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ABSTRACT

We develop the wave-mechanical formalism for phase-correlation computational seismic holography of the
shallow subphotosphere under the plane-parallel approximation and apply it to helioseismic Doppler observa-
tions from the Michelson Doppler Imager on the SOHO spacecraft of both the quiet Sun and active regions. We
compare holographic signatures computed wave-mechanically with similar signatures computed under the
widely used eikonal approximation. The major difference between the hydromechanical and eikonal computa-
tions can be expressed in terms of acoustic dispersion effects within a few Mm of the solar surface. With an
appropriate account for dispersion, the eikonal computations are remarkably accurate over a broad range of
practical applications. A major imposition that confronts local diagnostics of the shallow subphotosphere is a
phenomenon we call ‘‘ghost signatures,’’ artifacts introduced by a local ambiguity in the origin of the waves that
give rise to the helioseismic signatures observed in the photosphere. Phase-correlation holographic signatures of
the shallow subphotospheres of active regions are predominated by strong, stochastic phase shifts associated with
magnetic fields at the solar surface. These introduce effects similar to those of an optical showerglass, signifi-
cantly impairing the coherence of waves impinging into the magnetic photosphere from beneath, smearing the
holographic signatures of possible subphotospheric anomalies.

Subject headinggs: Sun: activity — Sun: helioseismology — sunspots

1. INTRODUCTION

Computational seismic holography of helioseismic observa-
tions has rendered a remarkable array of diagnostic utilities for
solar research. These have led to the following developments:

1. the recognition of extended seismic anomalies surround-
ing sunspots, called ‘‘acoustic moats’’ (Lindsey & Braun 1998;
Braun et al. 1998; Braun & Lindsey 2000a, 2000b);

2. the discovery of regions of anomalous high-frequency
seismic emission surrounding large active regions, called
‘‘acoustic glories’’ (Braun & Lindsey 1999; Donea et al. 1999);

3. seismic images of solar flares (Donea et al. 2000); and
4. synoptic images of large active regions on the far surface

of the Sun (Lindsey & Braun 2000a; Braun & Lindsey 2001).

The diagnostic potential of helioseismic holography en-
compasses a broad range of practical applications basic to
local helioseismology. The major promise lies in solar interior
diagnostics. Given the appropriate helioseismic observations
of the solar surface, it offers diffraction-limited discrimination
of local solar interior anomalies at any depth beneath the Sun’s
surface.

Diagnostics of the shallow subphotosphere are of critical
importance to local helioseismology. A great deal of inter-
esting solar acoustics occurs in the shallow subphotosphere.
Moreover, we have to look through the shallow subphoto-
sphere to see into the deeper interior.

Most of the waves visible on the solar surface are high-
degree modes (meaning that their surface ripples have a high
wavenumber, k, or alternatively a short wavelength, 2�=k).
These waves penetrate only a relatively short distance beneath
the photosphere. In fact, it is these high-k waves that offer the
finest spatial discrimination. Diagnostics of the shallow sub-
photosphere are crucial to an understanding of the physics of

active regions. The same applies to the supergranulation and
other photospheric features that we can see directly.

The computational requirements of seismic holography
vary widely depending on the specific applications. Since only
relatively low-k waves penetrate deep into the solar interior,
diagnostics of the deep interior or far surface of the Sun can be
accomplished with relatively coarse spatial sampling. In this
case, the most practical approach is to filter the observations at
an early stage for just the low-k modes, reducing the com-
putational task proportionately. For diagnostics of the shallow
subphotosphere, high-k modes become important, greatly in-
creasing the sampling requirements in all spatial dimensions.
The purpose of this paper is to develop a wave-mechanical
formalism for seismic holography of the shallow subphoto-
sphere that addresses the computational requirements in a
practical way. The most basic concepts, including those of
computational economy, were already reviewed by Lindsey &
Braun (2000b). The computational task for the shallow sub-
photosphere can be greatly reduced by a judicious application
of the plane-parallel approximation. This will be the context of
this paper.

