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Abstract

Here, we use synthetic data to explore the performance of forward models and inverse methods for helioseismic
holography. Specifically, this work presents the first comprehensive test of inverse modeling for flows using
lateral-vantage (deep-focus) holography. We derive sensitivity functions in the Born approximation. We then use
these sensitivity functions in a series of forward models and inversions of flows from a publicly available
magnetohydrodynamic quiet-Sun simulation. The forward travel times computed using the kernels generally
compare favorably with measurements obtained by applying holography, in a lateral-vantage configuration, on a
15 hr time series of artificial Dopplergrams extracted from the simulation. Inversions for the horizontal flow
components are able to reproduce the flows in the upper 3 Mm of the domain, but are compromised by noise at
greater depths.
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1. Introduction

Helioseismology has been a useful tool for studying the
subsurface properties of the Sun. It is generally divided into
global (e.g., Christensen-Dalsgaard 2003; Howe 2009) and
local (e.g., Gizon et al. 2010; Braun 2015) applications. The
former include inferences of the radially symmetric structure of
the Sun and the latitudinal and depth dependence of its internal
rotation, while the latter include studies of the relatively small-
scale structure and flows below sunspots, active regions, and
supergranulation, as well as larger-scale convection and
meridional circulation. Giving us the means to indirectly
image the Sun’s interior, helioseismology is of great impor-
tance to the study of solar structure and subsurface dynamics.

The forward problem in helioseismology is to determine the
relationship between some quantity, measurable at the solar
surface, and an unobserved subsurface feature that we would
like to study. For local applications like those considered in this
work, the former is helioseismic wave travel-time measure-
ments, and the latter is vector plasma flows. The two are related
through linear integral equations of the form

ò ådt = ¢ - ¢ ¢ +
b

b b

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where, for each travel-time measurement δτa, bK a is the three
βä{x, y, z} components of a set of vector-valued functions
called sensitivity kernels and na is the noise in these
measurements. Here, = ( )r x y, is the horizontal position and
z is the height (noting that z=0 at the surface and z<0 inside
the Sun). Given these quantities, the inverse problem is to solve
for the subsurface flow vβ as accurately as possible through a
series of matrix inversions.

In the past decade, the development and availability of realistic
artificial data, obtained from numerical wave-propagation compu-
tations, have allowed the validation and testing of helioseismic
procedures. Relevant numerical simulations include those com-
puted under hydrostatic or magnetohydrostatic conditions (e.g.,
Hanasoge et al. 2007; Parchevsky & Kosovichev 2007; Hartlep
et al. 2008; Felipe et al. 2010) as well as fully compressible
hydrodynamic or magnetohydrodynamic computations (e.g.,

Rempel et al. 2009; Stein et al. 2009; Rempel 2015; Stein &
Nordlund 2012). Simulations give us the opportunity to test
kernels and inversion procedures on data whose flow structure is
known a priori and whose properties resemble the real Sun as
closely as possible. This kind of validation has been performed for
both time–distance (e.g., Zhao et al. 2007; Švanda et al. 2011;
DeGrave et al. 2014a, 2014b; Parchevsky et al. 2014) and
helioseismic holography (HH) methods (e.g., Braun et al. 2007;
Birch et al. 2009; Braun et al. 2012; Dombroski et al. 2013;
Braun 2014). Validation tests of this kind are an important and
necessary step in the helioseismic analysis of solar subsurface
structure, as we are interested in recovering information from
regions of the Sun that cannot be directly observed.
In this work, we test the performance of HH and kernels

through a series of forward and inverse-modeling comparisons,
employing a realistic numerical simulation of the quiet
Sun. The forward and inverse-modeling tests we conduct
employ a set of kernels computed for travel times measured
using HH carried out in lateral-vantage geometry (Lindsey &
Braun 2004). Until now, tests of lateral-vantage HH have only
been carried out through comparisons of measured and
forward-modeled travel times (Braun et al. 2007). This work
presents the first comprehensive test of inverse modeling for
flows using lateral-vantage HH.
The layout of the paper proceeds as follows: In Section 2, we

describe the quiet-Sun simulation data used in this work. The
holography travel-time measurement procedure is discussed in
Section 3, and the forward modeling is detailed in Section 4.
The inversion method and results are described in Sections 5
and 6, and concluding remarks are given in Section 7.

