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ABSTRACT6

Characteristic properties of gravity waves from convection over the Continental United States7

are derived from idealized high-resolution numerical simulations. In a unique modeling ap-8

proach, waves are forced by a realistic thermodynamic source based on observed precipitation9

data. The square of the precipitation rate and the gravity wave momentum fluxes both show10

log-normal occurrence distributions, with long tails of extreme events. Convectively gener-11

ated waves can give forces in the lower stratosphere that at times rival orographic wave12

forcing. Throughout the stratosphere, zonal forces due to convective wave drag are much13

stronger than accounted for by current gravity wave drag parameterizations, so their con-14

tribution to the summer branch of the stratospheric Brewer-Dobson circulation is in fact15

much larger than models predict. A comparison of these forces to previous estimates of16

the total drag implies that convectively generated gravity waves are a primary source of17

summer hemisphere stratospheric wave drag. Furthermore, intermittency and strength of18

the zonal forces due to convective gravity wave drag in the lower stratosphere resembles19

analysis increments, suggesting that a more realistic representation of these waves may help20

alleviate model biases on synoptic scales. The properties of radar precipitation and gravity21

waves seen in this study lead to a proposed change for future parameterization methods that22

would give more realistic drag forces in the stratosphere without compromising mesospheric23

gravity wave drag.24
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1. Introduction25

The meridional equator-to-pole Lagrangian-mean circulation in the stratosphere, the26

Brewer-Dobson circulation (BDC, Brewer (1949); Dobson (1956)), controls various dynamic27

and thermodynamic properties of the stratosphere. For instance, it plays a role in deter-28

mining the temperature of the tropical tropopause, the amount of water vapor entering the29

stratosphere, the transport of aerosols, ozone and other trace gases, as well as the period of30

the tropical quasi-biennial oscillation.31

The time scales of the BDC vary from several years in the upper stratosphere and meso-32

sphere to just weeks right above the stratosphere. The slow overturning into the mid and33

upper stratosphere, often referred to as the ”deep branch” of the BDC, is mainly present in34

the winter hemisphere (e.g. Birner and Boenisch (2011)), mostly driven by planetary waves35

(Plumb 2002) but partly by gravity waves (GWs). Okamoto et al. (2011) highlight the im-36

portance of orographic and non-orographic GWs in influencing the formation of the summer37

hemispheric upward branch of the winter circulation. The summer hemisphere branch and38

the seasonal variation in strength of the circulation is affected by small-scale GWs (Alexan-39

der and Rosenlof 1996). Alexander and Rosenlof (2003) show that smaller scale GWs also40

dominate the wave forcing in the spring-to-summer transition season in each hemisphere. In41

the lower stratosphere, the ”lower branch” of the BDC is more symmetric between the hemi-42

spheres, mainly driven by synoptic- and planetary-scale waves and partly by GWs (Plumb43

2002).44

An intermodel comparison of the annual-mean upward mass flux at 70 hPa in comprehen-45

sive chemistry-climate models shows statistically significant agreement on the total strength46

of the circulation (Eyring et al. 2010). However, there is large variability in terms of the47

relative contributions of parameterized GWs versus resolved Rossby waves, ranging from48

close to zero to about half for GWs. The uncertainty is particularly large for non-orographic49

GWs. Furthermore, a 2.0-3.2% per decade acceleration of the BDC is seen across mod-50

els but there again exists no consensus on the contributions from different waves types in51
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driving this trend (Butchart et al. 2006, 2010; Cohen et al. 2014; Abalos et al. 2015). The52

differences in resolved versus gravity wave contributions reflect our poor ability to simulate53

gravity waves. Deficiencies, especially in parameterizations used for non-orographic GWs,54

remain a great motivation for improving our knowledge and understanding of atmospheric55

GWs, both through observations and numerical modeling (Alexander et al. 2010).56

In this study an idealized version of the Weather Research and Forecasting (WRF) model57

is used to determine characteristic properties of GWs from Continental U.S. convection, in58

particular those quantities relevant to their parameterization in global models, for instance59

the amplitude spectrum and frequency of occurrence. The modeling approach is unique60

in that all simulations are carried out at a high horizontal resolution of 4 km and waves61

are forced by a realistic thermodynamic source based on observed precipitation data. At62

the same time the model is efficient enough to allow for long simulations on deep domains63

covering most of the Continental U.S. The numerical model and use of precipitation data are64

described in Section 2. In Section 3 the topic of wave intermittency is addressed, one of the65

most challenging aspects of non-orographic GW drag parameterizations. We will first show66

that the distribution of wave amplitudes over the summer U.S. agrees well with the universal67

shape of amplitude spectra observed and modeled in other regions of the globe. Secondly, we68

will compare the zonal wind tendencies from our model results to those in the Modern-ERa69