Wewill use a fair amount of optical terminology in this paper.
When we use the term ‘‘radiation,’’ for example, the meaning
will be ‘‘acoustic radiation,’’ not electromagnetic unless this
qualification is stated. Nearly all work in helioseismic holog-
raphy to date has relied on a formalism known in optics as the
‘‘eikonal approximation’’ (see x 4 of Lindsey &Braun 1997 and
x 8.1–8.2 of Lindsey & Braun 2000b). The eikonal approx-
imation turns out to be excellent for all of the work cited above.
There are, however, applications in the shallow subphoto-
sphere in which the eikonal approximation opens the door to
possibly significant errors. Some of these were pointed out by
Barnes & Cally (2001). Others are described below. This paper
addresses those liabilities by working out the wave-mechanics
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of computational seismic holography for the shallow solar sub-
photosphere formally without reliance on the eikonal approx-
imation. Comparisons of holographic seismic images computed
according to this formalism and those based on the eikonal
approximation show why the eikonal approximation, when sup-
plemented with appropriate corrections for dispersion, is a re-
markably accurate utility for imaging the solar photosphere and
subphotosphere when based on waves that penetrate a few Mm
or more beneath the solar surface. We apply phase-correlation
seismic holography to the quiet Sun and an active region and
examine two of the more imposing artifacts that confront shal-
low subphotospheric diagnostics. The first of these is ‘‘ghost
signatures,’’ largely caused by ambiguity in wave travel direc-
tions. The second is the effects of large phase and amplitude
perturbations introduced by surface magnetic fields.

We will begin with a review of the general principles of
computational seismic holography. We will proceed with the
formal development of wave-mechanics in a plane-parallel
acoustic medium stratified by gravity, for which the sound
speed increases with depth, as in the solar subphotosphere.
Finally, we will apply the formalism to helioseismic observa-
tions to compare holographic signatures computed under the
eikonal approximation with images computed according to the
principles of formal wave-mechanics.

2. REVIEW

2.1. Basic Principles

Basic principles of helioseismic holography were described
and illustrated by Lindsey & Braun (2000b). The heart of the
diagnostic is the computational extrapolation of acoustic dis-
turbances observed at the solar surface into the solar interior
assuming an interior medium devoid of acoustic anomalies.
Computational seismic holography can be regarded as the
direct extension to solar seismology of basic elements of a
diagnostic in geoseismology called ‘‘seismic migration’’
(Schneider 1978; Berkhout 1985). The theory and applications
of seismic migration were extensively developed in the 1970s
(Claerbout 1970; Hilterman 1970; Claerbout 1971; Claerbout
& Doherty 1972). However, significant elements of the theory
(e.g., Musgrave 1961) go back years earlier, proceeding to
some degree in parallel with the practical development of op-
tical holography. The concept was recognized for helioseismic
applications in terms of its analogy to optical holography by
Roddier (1975), an association adopted by Lindsey & Braun
(1990, 1997, 2000b) and Braun et al. (1998) owing to their
greater familiarity with elementary optics and the applicability
of a broad range of familiar optical terminology and other
formalism.

In rough generality, the computational basis of seismic
holography is the partial reconstruction, H� , of the acoustic
field,  , beneath the solar surface by phase-coherent acoustic
progression or regression some distance into the solar interior,
based on observations of  at the surface, as prescribed by a
nominal acoustic model that is devoid of underlying acoustic
anomalies. This reconstruction for waves at a particular an-
gular frequency, !, is conveniently expressed in terms of a
surface integral over some region, P, of the form

HP
� (R; !) ¼

Z
P
d 2R0G� (R; R

0; !) (R0; !); ð1Þ

where the ‘‘Green’s functions,’’ G� and Gþ, represent the
nominal acoustic model as complex propagators whose basic

purpose is to evolve the acoustic field, forward and backward
in time, respectively, from the surface at point R 0 to a sub-
merged ‘‘focal point,’’ R. The time-reverse and time-forward
Green’s functions are related to each other by

Gþ(R; R
0; !) ¼ G�

�(R; R
0; !): ð2Þ

We call the forward progression of the acoustic field to R the
‘‘coherent acoustic ingression,’’ and its regression, backward
in time, the ‘‘coherent acoustic egression.’’ The region, P, over
which the integral is computed is called the ‘‘pupil’’ of the
computation. We will usually use the term ‘‘progression’’ to
refer to the computational evolution, H�, of the acoustic field
forward in time and ‘‘regression’’ to refer to Hþ, the evolution
backward. However, we will sometimes defer to ‘‘progres-
sion’’ to express the generality, even when the direction of the
extrapolation could be backward in time.
For computational purposes, it is helpful to distinguish

between the depth, z, represented by R and the horizontal
location, r, of the surface point directly beneath which R lies:

R � (r; z): ð3Þ

This allows us to take computational advantage of the hori-
zontal invariance of acoustics in a stratified atmosphere. G�
can be expressed as a function of jr� r0j and z, covering a
two-dimensional manifold in place of the six dimensions oc-
cupied by (R; R0). Thus,