2. Artificial Data

The simulation we employ in this work represents quiet-Sun
convection with a small-scale dynamo and has been described
in detail in Rempel (2014). A time series of artificial data from
this simulation has been previously employed in validating
the inversion procedures used in this work (DeGrave
et al. 2014a), using time–distance measurements and sensitivity
kernels. The simulation was computed with horizontal and
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vertical resolutions of 64 km and 32 km, respectively.
Convective motions excite surface gravity and acoustic waves
that propagate throughout the domain that spans
98.3×98.3Mm horizontally and 18.4 Mm vertically. A cut
through the (15 hr) time-averaged vx flow component of the
simulation is shown in Figure 1.

Doppler velocity time series, assuming a vertical line-of-
sight, extracted at an optical depth of 0.01 and having a
cadence of 45 s, are publicly available.3 These artificial
Dopplergrams have been interpolated from the original
simulation onto a coarser grid with a horizontal spacing of
384 km. For this work we utilize the first 15 hr of the 30 hr
simulation run.

3. Holography

HH is a method that computationally extrapolates the surface
acoustic field from a selected pupil into the solar interior
(Lindsey & Braun 1997) in order to estimate the complex

amplitudes of the waves propagating into or out of a focus
point at a chosen depth within the solar interior. These
amplitudes are called the acoustic ingression and acoustic
egression, respectively. Lateral-vantage holography (e.g.,
Lindsey & Braun 2004) is analogous to deep-focus methods
in time–distance helioseismology and common-depth-point
reflection terrestrial seismology. Figure 2 illustrates the pupil
geometry used. The annulus is defined by rays propagating
through the focus and inclined up to ±45° from the direction
parallel to the surface. The practical aspects of the methodology
have been described in detail elsewhere (e.g., Braun et al. 2007;
Braun & Birch 2008; Braun 2014). Most of the prior
applications of lateral-vantage HH make use of the north-
ward-minus-southward (NS) and westward-minus-eastward
(WE) travel-time differences δτns and δτwe as derived from
cross-covariances between the egression and ingression as
assessed using opposite quadrants (Figure 2(b)). Here, an
additional pair of cross-covariances are obtained using inner
and outer portions of the complete annulus (Figure 2(c)). The
radius ρh that separates the two subannuli is defined by the ray

Figure 1. Example cut in depth through the vx flow component of the quiet-Sun simulation. The flows shown here have been averaged over 15 hr.

Figure 2. (a) Side view and (b) top view of the pupil quadrants employed in lateral-vantage HH. The ray path colored in red in panel (a) corresponds to waves
propagating horizontally through the focus. Panel (c) shows the full annulus divided into inner and outer pupils (labeled A and B, respectively) separated by the red
circle that represents the intersection of the surface with the ray paths shown in red in panel (a). Example loci of constant phase are shown for the egression/ingression
amplitudes in panel (a).

3 http://download.hao.ucar.edu/pub/rempel/sunspot_models
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path of a wave propagating horizontally through the focus.
Cross-covariances between egressions and ingressions assessed
in these subannuli are used to determine an outward-minus-
inward (OI) propagation travel-time difference δτoi. As
described elsewhere (Braun 2014), Gaussian phase-speed
filters are also used, with a width δw and a peak at wo

corresponding to the phase speed of the aforementioned
horizontally propagating wave. The minimum and maximum
radii of the annulus, ρmin and ρmax, horizontal-ray radius ρh,
and phase-speed filter parameters for the measurements used
here are given in Table 1.

4. Forward Modeling

To compute kernels for deep-focusing travel times measured
from the synthetic observations, we first construct a model
power spectrum by fitting the power spectrum of the synthetic
data. We fit for a source function (this determines the mode
amplitude), damping rate, and deviation of the frequency from
ModelS (Christensen-Dalsgaard et al. 1996) frequency as
functions of horizontal wavenumber and radial order. The
details are described in Appendix A. We then use the Born
approximation to compute the sensitivity of the lateral-vantage
travel-time differences to small-amplitude steady flows. The
calculation is based on the approach of Birch & Gizon (2007),
though extended to include the holography Greens functions
and the pupil functions. The product of the Greens function and
the pupils appears in the calculation in exactly the same way as
a non-axisymmetric complex-valued data-analysis filter. In this
calculation, we use the source function and damping rates
obtained from the fit to the power spectrum. We, however, do
not include in the calculations the effect of the changes in the
mode frequencies but instead use the normal-mode frequencies
and eigenfunctions of ModelS. We estimate that this
approximation introduces an error of about 2% in the kernels.
For the applications in this work, this error is significantly
smaller than the noise in the travel-time measurements (see
Section 4.2). Appendix B shows the details of the calculation.