Retrospective Analysis for Research and Applications (MERRA) reanalysis and highlight70

deficiencies in their GW drag parameterizations. In Section 4 we compute the contribution71

of our simulated GWs to the forcing of the BDC and compare to the parameterized wave72

forcing in MERRA and the Community Atmosphere Model (CAM). Potential avenues for73

improving GW drag parameterizations in global models are discussed in Section 5, which74

also serves as a conclusion.75
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2. Experimental setup76

a. A numerical model with a realistic gravity wave source77

This study uses the modeling approach described in Stephan and Alexander (2015),78

where a nonlinear idealized dry version of the WRF model is forced with high-resolution79

latent heating/cooling derived from precipitation observations over the Continental U.S.80

For several case studies, it was shown that this model produces an excellent quantitative81

comparison to waves observed by satellite.82

Here, we simulate the entire month of June 2014 and an area covering most of the83

Continental U.S. at a high horizontal resolution of 4 km. Fig. 1 shows the arrangement84

of 10 sub-domains, each spanning 1000 km×1000 km. To exclude numerical artifacts close85

to the domain boundaries the idealized WRF model is run on slightly larger domains with86

a horizontal area of 1400 km×1400 km. Fig. 1 shows the centers of these domains, but87

there exist overlapping zones on each side of a domain that measure 200 km. This has the88

additional benefit of accounting for wave horizontal propagation: GWs that are triggered by89

convection close to a boundary and propagate out of their 1000 km×1000 km domain will be90

captured by the adjacent domain. Every 24 h independent model simulations are launched91

for each sub-domain.92

Each sub-domain is initialized every day at 00:00 UTC with a one-dimensional daily-93

mean MERRA horizontal wind and potential temperature profile computed at the MERRA94

grid point closest to the center of the sub-domain. The 1000 km horizontal extent of the ten95

sub-domains corresponds to the lower limit of what are considered synoptic length scales.96

Therefore, large-scale background wind patterns, which are key for modeling wave-mean flow97

interactions, are adequately captured by our experimental setup. In terms of the vertical98

grid, there are 104 vertical levels with a spacing increasing linearly from 100 m at the surface99

to 600 m at 2400 m, and a constant separation of 600 m above 2400 m. The model top is100

at 65 km (0.1 hPa), with the upper 10 km consisting of a damping layer. For a detailed101

4



description of the model, see Stephan and Alexander (2015).102

The heating algorithm for converting rain rates to latent heating/cooling is developed,103

tested and described in detail in Stephan and Alexander (2015). The algorithm is derived104

from the precipitation and latent heating field of a full-physics WRF simulation which in-105

cludes the developing, mature and decaying stages of typical continental convection. It106

relates 10-min surface precipitation rates averaged over an area of 4 km×4 km that ex-107

ceed a convective threshold of 1 mm/10 min to the average profile of latent heating and108

cooling. The amplitudes and depths of the heating/cooling profiles are linear functions of109

precipitation rate. In Stephan and Alexander (2015) the idealized model was run with the110

original heating and cooling field and with the algorithm-derived heating/cooling to show111

that employing a convective threshold and using average profiles instead of original profiles112

does not have a large impact on the generated GW momentum flux spectrum. The idealized113

modeling approach reproduced the shape of full-physics GW momentum flux well and the114

total integrated flux was within ±20%.115

The heating algorithm is suitable for precipitation data with a horizontal resolution of116

4 km×4 km and a temporal resolution of 10 min. Model runs over extended periods of time117

and large areas require a gridded precipitation data set. In this study we use the National118

Centers for Environmental Prediction/Environmental Modeling Center’s (NCEP/EMC) 4119

km gridded Stage IV precipitation data to derive the time-varying heating/cooling field.120

The Stage IV analysis is based on the multi-sensor hourly Stage III analysis produced by the121

12 River Forecast Centers in the Continental U.S. After a manual quality control performed122

at the River Forecast Centers it is made into a national product. The horizontal resolution123

of the idealized WRF model is chosen to match the Stage IV horizontal grid. The total124

precipitation for June 2014 is shown in Fig. 1 as colors.125

While the horizontal resolution of the Stage IV analysis is appropriate for modeling GW126

generating convective cells, the temporal resolution of 1 h is not high enough to capture127

the intermittency of localized intense cells that have been observed as intense GW sources.128