HP
� (r; z; !) ¼

Z
P
d 2r0G� (jr� r0j; z; !) (r0; !): ð4Þ

In our applications, the pupil is invariant with respect to the
focus and can therefore be expressed as part of G� in terms of
a multiplicative step function, U (r� r0) that simply truncates
G� at the pupil boundary. In that case the integral in equation
(4) is a simple convolution. The spatial Fourier transform, Ĥ� , of
H� over the surface therefore reduces to a simple product
(Lindsey & Braun 2000b), greatly expediting the computation:

Ĥ� (k; z; !) ¼ Ĝ� (k; z; !)  ̂ (k; !) ð5Þ

(Lindsey & Braun 2000b). Here the wavevector k, like r, lies
in the horizontal plane, with Ĝ� (k; z; !) and  ̂(k; !) repre-
senting the two-dimensional spatial Fourier transforms of
G� (jr0j; z; !) and  (r0; !), respectively.
When Hþ or H� is computed over a surface, we call this

manifold the ‘‘focal surface.’’ This will generally be a surface
of constant depth, to which we will apply the term ‘‘focal
plane,’’ by benefit of the plane-parallel approximation. Aber-
rations introduced by the plane-parallel approximation were
briefly described in x 3 of Lindsey & Braun (2000b). Begin-
ning with equation (5), we will omit the ‘‘P’’ superscript from
H� until it is first needed, in x 5.4.
Figure 1 illustrates how the relationship between the hori-

zontal extent of the pupil and the depth of the focus deter-
mines the ‘‘vantage’’ of the reconstruction (see x 4 of Lindsey
& Braun 2000b). This study will make extensive use of the
subjacent vantage (Fig. 1b) and the lateral vantage (Figs. 1c
and 1d ). The subjacent vantage is useful for control work
focused on the solar surface. The lateral vantage is useful
phase-correlation diagnostics of substantially submerged focal
planes. Most holographic applications published to date have
been computed from the subjacent vantage, with a focus at or
near the surface.
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2.2. Incompleteness

While helioseismic observations are highly informative,
they are generally far from sufficient for a full reconstruction
of the interior acoustic field, even for a medium devoid of
acoustic anomalies. A medium characterized by a simple scalar
amplitude,  , satisfying the familiar wave equation

@ 2

@t2
 � c292 ¼ 0 ð6Þ

in three dimensions with a uniform sound speed, c, facilitates
a general assessment of wave-mechanical incompleteness and
its consequences. Wave-mechanical reconstruction of  into
the interior, R, of a closed surface, @R, is accomplished
forward in time by the Kirchhoff integral (see Born & Wolf
1975; Schneider 1978),

 (R; !) ¼
Z
@R

d 2R0
�
 (R0; !)

@

@n0
GM

� (R; R
0; !)

� GM
� (R; R

0; !)
@

@n0
 (R0; !)

�
; ð7Þ

if  is secured over the entirety of @R as well as its derivative,
@ =@n0, normal to @R. While helioseismic observations in
the present epoch may accommodate us with credible fac-
similes of either  or @ =@n0 alone over a substantial pupil,
P, on the solar surface facing Earth, these do not nearly cover
the entire solar surface and generally do not provide us with
both over any substantial region. As in most optical applica-
tions, holographic progressions assume the missing field value
is zero on @R, where it is not known. If the observations
provide us with a map of  in surface region P on @R, we
accomplish a partial reconstruction, H�, of  beneath the
surface forward in time by letting

G�(jR� R0j; z; !) � @

@n0
GM

� (R; R
0; !) ð8Þ

in equation (4). The result of restricting the pupil, P, to a
limited region is familiar in elementary optics as smearing
known by the term ‘‘diffraction.’’ As in standard optics, the
smaller the pupil, the greater the smearing and the poorer the
spatial discrimination. On the other hand, the omission of
either of the two terms that comprise the Kirchhoff integrand
results in a confusion that is somewhat more subtle, which

we will call ‘‘directional ambiguity.’’ This imposition, certain
aspects of which were addressed by Skartlien (2001, 2002),
is familiar in geoseismic diagnostics (Claerbout & Doherty
1972; Castle 1982) as well as in optical holography, where it
gives rise to unintended mirror-like images of the object. In
computational seismic holography these appear as noisy, out-
of-focus artifacts we call ‘‘ghost signatures,’’ to be discussed
at length in xx 5.3, 5.7, and 7.3.