4.1. Model for the Noise Covariance

Helioseismic travel-time measurements contain random
noise due to the stochastic nature of the convective forcing
that drives solar oscillations. This noise is important to
characterize as it propagates through our inversions and
ultimately gives rise to uncertainties in the recovered flows.
We estimate the level of noise in our measurements by
computing the travel-time noise covariance matrix using 200

Monte Carlo realizations of stochastic wavefields following the
procedure of Gizon & Birch (2004).

4.2. Forward Comparisons

Figure 3 shows comparisons of travel-time difference maps
measured from the simulation using HH with maps predicted from
the sensitivity functions convolved with the true time-averaged
flows present in the simulation. Correlation statistics comparing
each pair of measured and forward-modeled maps are shown in
Table 2 for the WE and OI travel-time differences. The table
includes the rms of the difference between maps (rms error) and
the slope of the least-squares linear fit between measured and
modeled values (the fit assumes there are no errors in the modeled
values). Good agreement is found between measured and forward-
modeled travel-time maps, and slope values are close to unity for
all focus depths.
The rms errors have values between 4 and 7 s for the WE

measurements and between 3 and 4 s for the OI measurements.
For context, the forward-modeled maps exhibit travel-time
differences with peak values ranging from 60 s for the
shallowest focus depth to about 15 s for the deepest measure-
ments. We note that a 2% error in the kernels (as discussed
above) would produce travel-time errors that are, for the most
part, considerably less than 1 s. This is significantly smaller
than the rms errors.

5. SOLA Inversion Method

To recover flows from the simulation, we employ the
subtractive optimally localized averaging (SOLA) method
(Pijpers & Thompson 1992). The goal of SOLA is to find a
set of two-dimensional inversion weights (see Švanda
et al. 2011; Jackiewicz et al. 2012) that, when spatially
convolved with the travel-time measurements, will give a
smoothed estimate of flow component α={x, y, z} at some
target depth z0 within the simulation domain:

å å dt= -a a
=

( ) ( ) ( ) ( )r r r rv z w z; ; , 2
i a

M
a

i a i
inv

0
1

0

where δτa is the set of M travel-time measurements and wa
α is

their respective weights. The sum over i is over all horizontal
positions. When a set of weights has been computed, they are
linearly combined with the sensitivity kernels to produce a so-
called averaging kernel

 å å= - -a
b

a b
=

( ) ( ) ( ) ( )r r r r rz z w z K z, ; ; ; 3
i a

M
a

i
a

i0
1

0

that effectively gives the spatial resolution of the inversion. Here,
β={x, y, z} is the three kernel components, and the sum over i
represents a horizontal convolution. Ideally, the weights will be
such that, for α=β, the resulting averaging kernel is well
localized in three-dimensional space, closely matching a predefined
(typically Gaussian) target function, T. For b a¹ the averaging
kernel will ideally be small—these off-diagonal components are
responsible for cross-talk (Jackiewicz et al. 2012).
For each inversion target depth z0 and target flow direction

α, we search for a set of weights that minimizes the cost
function

 ò= -a
a


( )[ ( ) ( )] 4ar r rz z T z z d dz, ; , ;0 0

2 2

Table 1
Lateral-vantage: Pupil Size and Filter Parameters

Focus Depth ρmin ρh ρmax wo δw
(Mm) (Mm) (Mm) (Mm) (km s−1) (km s−1)

0.77 1.0 5.5 13.9 13.6 6.6
1.53 1.2 5.8 14.6 15.3 7.4
2.30 1.6 6.3 16.0 17.1 8.3
2.99 2.1 7.0 16.7 18.8 9.2
3.97 2.8 7.7 18.1 21.0 10.5
5.01 3.5 9.0 20.2 23.6 11.8
5.99 3.5 9.7 24.4 26.7 13.1
6.96 4.2 10.4 31.3 29.3 14.9
8.35 4.9 11.8 39.0 33.7 16.6
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where the various terms in Equation (4) represent the misfit
between the averaging kernel and target function (4a); the
extent to which the non-inverted-for flow components
contribute to the recovered velocities, referred to as cross-talk
(4b); an ad hoc term quantifying the localization of the
inversion weights, referred to as the weight spread (4c); and the
level of random noise in the solution (4d). Λab is the noise
covariance. These terms can be controlled to some degree by
varying regularization parameters ν, ò, and μ. In practice, we
perform inversions and compute their respective (4a–4d)
quantities for many combinations of regularization values for

a given target depth. An optimal combination of parameters is
then selected from these. Example solution grids for a typical
horizontal flow inversion are shown in Figure 4.
When performing inversions for the horizontal flow components