5



Therefore, we have developed a statistical method to construct 10 min precipitation data129

from the hourly data.130

b. From hourly to 10 min precipitation values131

1) Derivation of the precipitation algorithm132

Our goal is to compute the probability P (P10|P60), i.e. the probability of 10 min values133

of precipitation P10 given a 60 min value P60. The six 10 min values are not independent134

as their sum needs to equal P60.135

Statistics that describe how hourly accumulation values break down into 10 min accu-136

mulation values can be inferred from analyzing precipitation data with an original temporal137

resolution of 10 min. To this end, we obtain the Storm Total Rainfall Accumulation Product138

(STP) for individual Next-Generation Radar (NEXRAD) stations. The STP product pro-139

vides radar-estimated rainfall accumulations within 230 km of the radar in polar coordinates140

with a resolution of 2 km×1◦. Data from several stations are interpolated in space and141

time to obtain a 10 min 4 km×4 km mosaic. In this process we average overlapping arrays142

from different stations to obtain smooth maps. This procedure is carried out for areas of143

2000 km×2000 km, time periods of 24 h and for 5 different storms: A mesoscale convective144

complex (20 June 2007), a squall line (5 June 2005), a mesoscale convective system (13 June145

2013), and two events of intense convection with a smaller degree of organization, one in the146

Southeast (8 June 2014), and one in the Midwest (19 June 2014).147

The purple histograms, labeled original data, in Fig. 2 are the distributions of 4 km×4148

km 10 min rain rates greater than zero for the 5 storm cases. The 99th and 95th percentiles149

are shown in each panel. Solid lines are lognormal distributions with the same mean and150

standard deviation as the data.151

The original 10 min accumulations, denoted P10, are next integrated to obtain hourly152

accumulations, P60. Then, for each 10 min interval that was used in computing P60, we153
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calculate the factor m = P10/P60, where 0 ≤ P10 ≤ P60 and 0 ≤ m ≤ 1. A value of154

m = 1 corresponds to all precipitation falling within 10 min. The goal is to compute the155

probability distribution P (m|P60) of the factors m given a value for P60: The higher the156

value of P60, the higher is the probability that it rained for a longer period of time and the157

probability distribution becomes more strongly peaked around m = 1/6. For small P60 the158

probability that all rain fell within only 10 min increases and larger values of m occur more159

frequently.160

For use in the algorithm, we combine the data from all storms and separate it into five161

categories based on the values of the hourly accumulation: 0 mm/h< P60 <10 mm/h,162

10 mm/h≤ P60 < 20 mm/h, 20≤ P60 <30 mm/h, 30 mm/h≤ P60 <40 mm/h and 40163

mm/h≤ P60. For each category let ν denote the probability that no rain fell within a 10164

min interval (m = 0). The values of ν are given in Table 1. As expected, the likelihood that165

no rain falls within some fraction of the hour decreases with increasing hourly accumula-166

tions. The probability distributions P (m|P60) for m > 0 can be approximated by lognormal167

distributions with mean values µ and standard deviations σ, also given in Table 1:168

P (m|P60) =
1

mσ
√
2π

e
−(ln(m)−µ)2

2σ2 (1)

Indeed, as argued earlier, µ decreases with larger P60, which means that small values of m169

become more likely. This translates to P60 being more equally distributed over the hour.170

The algorithm for deriving 10 min values from an hourly value P60 works as follows.171

First, the precipitation strength category is determined. If P60 ≥ 40 mm/h we assign172

P10 = P60/6 for all six 10 min intervals that make up this hour. Otherwise we use the173

appropriate values for ν, µ and σ from Table 1 and loop through five of the six 10 min174

intervals. These five intervals do not correspond to the first 50 minutes of the hour but are175

chosen randomly to ensure that precipitation statistics are identical for all 10 min intervals176

within the hour. For each of the 5 randomly chosen 10 min intervals 1 ≤ j ≤ 5 we determine177

whether rain fell or not in a binomial trial, where the probability that rain fell is p = (1−ν).178

If rain fell, the lognormal distribution given by µ and σ is randomly sampled to obtain mj179
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and we assign P10j = mj×P60 to time interval j. Should for some time j > 1,
∑j

i=1
mi > 1,180

the random sampling of the lognormal distribution is repeated. For the last interval, j = 6,181

we assign m = 1−
∑

5

j=1
mj to ensure that P60 is matched exactly.182

The green histograms in Fig. 2 show the distributions of 10 min precipitation values183

reconstructed from the hourly data. A two-sided Kolmogorov-Smirnov test is performed to184

quantify the similarity of the two histograms shown in each panel and the significance is185

shown at the bottom. Overall there is excellent agreement. The worst match is found for186

the squall-line case (5 June 2005). We suspect this can be attributed to the fast propagation187

speed of this storm and/or to this storm having particularly high precipitation rates.188