2.3. Phase-Correlation Hologgraphy

The general basis of phase-correlation holography is the
correlation,

C(R) ¼ hHþ(R; !)H
�
�(R; !)i�!; ð9Þ

between the egression and ingression at a common focal point
(Braun & Lindsey 2000b), wherein the angular brackets ex-
press the mean of the contents over a frequency range repre-
sented by�!. In a complete reconstruction of the acoustic field
in a medium devoid of anomalies, the egression, Hþ(R; !),
and ingression, H�(R; !), would be equal. In practice, in-
completeness allows H� and Hþ to differ substantially, even in
an ideal medium devoid of scatterers. Nevertheless, given that
the computations are made over appropriate respective pupils,
P� , the ingression and egression at the same focal point, R,
generally have a strong statistical correlation.

C(R) is influenced by acoustic anomalies in the medium. Of
particular interest is the response of C(R) to elastic scatterers,
such as refractors and flows, which are not generally visible to
simple acoustic power holography (Lindsey & Braun 1997,
2000a). Local refractors and Doppler scatterers generally shift
the phase of C(R) (see eq. [9] of Lindsey & Braun 2000a).
This signature strongly favors local anomalies occupying the
immediate neighborhood of the focal point, R.

3. THE EIKONAL APPROXIMATION

The eikonal approximation has been remarkably useful
in the early application of computational seismic holography,
giving us diffraction-limited images of acoustic moats, acoustic
glories, solar flares, and active regions on the Sun’s far surface.
The purpose of the discussion that follows is to review the
basic principles of the eikonal approximation and to clarify
its limitations. A more detailed discussion of the eikonal
approximation and its practical application to computational
holography was described by Lindsey & Braun (2000b). In the
eikonal approximation, the Green’s function, G� , is supposed
to have the form

G� (jr � r0j; z; !)¼ f (jr� r0j; z; !)e�iS (j r� r 0 j; z; !); ð10Þ

where f is a real, positive modulus, and the eikonal, S,
expresses the progression of phase along the path, �, of min-
imum travel time from (r0; 0) to (r; z):

S(jr� r0j; z; !) ¼
Z
�

!

c
ds; ð11Þ

with ds expressing the differential element of path length
along �. The condition of minimum travel time is satisfied
by the requirement that � obey Snell’s law of refraction:

dr

ds
¼ c

cph
sin �ph; ð12Þ

Fig. 1.—Wave front diagrams illustrating holographic extrapolations from
(a) a superjacent vantage, (b) a subjacent vantage, and (c, d ) lateral vantages,
for which the horizontal extent of the pupil expands rapidly with increasing
focal depth.
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where dr represents the horizontal progression along � of path
element ds, cph is the speed of sound at the photosphere (or
any desired reference depth), and �ph is the tangent angle of
� from the vertical at the photosphere. The modulus, f, in
equation (10) can be approximated by the ‘‘intensity law of
geometrical optics’’ based on considerations of acoustic flux
conservation (see x 8.1 of Lindsey & Braun 2000b).

By treating plane waves in a quasi-uniform medium,1 with
the imposition that the vertical component of the acoustic flux
is independent of height, it is possible to derive an eikonal
analog for the Fourier transform of G� :

Ĝ� (k; z; !)¼ f̃ (k; z; !)e�iS̃ (k; z; !); ð13Þ

with

S̃(k; z; !) ¼
Z

!2

c2(z)
� k 2

� �1=2
dz; ð14Þ

and

f̃ 2(k; z; !) ¼ �

c
1� k 2 c2(z)

!2

� ��1=2

; ð15Þ

where � is a constant that normalizes f̃ to unity at the surface
of the medium.

The modulus, f̃ , of Ĝ� , experiences a singularity at the
depth for which c ¼ !=k, the lower turning point of the ray
path, at which refraction turns the wave trajectory back toward
the surface of the medium. In a formal hydromechanical
treatment, the singularity will be seen to relax to an analytic
diffraction fringe.