(vx, vy) in this work, priority is first placed on choosing an
acceptable noise level of roughly 30m s−1 for each target
depth. This noise level seems reasonable given the fact that
flows in the upper 5Mm of the simulation domain are of the
order of 300m s−1. Of the various combinations of regularization
parameters that yield the selected noise level, we choose the
solution that provides a reasonable trade-off between the misfit and
weight spread. This is done through a typical L-curve analysis. For
horizontal flow inversions, we set ν=0, and therefore do not
regularize the amount of cross-talk, as its effects are small
compared to the large-amplitude flows that we are inverting for.
Inversions for the vertical flow component, vz, also place

priority on first selecting an acceptable level of noise. The
chosen noise level must be much lower than that of the
horizontal flow inversions, as the amplitude of the vertical
flows in the top layers of the simulation domain are roughly an
order of magnitude weaker than the horizontal flows
(≈15 m s−1 on supergranule scales). We therefore choose a
noise level of 5 m s−1 in order to retain the possibility of
recovering the weak vertical flow signal while balancing the
misfit between averaging kernel and target function.
Unlike the horizontal flow inversions, we also now fix

ν≈100, in addition to varying the misfit and weight spread
regularization parameters. Constraining cross-talk is necessary
for vertical flow inversions; failing to do so can give rise to
cross-talk that has the same amplitude or greater than the weak
vertical flows for which we are inverting. This often leads to
recovered flows that are strongly anticorrelated with the true
flows (e.g., Zhao et al. 2007). Of the solutions that yield the
specified noise level, we again choose the one that provides a
reasonable trade-off between the misfit and weight spread.

6. Inversion Results

The code used to perform inversions in this work has been
validated previously with time–distance measurements applied
to realistic simulations (DeGrave et al. 2014a, 2014b). To
assess the performance of the inversions, we compare the
recovered flows, av

inv, with the target flows, which represent
the true flows av

sim smoothed to the expected resolution of the

Figure 3.Measured (top row) and forward-modeled (bottom row) OI lateral-vantage travel-time maps for each of the nine focus depths (columns). The panels span the
full 98.3×98.3 Mm horizontal range of the simulation. The focus depth is shown at the bottom of each column.

Table 2
Lateral-vantage Correlation Statistics Comparing Measured

and Forward-modeled Travel-time Differences

Travel-time Focus Depth rms Error Slope
Difference (Mm) (s)

δτwe 0.77 7.3 1.02
δτwe 1.53 5.6 0.99
δτwe 2.30 4.7 1.03
δτwe 2.99 4.3 1.00
δτwe 3.97 3.8 0.98
δτwe 5.01 3.8 0.98
δτwe 5.99 3.8 0.98
δτwe 6.96 3.8 0.98
δτwe 8.35 4.0 0.94
δτoi 0.77 3.7 1.01
δτoi 1.53 3.3 0.98
δτoi 2.30 3.3 1.01
δτoi 2.99 3.2 1.00
δτoi 3.97 3.2 1.03
δτoi 5.01 3.4 1.06
δτoi 5.99 3.2 1.04
δτoi 6.96 3.2 1.01
δτoi 8.35 3.4 0.99
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Figure 4. Example solution grids for the 1 Mm depth vx inversion showing inversion noise level (left), weight spread (middle), and misfit (right) values for every
combination of regularization parameters μ and ò. The cross-talk is not regularized in the horizontal flow inversions, and so ν has been set to zero. The red star denotes
the solution that minimizes the misfit and weight spread for a 30 m s−1 noise level.

Figure 5. Maps showing the horizontal flow divergence derived from the (vx, vy) flows recovered from the 1 Mm (left column), 3 Mm (middle column), and 5 Mm
(right column) depth inversions. The target simulation flows at these depths are shown in the bottom row. Correlation values between the inversion and target
simulation flows are shown in the bottom left-hand corner of each panel in the top row. All maps share the same color scale.
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inversion flow maps via convolution with the inversion target
function:

ò= ¢ - ¢ ¢a a


( ) ( ) ( ) ( )r r r r rv z T z z v z d dz, ; , , . 5tgt
0 0

sim 2

The target solution represents the best we can hope to achieve
in any particular inversion. For the vertical flow inversion, we
also examine the cross-talk components,

ò= ¢ - ¢ ¢a
b

a
b

b


( ) ( ) ( ) ( )r r r r rv z z z v z d dz; , ; , , 60 0
sim 2

in addition to av
inv. We note that ºa a

av vinv when the level of
noise is negligible.