The precipitation algorithm accurately reproduces the statistical distributions of 10 min189

precipitation values. A good match of overall precipitation amount and of intense rain events190

found in the tails of the distributions is essential for triggering a realistic GW spectrum in191

the idealized model. However, there are additional factors that can affect the shape of the192

GW spectrum above the storm, for example the horizontal distribution and organization of193

precipitation cells and the frequency distribution of the heating in time. When applying the194

precipitation algorithm outlined above, these variables are partially constrained because the195

precipitation algorithm is designed to exactly reproduce the hourly accumulation value at196

each grid point. The sub-hourly distribution of precipitation on the other hand is left to197

chance. Therefore, additional validation of the GWs generated by the precipitation algorithm198

is required.199

2) Validation of waves generated by the precipitation algorithm200

To validate GWs generated by the precipitation algorithm we perform a total of four201

simulations using the configuration described in Section 2 but domain sizes of 2000 km×2000202

km. Two simulations are carried out for the mesoscale convective complex (20 June 2007)203

and two for the squall line (5 June 2005) case. For each case one simulation is based on204

the original 10 min precipitation data set and the other on the reconstructed 10 min data.205
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We selected these two storms because in terms of the distributions shown in Fig. 2 they206

represent the best and worst match of reconstructed and original 10 min data.207

Fig. 3 shows the absolute GW momentum flux spectra at 15 km as a function of phase208

speed and propagation direction for the 4 runs. The spectra are computed from 24 h of209

horizontal and vertical wind velocities saved every 10 min, using the method described210

in Stephan and Alexander (2014). The white line in each panel corresponds to the 700 hPa211

wind and the black dashed lines to the winds at levels between 700 hPa and 15 km. In212

agreement with theory, the black dashed lines coincide well with regions of dissipation, as213

critical level filtering occurs when a wave approaches a level where the phase speed equals214

the wind speed. Overall, the similarity between the runs based on the original and the215

reconstructed data is remarkable. For the squall line case there is some flux missing in the216

direction of the 700 hPa wind. The 700 hPa wind is commonly used for estimating the217

propagation direction and speed of the convective cells. The fact that the difference between218

the simulations is largest in this direction supports the assertion that it is the higher-than-219

average propagation speed of this storm which causes the relatively poor match found in the220

analysis of Fig. 2.221

The spectra in Fig. 3 represent daily averages over a very large area and do not contain222

information about instantaneous and local magnitudes of momentum flux. The amplitude223

of GWs above convection is strongly tied to the strength of the underlying heating cells,224

which remain subgrid-scale in most climate models and represent one of the most difficult225

parameters to constrain in GW drag parameterizations (Richter et al. 2010). Knowledge226

of the local, instantaneous wave amplitudes is crucial because they determine the breaking227

levels of GWs.228

The benefit of the modeling approach introduced in Stephan and Alexander (2015) is that229

the heating magnitude is directly related to observed precipitation. To verify that the realism230

of local wave amplitudes is not suffering from constructing 10 min precipitation data from231

hourly data, Fig. 4 shows the probability distributions of 100 km×100 km instantaneous232
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flux magnitude at 15 km (left) and 35 km (right) height, for the squall line case (top)233

and the mesoscale convective complex (bottom). The flux magnitudes are derived by first234

computing û(x, y, k, l), v̂(x, y, k, l) and ŵ(x, y, k, l) every 10 min using a two-dimensional235

S-transform (Stockwell et al. 1996). Here, û, v̂ and ŵ are the zonal, meridional and vertical236

wind component amplitudes, x and y denote the horizontal grid coordinates, k and l the237

zonal and meridional wave numbers. Fig. 4 shows values of momentum flux up to the 90th238

percentile, obtained by integrating
√

(ûŵ∗ + v̂ŵ∗) over all k and l and areas of 100 km×100239

km and multiplication by the air density ρ. Here, ŵ∗ denotes complex conjugation. The240

range of fluxes is shorter at the higher altitude because the largest amplitude waves have241

dissipated below. The similarity of the purple (original resolution of 10 min) and green242

histograms (reconstructed data) is assessed with a two-sided Kolmogorov-Smirnov test. The243

largest discrepancy occurs at 35 km for the squall line case as should be expected from the244

previous discussion. In general the differences between the distributions are small and the245

agreement very good.246

3. Intermittency in simulated gravity wave spectra247

Previous modeling efforts as well as observational studies with stratospheric balloons and248

satellites emphasize the high intermittency of the GW field (e.g., Hertzog et al. (2012);Hert-249

zog et al. (2013)). This has implications for GW parameterizations in global models. A250

given average flux produced by a large number of small-amplitude wave events will produce251

drag at much higher altitudes than the same average flux carried by a small number of252

high-amplitude wave packets. As argued in the previous section, the idealized model uses a253

precipitation field with a highly realistic variability as input. In this section we quantify the254

intermittency of the GW momentum flux spectrum over the Continental U.S. for the month255

of June 2014.256
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a. Momentum flux amplitude257