4. WAVE-MECHANICS OF SEISMIC HOLOGRAPHY
IN A PLANE-PARALLEL GRAVITATIONALLY

STRATIFIED MEDIUM

The most widely used helioseismic observations available
today are Doppler observations, such as those made by the
Michelson Doppler Imager (MDI) aboard the Solar Helio-
spheric Observatory (SOHO) spacecraft and by the Global
Oscillations Network Group (GONG). Doppler observations
near solar disk center give us accurate maps of the vertical
component of the motion of the solar medium due to acoustic
disturbances. This suggests that we undertake a careful account
of acoustic disturbances in the solar interior in terms of the
vertical displacement of the solar interior medium. The acoustic
model we adapt for this purpose, then, characterizes hydro-
mechanical disturbances in a plane-parallel acoustic medium
stratified by gravity in terms of a vector field x(r; z; t), that
represents the acoustic displacement of the solar medium in
three spatial dimensions, at (r; z) and time t. We represent
the foregoing model with an adaptation of equation (14.25) of
Unno et al. (1989), whereby x evolves temporally by a linear
wave equation of the form

@ 2x
@t2

¼ 1

�0
:(�0c

2
0: = x)� g:=x þ:(g = x): ð16Þ

Here g is the local gravity vector, which is assumed unchanged
by acoustic perturbations, and we otherwise identify physical
parameters characterizing properties of the unperturbed medium
by appending the subscript ‘‘0.’’ Thus, the gradients, 9, are
computed with respect to R (see eq. [3]), �0(z) is the density of
the unperturbed solar medium, c0(z) is the sound speed, and �0c

2
0

expresses Young’s modulus for local adiabatic compression of
the initially unperturbed medium. The perturbation in pressure is

p ¼ ��0c20: = x: ð17Þ

Equation (16) prescribes how acoustic disturbances propagate
through the interior of the acoustic model once they are
somehow introduced. We now postulate a model consisting of
such a medium initially undisturbed and bounded by an upper
surface, S, that is initially flat and referenced to depth z ¼ 0.
Beginning at some arbitrary time, t ¼ 0, we can impose onto
S any vertical perturbation we choose that can be expressed
in terms of a continuous function, � z(r; 0; t), of position, r,
on the surface and time, t. Computational seismic holography
applied to observations of vertical surface motion in the plane-
parallel approximation in this paper will be based largely on
the following principle, tentatively stated as a proposition.
Assertion 1. If we drive the upper surface of the foregoing

model, initially undisturbed, depressing it vertically as a
function of surface location and time in such a fashion as
described above, then a disturbance will propagate into the
model interior in an unambiguous, well-defined way.
At the same time we impose another assertion.
Assertion 2. The wave equation (eq. [16]) can be solved

unambiguously for x throughout R given both the vertical
displacement, � z and the pressure perturbation, p, on S over
an appropriate duration.
Critical to Assertion 1, that the disturbance can be deter-

mined unambiguously from only � z at the surface with no
knowledge of p, is the condition that the medium was initially
undisturbed. This secures that the disturbance that results from
driving � z at the surface is purely downward-propagating. It
is the possibility of upward-propagating waves, such as from
some submerged source, that introduces an ambiguity if only
� z at the surface is known.2

Assertions 1 and 2 address the issue of incompleteness in
the discussion of computational holography based on Dop-
pler observations in the plane-parallel approximation. That
Assertion 2 does not contradict Assertion 1 is a result of
the imposition before the latter that the surface disturbance,
� z(r; 0; t), was the sole source of the underlying interior
acoustic disturbances introduced therein.
The proof of Assertion 2 is straightforward and is derived

in the next section. Assertion 1 follows readily from that dis-
cussion. We will adapt a standard hydromechanical formalism
to express general solutions of the wave equation (16) in terms
of � z and p at the model surface, S. We will then examine the
relationship between � z and p for purely upward- and purely
downward-propagating waves to discriminate between the
two. For computations of seismic progressions, time-forward
extrapolations of acoustic disturbances into the solar interior,

1 By ‘‘quasi-uniform’’ we mean a medium in which the sound speed
changes by a relatively small fraction of itself in a nominal wavelength. Thus,

j9cjT�:

2 For a concrete illustration, imagine S being held firmly rigid, i.e.,
� z(r; 0; t) ¼ 0, while an upward-propagating wave from a submerged source
impinges onto it. The upcoming wave would reflect off of S and back into the
model interior causing pressure perturbations, p, at S but no displacement, � z.
The same null surface motion could just as well characterize a medium with
no interior acoustic disturbances at all. This ambiguity disappears if upward-
propagating waves are disallowed.
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we will accomplish completeness artificially by imposing the
following.

Assumption 1. All surface disturbances that appear in the
Doppler observations represent downward-propagating waves,
as if emanating from a surface source by driving the surface as
it is seen to move. We suppose that these waves propagate
downward, into the solar interior, encountering no acoustic
anomalies until their arrival at the focal plane.