6.1. Horizontal Flow Inversions

Inversions for the horizontal flow components (vx, vy) were
carried out at depths of 1, 3, and 5Mm below the surface of the
simulation domain. Figure 5 shows maps of the resulting lateral-
vantage inversions (top row), along with the smoothed simulation
flows, vx

tgt, at each of these depths (bottom row). The two-
dimensional Pearson correlation values between the inversion and
target simulation flows are given in the lower left-hand corner of
each panel. The noise level for each of the inversions is
approximately 30m s−1 for all target depths. The horizontal

resolution of each inversion (i.e., the horizontal FWHM of the
target function) was 10Mm for all depths. The vertical resolution
of the inversions is 1.4Mm for the target depth of 1Mm, and
2Mm for the deeper target depths. We find that the inversions are
able to recover the simulation flows quite well, particularly in the
upper 3Mm of the domain, and correlation values are generally
high here (>0.8). However, at the 5Mm depth, the quality of our
inversion has deteriorated significantly, and we are not able to
accurately recover flows there. Flow amplitudes are well
reproduced at the two shallowest depths, but are underestimated
at the 5Mm depth by a factor of roughly 2.4 in terms of (vx, vy)
rms values.
One-dimensional cuts through the x-component of the inversion

averaging kernels and target functions are shown in Figure 6.
These figures show the depths targeted in the inversions along with
the depths that have actually been sampled. The averaging kernels
show some undesirable characteristics, most notably the large
misfit observed at z>−1Mm for the 1Mm depth (left panel), the
strong near-surface contribution at z>−1.5Mm for the 3Mm
depth (middle panel), and the negative near-surface lobe for the
5Mm depth (right panel). The unwanted near-surface sensitivity,
particularly at the 3 and 5Mm depths, appears to have little effect
on the recovered flows shown in Figure 5. This is likely, at least to
some degree, due to the fact that the simulation flow field does not

Figure 6. One-dimensional cuts along y=x=0 through the averaging kernels x
x (red curves) for the 1 Mm (left column), 3 Mm (middle column), and 5 Mm (right

column) depth inversions. The black curves show one-dimensional cuts through the inversion target functions at each depth. The target functions are three-
dimensional Gaussians, although, for the 1 Mm target depth, the function is multiplied by a factor proportional to the depth and is set to 0 for z>0. The FWHM of the
target function in the z-direction is 1.4 Mm for the target depth of 1 Mm. For the other depths the FWHM is 2 Mm. The plots are scaled such that the peak value of
each target function is one.

Figure 7. Flows recovered from the 1 Mm depth vz inversion (left) along with the target simulation flows (right). The correlation value between the inversion and
target simulation flows is 0.56.
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vary rapidly with depth. For example, the large-scale convective
features in the simulation are very extended in depth with flows
that do not show any sudden reversal in sign (e.g., outflow to
inflow) or large changes in amplitude in the near-surface layers. If
that were not the case, or if the true flow structure was not known
a priori, these misfit issues could make it difficult to properly
interpret the results, particularly for inversions in the deeper layers
where flows are more difficult to retrieve.

6.2. Vertical Flow Inversions

An inversion was also carried out to retrieve the vertical flow
component, vz, at a depth of 1Mm. Following Švanda (2013), this
inversion employs only kernels computed for the OI measure-
ments. We neglect the WE and NS measurements as they are
relatively insensitive to vertical flows and can actually adversely
effect the recovered flows by contributing additional noise. The

recovered flow map is shown in Figure 7. The noise level for these
inversion is 5m s−1, and the spatial resolution is the same as for
the 1Mm vx case. The two-dimensional Pearson correlation value
between the inversion and target simulation flows is 0.56. Figure 8
shows cuts in depth through the averaging kernel components for
the inversion. It appears that the inversion is able to minimize the
cross-talk well, with the z

x and z
y cross-terms accounting for

about 10% or less of the maximum kernel amplitude. The
averaging kernel is strongly peaked near the surface of the
simulation domain, but shows some extended sensitivity over a
range of depths not actually targeted in the inversion. The z

z

component also exhibits broad negative side-lobes that we are not
able to minimize effectively in the inversion.
Figure 9 shows the vz inversion flow map (leftmost column)

along with the contributions from the individual terms in
Equation (6) (i.e., a convolution of the Figure 8 averaging
kernel components with the true simulation flows). We see

Figure 8. Cuts in depth at y=0 through the vz inversion averaging kernel components. The red contour marks the half-maximum of the kernel, while the green and blue
curves mark the ±0.5% levels, respectively. The rightmost panel shows a (normalized) one-dimensional cut (red curve) along y=x=0 through the z

z component.