The top panel of Fig. 5 shows probability density functions of simulated absolute zonal258

momentum flux amplitudes averaged over 100 km×100 km and 3 h for different altitudes.259

The average is computed from an accumulated value of u′w′, which is updated every 15260

seconds. Cloud-resolving models predict that convectively generated GWs typically have261

time periods ranging from 10 min to several hours (e.g. Piani et al. (2000)). The 3 h interval262

for averaging is chosen to include contributions of waves with a large range of frequencies263

while minimizing the effect of wave cancellation that can occur when waves propagating in264

opposite directions overlap: The speed at which average storms travel is small enough to265

produce an approximately concentric wave field of waves propagating out and away from the266

source.267

The mean value, 90th and 99th percentiles as well as the percentages of flux associated268

with values larger than the percentiles are also indicated. The black dashed line is a log-269

normal distribution with the same mean and standard deviation as the spectrum at 15 km.270

Lognormal distributions have been found to describe well the spectra of GW momentum271

flux in other regions of the world. Hertzog et al. (2012) examined Vorcore balloon and High272

Resolution Dynamics Limb Sounder (HIRDLS) satellite observations of absolute zonal mo-273

mentum flux between 50◦S and 65◦S at 20 km over the Southern Ocean and found that both274

data sets are well approximated by lognormal distributions. In their study of deep tropical275

convection, Jewtoukoff et al. (2013) also obtained lognormal distributions of absolute mo-276

mentum flux from balloon observations during the PreConcordiasi campaign. In particular,277

they found a typical mean momentum flux value of 5 mPa in the tropics at 20 km during278

the months of February to May, which is close to our mean value of 6 hPa at 20 km.279

Another feature that our results share with previous findings is self-similarity. The 90th280

and 99th percentiles of momentum flux distributions explain about the same proportions281

of the total flux at different altitudes, 50% for the 90th percentile and 10% for the 99th282

percentile. Hertzog et al. (2012) reported self-similarity with identical fractions in their WRF283
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simulations over Antarctica, examining different heights. These findings are in agreement284

with work by de la Camara et al. (2014), who encountered these same proportions in their285

analysis of a multiwave stochastic parameterization of non-orographic GWs tuned and tested286

against Concordiasi observations. Specifically, their analysis suggests that this self-similarity287

holds independent of season, latitude and height.288

Furthermore, de la Camara et al. (2014) suggest that the lognormality of the GWmomen-289

tum flux source spectra may be related to a lognormal behavior of the squared precipitation290

probability density function. This quantity is shown as histograms in the bottom panel of291

Fig. 5 for the Stage IV data, labeled observations (green), and the reconstructed precipitation292

data (black), which we use in the heating algorithm for forcing the idealized WRF model.293

The resolution has been degraded to 100 km×100 km and 3 h to match that of the momen-294

tum flux amplitudes. The dashed lines are lognormal distributions with the same mean and295

standard deviation. Indeed, the lognormal curves represent the precipitation strength dis-296

tributions very accurately up to the 99th percentiles. They tend to slightly overestimate the297

occurrence frequencies of large precipitation rates, but this is also true for the momentum298

flux amplitudes in the upper panel.299

Also shown are the precipitation strength distributions for MERRA reanalysis data dur-300

ing June 2014 and the CAM5 model. The CAM5 precipitation data used in this plot are301

composed of different years of CAM5 runs, as will be explained in detail in section 4.a.302

We notice that both MERRA and CAM5 underestimate stronger precipitation rates and303

do not follow lognormal distributions, as can be seen by comparing the histograms to the304

corresponding dashed lines. This has implications for the potential of improving the param-305

eterizations of non-orographic GWs in these models.306

b. Zonal wind tendencies in the stratosphere307

Next, we will examine the GW drag in the idealized WRF model and compare to MERRA308

reanalysis. Orographic waves are stationary and break at lower levels, whereas the non-309
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orographic spectra include a range of phase speeds. Orographic GW drag in MERRA is310

parameterized using the scheme by McFarlane (1987) and non-orographic wave effects are311

based on Garcia and Boville (1994). In MERRA history files, orographic and non-orographic312

GW drag are combined and saved in one field. To compare to the non-orographic component313

of the forcing, we select regions 2, 7 and 8 (see Fig. 1), because the contribution of orographic314

waves is negligible there. The top panel of Fig. 6 shows the WRF daily mean zonal forcing,315

which is given by Fz = −1

ρ
δ
δz

[

ρu′w′

]

