 2018 and in-415

tegrated 24 hours in time. Diabatic heatings were again computed from MRMS data via416

the same LT and three NNs and supplied to WRF every two minutes. Figure 9 shows417

the zonal wind perturbations relative to the initial profile at z = 19.4 km, near the al-418

titude of two Loon super-pressure balloons (Fig. 10), valid at 22 UTC on 16 June 2018.419

The tracks of the two super-pressure balloons, along with their locations at the output420

valid time, are also depicted in Fig. 9.421

The WRF output was then 4-D linearly interpolated to the time, altitude, latitude,422

and longitude of the observations taken by both Loon flights during the 24 hours of the423

four simulations. The Loon height, zonal wind perturbation, and meridional wind per-424

turbation time series for both flights are shown in Fig. 10. Initially, there are no pertur-425

bations occuring at the Loon locations, as the convective forcing did not begin imme-426

diately and when it did occur, it was some distance northwest. When the CGWs do reach427

the Loon locations, as noted in the previous case, the differences in heatings provided428

by the four tools do not seem to result in significant differences in the simulated CGWs429

they force.430
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Figure 10. Time series of Loon super-pressure balloon GPS altitude, zonal wind perturba-

tions, and meridional wind perturbations (black) for two Loon flights that happened to drift

over Florida 16 June 2018. The four WRF runs were 4-D linearly interpolated (colors) to the

latitudes, longitudes, heights, and times for comparison with the observations (obs).The portions

of the observed time series (black) highlighted in red indicate periods where the super-pressure

balloon was maneuvering vertically.

In this case, none of the idealized WRF simulations were able to well-reproduce the431

observations. Here, simulated wind speed perturbations are relative to the initial wind432

at the altitude of interest. The Loon perturbations are relative to the mean over the 24433

hour period presented. The simulated u′ = u(t) − u(tinit) amplitudes were generally434

notably higher than in the Loon observations. The simulated v′ compared, perhaps, slightly435

better to the observations. Likely the best point of comparison was in the arrival times436

of the CGWs to the Loon locations. For example, about 8 hours after initialization, the437

appearance of significant simulated CGW perturbations appear. This timing roughly cor-438

responds to when higher-frequency variability appears in Loon as well.439

It is difficult to say whether or not the overall method of recreating CGWs did not440

work in this case. While the time series comparisons are poor (Fig. 10) and wind speed441

uncertainty is reported to be much smaller (0.23 m s−1, Friedrich et al. (2017)) than the442

observed variations, data in this case are limited to only two transects. Comparisons of443

GWs along individual transects can be misleading, as small differences in the location444

of interest relative to the GWs can lead to significant differences of the apparent GW445

field sampled on a transect when, spatially, the GW fields are similar (c.f. Fig. 8, 4). Ad-446

ditionally, the data quality is somewhat questionable in this particular case. The por-447
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Figure 11. Height- and time-integrated latent heating (Q) predicted by (a) the look-up table

method and (b) the DAFLNN on the WRF domain for the AIRS case. Latent heating was ze-

roed outside of the dashed line in (d).

tions of the Loon time series highlighted in red indicate times when the super-pressure448

balloon was vertically maneuvering by changing its density. It is unknown if this maneu-449

vering was performed to steer the balloons or an automated response to oppose the in-450

fluences of CGWs.451

5 GW Analysis of the AIRS Case452

A primary motivation for the overall method of forcing an idealized model with weather-453

radar-derived diabatic heating was to produce validatable simulations of CGWs and then454

use these validated simulations to study CGWs. Here, the CGWs within the AIRS-validated455

case above are briefly analyzed. The objectives are to see how far laterally CGWs can456

propagate in this case, to see where they dissipate, and how strong the drag decelera-457

tions are. All of these objectives are currently relevant to the development and improve-458

ment of GW parameterization in weather and climate models, which has not been well459

constrained by observations or constrained by directly validated CGW-resolving simu-460

lations such as these.461

Over the entire 30-hour AIRS-validated WRF simulation, the convective diabatic462

forcings were fairly compact. The height- and time-integrated diabatic heating over the463

entire simulation is shown from the DALT and DAFLNN predictions in Fig. 11. The cor-464

responding maps from the DANN and FLNN predictions were largely similar and so are465

not shown. The most intense, prolonged heating resulted from the convective region over466

northern Florida, with more localized and weaker forcings scattered within the domain467

elsewhere. This localization of CGW forcing simplifies interpretation of GW analyses some-468

what, as the CGWs can largely be interpreted as being generated by a single localized469

source.470

GW amplitudes are illustrated in Fig. 12. Amplitudes were computed using the dis-471

crete Hilbert Transform following Eckermann et al. (2015) and Mercier et al. (2008), al-472
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lowing phase-averaged quantities to be produced in physical (e.g. x,y) space. These am-473

plitudes were then averaged over all output times during the 30-hour simulation, from474

output every two minutes. At z = 40 km, CGWs are most apparent over and to the475

east of the diabatic forcing (c.f. Figs. 12a, b, c, g and 11b). The prevalence of CGW ac-476

tivity to the east is largely expected, considering the strong easterly wind shear in the477

ambient winds below this altitude (Fig. 7) forcing critical-level dissipation of the westward-478

propagating CGWs. The CGW activity is most spread out according to u′ amplitudes479