Figure 9. Noise and cross-talk contributions to vz inversions for a target depth of 1 Mm. From left to right, column 1 shows the flows recovered from the inversions.
This panel is identical to the map shown in Figure 7. Columns 2–4 show the individual a

bv terms, and column 5 shows their sum. Column 6 shows the residual of
columns 1 and 5 and is indicative of the level of noise that has propagated through the inversion to the solution.
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again that the cross-talk minimization of vz
x and vz

y is
reasonably effective, but somewhat less so than Figure 8
indicates due to the strong horizontal flows with which z

x and
z

y have been convolved. These cross-terms have rms
amplitudes that are about 50% that of vz

z. The sum of columns
2–4 is shown in column 5 and closely resembles the target
simulation flows. This suggests that the cross-talk is not
detrimental to the inversions in terms of being able to
reproduce the correct flow structure of the simulation.

Column 6 shows the residual of columns 1 and 5 and represents
the contribution of noise to the recovered flows (Jackiewicz
et al. 2012). Comparing these three columns shows that the vertical
flow inversions are clearly dominated by this noise. Though we fail
to adequately recover the vertical flow component here, it is
important to note that these results are not dissimilar from the
vertical flow inversions by DeGrave et al. (2014a) using kernels
computed under the Birch & Gizon (2007) prescription.

7. Discussion

We have introduced and successfully tested a set of sensitivity
kernels for use in local helioseismology by employing them in a
series of forward and inverse-modeling comparisons using HH
measurements. Measured travel times computed in the lateral
vantage compared favorably with forward-modeled ones predicted
by the kernels, both in terms of spatial distribution and amplitude.
Inversions for the horizontal flow components (vx, vy) employing
the kernels were successful in recovering the simulation flow field
from the upper 3Mm of the domain, and flow amplitudes agreed
well with those of the target flows. However, inversions carried out
at a depth of 5Mm were less successful in reproducing the flows
than in the near-surface layers, and flow amplitudes were
underestimated there by a factor of roughly 2.4. It is important
to note, though, that the inability of the inversions to recover flows
at this depth is more a consequence of noise issues rather than a
problem with the kernels themselves. A near-surface inversion for
the vertical flow component failed to adequately retrieve the
simulation vz flows. Though recovered flows correlated reasonably
well with the target simulation flows, amplitudes were not well
reproduced, and the inversion was dominated by noise.

This work represents the first comprehensive test of the ability
of helioseismic holography, as employed in the lateral-vantage
(deep-focus) configuration, to infer subsurface flows on spatial
scales on the order of, and smaller than, supergranules. As such, it
extends and confirms the general findings of a prior validation
study (Braun et al. 2007) carried out for lateral-vantage HH, but
using only forward-model comparisons. Specifically, Braun et al.
(2007) concluded from a consideration of signal to noise (and
excluding inversion-related issues) that supergranule-sized flows
are undetectable below about 5 Mm using data spanning less than
the lifetime of a typical supergranule. The results found here also
complement the inverse-modeling validation study performed
using surface-focus holography (Dombroski et al. 2013), which
employed regularized-least-squares (RLS) inversions of travel
times measured from simulations of an idealized supergranule-
like flow.

Our results are also consistent with findings from validation
studies of time–distance helioseismology (e.g., Zhao et al. 2007;
Švanda et al. 2011; DeGrave et al. 2014a). It is now readily
apparent that methods that explicitly include the minimization of
cross-talk effects such as those presented here (and, e.g., Švanda
et al. 2011; DeGrave et al. 2014a) offer distinct improvements in
the determination of vertical flows over methods that do not,

such as the RLS inversion of Dombroski et al. (2013), or
inversions based on ray theory (Zhao et al. 2007).
The dominance of realization noise for target depths below a

few Mm has lead to statistical approaches to inferring deeper
flows. A notable example is the averaging of measurements made
with respect to thousands of supergranules (e.g., Švanda 2012;
Duvall & Hanasoge 2013; Duvall et al. 2014). Even so, inverse
modeling of these and other data apparently remains challenging
(e.g., Švanda 2015; Bhattacharya et al. 2017).