, where ρu′w′ is the momentum flux as computed in316

Section 2.b.2. To facilitate the comparison to MERRA, values have been interpolated to317

MERRA pressure levels. The blue line below the top panel shows the time evolution of 10318

min Stage IV precipitation averaged over sub-domains 2, 7 and 8. Daily mean MERRA319

precipitation averaged over these 3 sub-domains is almost identical to Stage IV. The panel320

in the center shows the MERRA GW drag and the bottom panel the MERRA GW drag321

plus analysis zonal wind increments. During a 6h-update cycle, the analysis corrections322

(observation-minus-background departures) are applied to the forecast model through an323

additional tendency term in the model equations (Rienecker et al. 2011). The panels on the324

right show the monthly mean forcing (solid purple line) plus/minus one standard deviation325

(dotted green lines).326

Comparing the WRF and MERRA GW drag, it is apparent that the forcing in WRF327

is at least one order of magnitude stronger. This can be attributed to waves with large328

amplitudes that are triggered by intense convection and break in the stratosphere. The329

GW source spectrum in MERRA is not tied to the underlying convection, misses these330

high-amplitude waves completely, and therefore exhibits a very homogeneous behavior in331

time in the stratosphere. Analysis wind increments in the middle atmosphere are thought332

of as partially correcting for missing GW drag in coarse models (e.g, McLandress et al.333

(2012)), and when considering MERRA GW drag plus analysis increments the temporal334

intermittency in the lowermost stratosphere below 50 hPa compares much better to WRF.335

This suggests that a more realistic representation of convectively generated GWs may help336
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alleviate model biases near the tropopause on synoptic scales and represents a problem worth337

further investigation in the future.338

4. The contribution to the Brewer-Dobson circulation339

In this section we quantify the role of GWs from Continental U.S. convection in driving340

the Brewer-Dobson circulation by comparing to the forcings in MERRA and CAM5.341

a. CAM5 data342

For a detailed description of the CAM5 model used in this section see Richter et al. (in343

review) and the references therein. The model has 46 vertical levels with a model top at 0.3344

hPa and a horizontal resolution of 100 km. The parameterization of non-orographic GWs345

follows Richter et al. (2010) and includes a frontal GW drag scheme as well as a convective346

GW drag scheme.347

The convective GW drag scheme is a so-called source parameterization based on Beres348

(2004). Source parameterizations link characteristics of GWs to the underlying wave source,349

namely the convective heating field in the model. One key parameter in the Beres scheme350

is the convective heating rate, which determines the amplitude of the waves. However, this351

quantity is only known as an average over a model grid box. To estimate a heating rate352

representative of individual convective cells, it is assumed that convection takes up 5% of353

the area of a grid box. Wave amplitude, specified as momentum flux, is proportional to the354

square of this local heating rate. As a consequence, the amplitude of the waves is the least355

certain aspect of this parameterization.356

In addition to wave amplitude, wave horizontal phase velocities and propagation direc-357

tions need to be estimated. These are primarily affected by the depth of the heating and358

by the mean tropospheric winds. Once amplitude and propagation characteristics are deter-359

mined, the parameterization launches waves at the top of the convective heating. Wave drag360
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is created at levels where the upward propagating waves dissipate above the wave break-361

ing level according to the Lindzen-McFarlane parameterization method (see Garcia et al.362

(2007)).363

Given this sensitivity to the heating and the background wind profile, for a comparison364

between the GW drag in WRF versus CAM5 it would be ideal if both models had identical365

mean background wind profiles and similar precipitation characteristics. Since this is gener-366

ically not the case, we find a corresponding June from the 10 year CAM5 simulation that367

most closely matches the zonal wind and precipitation strength in the WRF simulations,368

separately for each domain. Fig. 7 shows the corresponding June monthly mean zonal wind369

and precipitation strength distributions for WRF (solid lines) and CAM5 (dashed lines). For370

all domains the monthly mean value of 100 km ×100 km average precipitation rate, shown371

in the panel, is smaller for CAM5. In addition, as noted beforehand in the discussion of372

Fig. 5, CAM5 as well as MERRA underestimate stronger precipitation rates.373

b. Missing convective GWD374

The left panel of Fig. 8 displays the zonal wind tendencies averaged over June 2014 and375

the area covered by the 10 model domains for the WRF simulations (purple), all CAM5 GW376

drag schemes combined (orange) and MERRA GW drag plus analysis corrections (green).377