(Fig. 12a) and most localized according to w′ amplitudes (Fig. 12b), with the spread of480

vertical fluxes of horizontal momentum (MFx = ρ û′w′, MFy = ρ v̂′w′ with hats here481

indicating phase averaging via Hilbert transform) in between. In terms of momentum482

flux, CGWs can clearly propagate O(1000) km away from their source, consistent with483

the modeling study of Sun et al. (2023), observational study of Corcos et al. (2021) and484

inconsistent with the conventional column-approximation in parameterizations.485

Vertical fluxes of zonal (b-d) and meridional (f-h) momentum are shown at z =486

20 km, 40 km, and 60 km in Fig. 12 to give a sense for how CGWs both dissipate and487

spread with height. The color shading scales are reduced with height, implying CGW488

dissipation and momentum deposition. Alternatively, lateral spreading can result in spread-489

ing and reduction of fluxes, too (Eckermann et al., 2015). However, the spatial extents490

do not appear to change significantly with height, suggesting GW dissipation.491

The meridional spread of these validated CGWs are shown in Fig. 13, where zonally-492

and temporally-averaged (( . )
xt

= L−1T−1
∫ ∫

( . ) dt dx, where L and T are the lengths493

and periods over which the quantity is averaged) wave and convective quantities are shown494

as a function of latitude and height. The largest CGW amplitudes occur directly over495

the highest diabatic heating, but extend north and south of the peak heating with height496

(Fig. 13a, b). This spread is also seen in the contours of vertical flux of zonal and merid-497

ional momentum (Fig. 13c, d), though, this spread with height is more subtle in this vari-498

able.499

The zonal and meridional CGW drag was quantified via500

(GWDx, GWDy) = − 1

ρxt
∂

∂z

(
ρxtu′w′xt, ρxtv′w′xt

)
(1)

and shown in panels (e-f). The influences of lateral divergences of lateral fluxes of hor-501

izontal momentum can be important (Sun et al., 2023), but were not investigated here.502

The vertical profiles of zonal drag are largely consistent with linear GW theory. Westward-503

propagating GWs producing negative zonal momentum flux encountered critical levels504

and dissipated in the region of strong negative zonal wind shear between z = 15 km505

and 20 km (Fig. 7). This results in negative drags of ≈ 1 m s−1 day−1, though, these506

values of drag are somewhat subjective as they depend on the choices made in areas over507

which fluxes were averaged. The eastward-propagating waves do not encounter critical508

levels, but do grow with altitude and gradually reach overturning amplitudes and dis-509

sipate, indicated by the general increase in positive drag with height (Fig. 13e). How-510

ever, zonal drags rise sharply in the layers of positive shear above z = 35 km, as CGWs511

propagating into these layers encounter shear that brings the environment a bit closer512

to their phase speeds, forces GWs toward steepening and saturating (see Kruse et al. (2016)513

for further discussion on this effect, but for orogaphic GWs). The growth in amplitudes514

due to these local zonal wind maxima can be seen in Fig. 13a and b. Interestingly, the515

zonal and meridional drags are fairly invariant in latitude despite localized forcing, ex-516

cept at the highest altitudes, highlighting the effects of lateral propagation on drag.517

It should be noted that the idealized WRF configuration used no physical param-518

eterizations and so did not use a turbulence parameterization. Also, the vertical reso-519

lution of ∆z = 727 m may be coarse relative to the scales of motions involved in CGW520

breakdown. Both simulation characteristics will likely affect some details of how and where521

these simulated CGWs break and deposit momentum. Testing how turbulence param-522
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Figure 12. Phase-averaged (via Hilbert transform, ˆ( . )), time-averaged GW amplitudes of (a)

u′, (e) w′, (b-d) vertical flux of zonal momentum, (f-h) and vertical flux of meridional momentum

at selected levels indicated in the panel titles. These analyses are of the DAFLNN-forced WRF

run. Comparison with Fig. 11d gives an indication of how different variables tend to spread lat-

erally and how this spread varies with height. Note every panel has an individual color shading

range.
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Figure 13. Time- and zonal-mean (a) u’ amplitude, (b) w’ amplitude, (c) vertical flux of

zonal momentum, (d) vertical flux of meridional momentum, (e) zonal GWD, and (f) meridional