This work is supported by NASA Heliophysics Division
through its Heliophysics Supporting Research (grant
80NSSC18K0066) and Guest Investigator (grant
80NSSC18K0068) programs, and by the Solar Terrestrial
program of the National Science Foundation (grant AGS-
1623844). Resources supporting this work were provided by
the NASA High-End Computing (HEC) Program through the
NASA Advanced Supercomputing (NAS) Division at Ames
Research Center. K.D. acknowledges helpful discussions
with Michal Švanda.

Appendix A
A Model Power Spectrum

A first step in computing flow kernels for the synthetic data
is to obtain a model for the line widths and an empirical source
function corresponding to these data. We begin from the
azimuthally averaged power spectrum from the simulation
(30 hr total). We fit the power spectrum of the synthetic data
with a function of the form of Equation (53) from Birch et al.
(2004), with the following assumptions: (1) the source
correlation time is zero, this factor will be accounted for in
the empirical source function, (2) instead of assuming a
particular source depth we instead allow the source function
(here, denoted sn(k)) to be a free function in the fit, (3) we allow
the mode frequencies to deviate from ModelS (Christensen-
Dalsgaard et al. 1996) frequencies, and (4) the damping rates
γn(k) are also treated as free parameters. We carry out the fit in
the range 0.1 rad Mm−1<k<1.8 rad Mm−1, using the range
where ω/2π is between 2.5 mHz and 5.5 mHz and the
horizontal phase speed is less then 60 km s−1. To stabilize
the fit, we parameterize the damping rates at each radial order
and the real and imaginary parts of the source function at each
radial order, and the deviation from the ModelS mode
frequencies at each radial order as sums of b-splines that are
functions of horizontal wavenumber. We choose the number of
b-splines for each radial order and physical quantity by hand,

Table 3
Specification of the Fitting Range in k (kmin�k�kmax), the Number of

b-splines for the Real and Imaginary Parts of the Source Function (Fourth and
Fifth Columns), and the Perturbation to Mode Frequency (Last Column)

Radial Order kmin kmax Res Ims δω

0 0.9 1.8 5 5 2
1 0.5 1.8 5 5 4
2 0.3 1.8 6 6 4
3 0.3 1.8 5 5 4
4 0.3 1.5 5 5 4
5 0.4 1.2 3 3 2
6 0.5 1.0 2 2 2

Note. The splines are third-order b-splines for all cases except where only two
splines are used. In these cases, second-order (piecewise linear) splines are used.
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with the qualitative goal of a keeping the number of free
parameters as small as possible while capturing the significant
variations of the power spectrum of the synthetic data. In a few
cases, the use of b-splines provides more freedom than is
needed; in these cases, we used linear functions of k. Table 3
shows details of the choice of b-splines (or linear functions) for
the fit. At each radial order, the knots of the b-splines are equally
spaced between kmin and kmax for that radial order, with duplicate
knots at the end points of the interval. The damping rates for

radial orders of four or less are fit with functions of the form
g = G + G a( )k kn n n,0 ,1 with Γn,0, Γn,1, and α as free parameters
and with a constant line width used for n=5 and n=6.
Though we allow the mode frequencies to vary in the fit, we

use ModelS stratification and eigenfunctions in the calcula-
tions of the Born-approximation kernels (Appendix B). Thus,
the kernel calculations do not account for the difference
between the mode frequencies in ModelS and the mode
frequencies in the synthetic data. This difference between the

Figure 10. Azimuthally averaged power spectra from 30 hr of simulation data (left) and the resulting model power spectrum based on the fitted source function and
damping rates, but with ModelS mode frequencies (right). The vertical lines show the locations of the cuts shown in Figure 11.

Figure 11. Slices through the power spectra from Figure 10 at ℓ=489 and ℓ=1023. The simulation power spectrum is shown in the thick gray line, the fit is the
dashed black line, and the model power spectrum is based on the fitted source function and line widths, but with ModelS mode frequencies shown in the solid
black line.
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mode frequencies corresponds on changes in the horizontal
phases speeds of the order of 2% and thus presumably an error
in the kernels of the same order. Errors in the kernels of this
amplitude imply errors in the forward-modeled travel times of
less than 1 s, which is well below the error estimates for the
travel times (Table 2). We thus expect that the errors in the
inversions caused by the assumption of Model S stratification
will be small compared to the errors caused by noise.

Figure 10 compares the model power spectrum (left) and the
model power spectrum associated with the kernel calculation
(right). For the part of the diagram with horizontal phase speed
less then 55 km s−1, there is reasonable qualitative agreement.