The middle panel shows how the CAM5 tendencies break down into forcing from convective,378

frontal and orographic GWs, and the panel on the right distinguishes between MERRA GW379

drag and analysis increments. Recall that the values for the CAM5 model are composed of380

different years of simulations as described in the previous paragraph.381

Alexander and Rosenlof (1996) computed the contribution of small-scale waves (wave-382

lengths ! 1000 km) to the forcing of the BDC as the residual difference between total and383

resolved forcing estimates for data sets from the National Meteorological Center and the UK384

Meteorological Office, and the Upper Atmosphere Research Satellite (UARS). For June they385

obtained typical values of -1 m/s/day at 10 hPa and +4 m/s/day at 1 hPa (their Figure386
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1). Table 2 lists the contribution of the modeled area to the zonal mean forcing for all387

available components of GW drag and in three different altitude layers representing lower388

(100-10 hPa) and upper (10-1h Pa) stratosphere and stratopause (1-0.4 hPa), i.e. the forcing389

averaged over the simulated area multiplied by 0.16, because our simulations cover 16% of390

the total area in the latitude band 25.7-48.5◦N. Assuming that the remaining 84% of the391

latitude band provide a similar wave driving, the WRF GW drag tendencies averaged over392

10-1 hPa and 1-0.4 hPa constitute a fairly good match of the values reported by Alexander393

and Rosenlof (1996). There is evidence that this assumption may be valid because the pre-394

cipitation averaged over the area of our study is similar to precipitation averaged over the395

full latitude band. This comparison of the WRF GWD to Alexander and Rosenlof (1996)396

provides further evidence that our model of convectively generated waves is realistic, and397

that these waves can provide all of the unresolved stratospheric forcing needed to drive the398

Brewer-Dobson circulation at these latitudes.399

It is particularly noteworthy that the GW drag in our simulations, which is purely convec-400

tive, is larger than the CAM5 orographic GW drag averaged over 100-10 hPa. The changes401

of GW drag with altitude seen in Fig. 8 and Table 2 highlight a common misconception that402

it is primarily only orographic GW drag that is relevant in the lower stratosphere owing to403

its large-amplitude waves that break at lower levels, while non-orographic GW drag, as it is404

currently parameterized, primarily only affects high altitudes. The middle panel of Fig. 8405

as well as the numbers in lines 2 and 3 of Table 2, showing separately the convective and406

orographic GW drag contributions in CAM5 at different levels, illustrate this condition in407

CAM5. In reality convectively generated GWs can have large amplitudes and therefore also408

break in the lower stratosphere. Even the more advanced source parameterization in CAM5409

underestimates high-amplitude waves, which results in missing GW drag in the stratosphere.410

We also note that the MERRA GW drag and analysis increments combined (last line of Ta-411

ble 2) are of similar magnitude compared to the WRF tendencies in the lower stratosphere412

(100-10 hPa), even though their structure with height (Fig. 8) is quite different.413

16



5. Discussion and conclusion414

We analyzed observed precipitation data and GWs in high-resolution simulations of June415

2014 over the Continental U.S. In an idealized version of the WRF model, waves were forced416

by a realistic thermodynamic source based on observed precipitation data. At horizontal417

scales of 100 km×100 km we found that the probability distribution of momentum flux418

amplitudes above the storms and the square of precipitation rate both follow lognormal419

distributions, a characteristic that has been reported for simulations, as well as observations,420

in multiple other regions of the globe. An important feature of lognormal distributions is the421

long tail consisting of rare and extreme values. Not capturing this high degree of variability422

in wave amplitudes has important implications for GW drag parameterizations, as the wave423

amplitudes determine the height at which waves break and deposit their momentum.424

Comparing the daily mean wave forcing in our simulations to GW drag in MERRA425

reanalysis data, we found the parameterization in MERRA is underestimating both the426

variability and the magnitude of the GW drag throughout the stratosphere. This result was427

somewhat expected because the GW source spectrum in MERRA is homogenous in space428

and time and therefore does not include high-amplitude wave events. The intermittency429

and magnitude of zonal wind tendencies stemming from MERRA analysis increments in the430

lowermost stratosphere are more similar to the simulations.431

Lastly, we examined monthly mean zonal wind tendencies in the simulations to evaluate432

their contribution to the Brewer-Dobson circulation, and compare these to MERRA, and433

the CAM5 model. The CAM5 model includes an orographic and frontal GW drag scheme,434

as well as a convective GW source parameterization. However, neither the GW drag scheme435

in MERRA nor the more advanced source parameterization in CAM5 are including enough436

high-amplitude waves. This results in missing GW drag, particularly in the stratosphere.437