GWD. The entire 30-hour simulation was included in the time averaging. The outer 200 km of

the domain were excluded. The vertical fluxes of horizontal momentum and zonal drags were

smoothed along latitude with a 42-km moving average smoother. The thick black contours depict

the time-, zonal-mean latent heating at 1, 6, and 12 K day−1.
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eterizations and vertical resolution affect drag on the mesoscales is certainly warranted,523

but is left to future work.524

6 Discussion and Conclusions525

If reasonably realistic diabatic heating is supplied at the correct locations and times526

in a GW-resolving model, the CGWs generated within that model can resemble observed527

CGWs quite well. This overall method (i.e. forcing CGW-resolving simulations with528

observations of convection) shows significant promise in furthering CGW research and529

parameterization development with confidence, as it allows full 4-D fields of realistic CGWs530

to be generated and analyzed rigorously.531

Here, diabatic heating was learned from full-physics, ∆x = 2-km, ∆z < 500-m532

resolution WRF simulations. These simulations were convection-permitting, but not convection-533

resolving (Jeevanjee, 2017; Jeevanjee & Zhou, 2022), and diabatic heatings are predicted534

by the WRF Single-Moment 6-class (WSM6) microphysics scheme (Hong & Lim, 2006).535

The good agreement between simulated and observed CGWs (Figs. 3, 4) suggests the536

convection permitted by these resolutions and the heatings predicted by this microphysics537

scheme are reasonably realistic, at least when it comes to CGW forcing.538

The look-up table method and NNs had similar skill at predicting the WRF-simulated539

diabatic heating profiles at larger rain rates, while the NNs showed promise at being bet-540

ter able to represent complexities in heating profiles (e.g. evaporative cooling layers) at541

smaller rain rates. The vast majority of gridpoints deemed “convective” (i.e. having a542

rain rate exceeding 1 mm (10 min)−1) had these smaller rain rates. This increased per-543

formance by NNs at smaller rain rates could be attributable to the inherent ability of544

such an architecture to represent such profiles, potentially the increased information con-545

tained by the additional radar reflectivities used as input, or just a reflection the NNs546

being trained mostly small-rain-rate profiles. Perhaps a proper hyperparameter optimiza-547

tion, a loss function used to emphasize skill of the larger-amplitude heating profiles, or548

an architecture more appropriate for this application (e.g. one that uses spatial input549

to account for the 3-D tilting of convection observations due to wind shear) could en-550

hance skill in this application over all rain rates.551

While machine learning methods still have significant potential to further improve552

skill in predicting convective diabatic heating beyond conventional methods (e.g. look-553

up tables), variations in CGWs generated by the different heatings predicted here were554

small. It is unclear if better heatings will be significant when it comes to CGW forcing.555

In the ∆x = 2-km, ∆z = 727-m resolution idealized WRF configuration used556

here, larger-scale CGWs that apparently propagate more laterally validated the best against557

AIRS observations, with both phases and amplitudes reproduced reasonably well quan-558

titatively. The WRF configuration was also able to reproduce the smaller-scale, more vertically-559

propagating CGWs above convective sources as well, at least in amplitudes. Still, these560

small-scale CGWs were highly sensitive to the details sampling a simulation as if AIRS561

were viewing through it. A more accurate treatment of how AIRS might sample these562

simulated CGWs that takes into account viewing geometries of individual footprints, vari-563

ations in horizontal observational filtering with viewing zenith angle, and perhaps even564

radiative transfer would likely alter how a hypothetical AIRS sensor would see these CGWs.565

This is particularly relevant as these small-scale CGWs right over the convection are re-566

sponsible for much of the momentum flux (Fig. 12).567

Finally, CGWs are inherently non-stationary and propagate away from the con-568

vection. A spectrum of horizontal and vertical group velocities is generated. In the val-569

idated simulation presented here, it is clear CGWs propagate 100s of kilometers away570

from the convective sources. The most momentum fluxed and drag deposited does oc-571

cur above the convective sources, but significant drags still occur 100s of kilometers away.572
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These results provide more evidence for relaxing the commonly employed single-column573

approximation in GW parameterizations, which assumes GWs propagate only vertically.574
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output frequency, the trained NNs, parsed training data, the Bramberger et al. (2020)584

lookup-table, time-averaged DAFLNN-forced WRF output, and all Python scripts and585
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