Figure 11 shows two example slices through the power
spectra at a constant horizontal wavenumber. In these slices,
the result of the fit is shown along with the power spectra from
the synthetic data and the model power spectrum from the
kernel calculation. As discussed earlier, the kernel calculation
is carried out using the ModelS stratification, and so the
resonance frequencies are slightly different than in the
simulations.

Appendix B
Flow Kernels

For the calculation of the kernels, we work in a coordinate
system where r is horizontal position and z is height measured
from the photosphere (z=0). The background model is
translation invariant and given by a plane-parallel version of
ModelS.

At each temporal frequency, the ingression H− at horizontal
position r for a particular focus height z is related to the
observed wavefield f by

ò f= ¢ - ¢ ¢- -( ) ( ) ( ) ( )r r r r rH G d 7P

where -G P is the anti-causal Green’s function multiplied by the
appropriate pupil function P and data-analysis filter function.
The Green’s function, the pupil function, and the filter function
all depend on the focus depth (see Section 3). For the sake of
readability, we have also suppressed the notation showing that
H−, G−, and f are all functions of temporal frequency. The
integral is taken over all horizontal positions where the pupil
function is not zero. Equation (7) shows that the ingression is
the result of filtering the wavefield with a non-axisymmetric
filter (the 2D Fourier transform of -G P). The egression is related
to the wavefield by an analogous equation, but with G−

replaced by the causal Green’s function G+, and the pupil
function replaced by its appropriate counterpart (e.g., for the
NS travel-time difference, if P is the north pupil, then P′ is the
south pupil).

At each temporal frequency, The lateral-vantage ingression–
egression covariance C at the horizontal position =r 0 is

*= - +( ) ( ) ( ) ( )r r rC H H . 8

The ingression–egression covariance is a time–distance
covariance at zero distance (recalling that the ingression and
egression are filtered versions of the wavefield). We can use
Equations (11)–(13), which already allow for arbitrary non-
axisymmetric filters, from Birch & Gizon (2007) to compute
the linear sensitivity of C to flows.
Travel-time shifts are measured from the ingression–

egression covariance C as

t w= [ ¯ ] ¯ ( )CArg , 9

where C̄ is the sum of C over all frequency bins and w̄ is the
average frequency weighted by ∣ ∣C . The perturbation δτ to the
travel-time shift coming from a perturbation dC̄ to the
frequency-summed ingression–egression covariance is

*dt d w= [ ¯ ¯ ] [∣ ¯∣ ¯ ] ( )C C CIm . 102

This equation shows that the linear sensitivity of the travel-time
shift to flows is a linear combination of the kernels for the
ingression–egression covariances (Equation (8). The resulting
vector-valued kernels K satisfy

ò ò òdt = ¢ - ¢ ¢( ) ( ) · ( ) ( )r K r r u r rz z d dz, , . 11

Appendix C
Example Kernels

Figure 12 shows slices through the kernels bKwe for the focus
depth 3.97Mm. The kernel Kx

we is symmetric in both x and y,
the kernel Ky

we is anti-symmetric in both x and y, and the kernel
Kz

we is anti-symmetric in x and symmetric in y. The Kx
we and

Kz
we kernels have larger amplitudes than the Ky

we kernel; as
expected, travel-time differences in the x-direction are mostly
sensitive to flows in the x-direction and vertical flows. The
depth dependence of the Kx

we is shown in more detail in
Figure 13.
Figure 14 shows slices through the kernels bK oi for the focus

depth 3.97Mm. The symmetries are different than for the case
of travel-time difference in the x-direction. The kernel Kx

oi is
anti-symmetric in x and symmetric in y. The kernel Ky

oi is
symmetric in x and anti-symmetric in y. The kernel Kz

oi is
cylindrically symmetric about the z-axis. The largest sensitivity
is to vertical flows near the axis. The sign is such that upflows
cause an increase in the OI time difference.
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Figure 12. Slices through the kernels bKwe for a focus depth of 3.97 Mm. These kernels provide the sensitivity of the travel-time difference in the x-direction to
arbitrary 3D flows. The left (middle, right) column shows slices through the Kx

we (Ky
we, Kz

we) kernel. The top row shows slices at the photosphere of the model, and the
bottom row shows vertical slices at y=0. For the case of a horizontally uniform flow, the travel-time shift would depend only on the Kx

we kernel.

Figure 13. Depth dependence of the horizontally integrated kernels Kx
we for the different focus depths as indicated.
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