Previous studies found similar deficiencies in the tropics. For example, Schirber et al. (2014)438

showed that aspects of the quasi-biennial oscillation can be improved by using a GW source439

parameterization instead of assuming constant spectra in the WACCMmodel. Lott and Guez440
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(2013) also found a more intermittent spectrum caused wave breaking at lower altitudes, and441

this helped to decouple the quasi-biennial oscillation from the annual cycle. Bushell et al.442

(2015) tested a version of the Met Office global models spectral nonorographic scheme with443

enhanced source intermittency at the launch level and report an improved representation of444

the quasi-biennial oscillation.445

An important aspect of our modeling approach is that we use a statistical method to446

derive 10 min precipitation values from an hourly data set. Given that precipitation char-447

acteristics exhibit a universal behavior it seems conceivable that a similar method could be448

applied to grid point precipitation values in global models, possibly providing a way to esti-449

mate a spatial sub-gridscale variability in addition to the temporal statistical refinement. As450

a result one could obtain a realistic distribution of cloud-scale precipitation rates. Further,451

by using a heating algorithm similar to Stephan and Alexander (2015), these precipita-452

tion rates could be converted to local heating amplitudes, the most uncertain parameter in453

current parameterizations. Combining the Beres (2004) parameterization with a stochastic454

approach by randomly choosing from this heating amplitude distribution has several ben-455

efits: A constant convective fraction of 5% would no longer need to assumed. A realistic456

intermittency in wave amplitudes could be obtained with some waves breaking in the lower457

stratosphere. Most waves will still have fairly small amplitudes such that it is unlikely to458

cause aggravating effects on the mesospheric wave forcing as a result of these suggested pa-459

rameterization changes. This more physically based approach could potentially come at no460

extra computational cost and adapt naturally to changes in climate.461
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Table 1. Values for the three parameters needed to derive 10 min precipitation rates from
hourly precipitation rates for the 4 precipitation categories. Values of P60 are given in units
of mm/h. Please refer to Section 2.b.1 for a description of the parameters.

category: 0 < P60 < 10 10 ≤ P60 < 20 20 ≤ P60 < 30 30 ≤ P60 < 40
ν 0.58 0.33 0.23 0.15
µ −1.29 −1.76 −1.86 −1.90
σ 0.97 0.98 0.96 0.88
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Table 2. Contribution of the area covered by WRF domains to the zonal mean wind
tendency for different components of GW drag. Because the simulation area covers 16% of
the latitude band 25.7-48.5◦N, the numbers below are obtained by multiplying the simulated
wave driving by 0.16. Numbers are given in units of m/s/day and are averages of the
acceleration in m/s/day at individual pressure levels over the pressure ranges indicated in
the top row.

pressure range: 100− 10 hPa 10− 1 hPa 1− 0.4 hPa
WRF gwd −0.072 −0.156 0.639

CAM conv. gwd −0.003 −0.014 0.044
CAM oro. gwd −0.009 < 0.001 0.001
CAM fro. gwd −0.008 −0.035 −0.030
CAM tot. gwd −0.019 −0.048 0.015

MER gwd −0.009 −0.029 0.025
MER gwd+ana −0.052 −0.037 −0.183
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Fig. 1. Map of the locations of the ten 1000 km×1000 km WRF domains that are evaluated
in this study. Colors indicate the NCEP 4 km Stage IV total precipitation for June 2014.
Latitude and longitude are shown on the axes.
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Fig. 2. Histograms of (10-min precipitation rate)2 based on 24 h of data in an area of 2000
km×2000 km, showing occurrence frequencies at a horizontal resolution of 4 km. The 5
panels correspond to 5 different storms. Violet colors denote data with an original temporal
resolution of 10 min and green colors are values obtained after degrading the data to an
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Fig. 6. Daily mean zonal wind tendencies for simulated GW drag (top), MERRA GW drag
(middle) and MERRA GW drag plus analysis increments. The blue line below the top panel
shows the time evolution of precipitation and the panels on the right show the monthly mean
forcing (solid purple line) plus/minus one standard deviation (dotted green lines).
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Fig. 7. For each domain June monthly-mean zonal wind and monthly mean 100 km × 100
km average precipitation strength distributions are shown. WRF data are solid lines and
the corresponding values from the best matching CAM5 year are dashed lines.
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Fig. 8. Left panel: Zonal wind tendencies averaged over June 2014 and the area covered
by the ten model domains for the WRF simulations (purple), all CAM5 GW drag schemes
combined (orange) and MERRA GW drag plus analysis corrections (green). Middle panel:
convective, frontal and orographic CAM5 tendencies. Right panel: MERRA GW drag and
analysis increments. The values for the CAM5 model are composed of different years of
simulations as described in the text.
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