For computations of seismic regressions, time-reverse ex-
trapolations of acoustic disturbances into the solar interior, we
will accomplish the same with the opposite assumption.

Assumption 2. All observed surface disturbances are mani-
festations of waves emanating from the focal plane, at depth z in
the solar interior, that have arrived without encountering any
acoustic anomalies between the focal plane and the surface.

It may appear that Assumptions 1 and 2 cannot both generally
be correct, indeed that each diametrically contradicts the other.
In fact, below �5 mHz, the solar surface acts as a strong, es-
sentially specular reflector. This provides every upcomingwave
a down-going echo, such that the surface disturbance becomes
simultaneously the signature of both. In that particular case,
Assumptions 1 and 2 can both be accurate, subject to qual-
ifications that have to dowith the phase relationship between the
surface signature and the individual arriving and departing
wave components. Above �5 mHz the solar surface is a poor
specular reflector, and helioseismic observations appear to be
incomplete by their nature. In general, Assumptions 1 and 2
introduce artifacts, which we will discuss in x 5.8.

5. PROPAGATION OF SURFACE DISTURBANCES
IN A PLANE-PARALLEL ACOUSTIC MEDIUM

5.1. The Eiggenwavves

In this section, we will address the general problem of
extrapolating disturbances in the vertical displacement, � z,
viewed at the surface of a gravitationally stratified acoustic
medium in the plane-parallel approximation to any depth be-
neath the surface, under the assumption that the surface is the
sole source, or alternatively the sole sink, of the disturbance.
We will first adapt a standard formalism for solving the wave
equation (16), based on boundary specifications of both ver-
tical displacement, � z, and pressure perturbation, p. We will
then apply standard analytical tools to discriminate between
downward- and upward-propagating disturbances, selecting in
favor of one or the other as the application requires to eliminate
the ambiguity caused by the lack of knowledge of p over S.

Because the wave equation for the quiet Sun is temporally
and horizontally invariant in the plane-parallel approximation,
its solutions in any horizontal plane can be expressed in terms
of plane waves:

x(r; z; t) ¼ �̂(k; z; !)ei (k = r�!t): ð18Þ

We can therefore implement equation (5) in the Fourier domain
in terms of the field � z by having  ̂ and Ĝ� in equation (5)
represented in the following terms:

 ̂ (k; 0; !) � �̂ z (k; 0; !); ð19Þ

and

Ĝ� (k; z; !) � �̂ z� (k; z; !); ð20Þ

where the ‘‘radial functions,’’ �̂ zþ and �̂z�, represent the ver-
tical components of the downward- and upward-propagating

solutions, �̂þ and �̂�, respectively, of the wave equation such
that

�̂ z� (k; 0; !) ¼ 1: ð21Þ

To determine the solutions, �̂ z(k; z; !), of the wave equa-
tion for general purposes, we take an approach essentially
parallel to the formalism of Thomas et al. (1971), which
expresses � z and pressure, p, in terms of a first-order differ-
ential equation in z. Using equation (17) to express : = x in
terms of pressure, p, and replacing the operator @=@t with
�i!, the wave equation (16) becomes

�!2x ¼ � 1

�0
:pþ g

c20

p

�0
þ (:g) = x þ (:x) = g: ð22Þ

We introduce the symbols x? and � z to distinguish between
the horizontal and vertical components of x:

x ¼ (x?; � z); ð23Þ

and express the vertical and horizontal components of the
wave equation itself in terms of these:

�!2� z ¼ � 1

�0

@p

@z
þ g

c20

p

�0
þ dg

dz
� z þ g

d� z
dz

; ð24Þ

and

�!2x? ¼ �ik
p

�0
þ ikg� z: ð25Þ

Equation (17) similarly leads to

� p

�0c20
¼ @� z

@z
þ ik = x?: ð26Þ

Taking the dot product of both sides of equation (25) with ik
leads to an expression for ik = x? in terms of p and � z:

!2ik = x? ¼ k 2

�
g� z �

p

�0

�
; ð27Þ

to replace ik = x? in equation (26). This leads to the following
expression for @� z=@z in terms of � z and p:

!2 @� z
@z

¼
�
k 2 � !2

c20

�
p

�0
� k 2g� z: ð28Þ

Replacing @� z=@z in equation (24) with the above then ren-
ders an equation for @p=@z in terms of � z and p:

!2 @p

@z
¼ k 2gpþ �0

�
!4 þ !2 dg

dz
� k 2g2

�
� z: ð29Þ

Equations (28) and (29) are readily expressed in matrix format:

!2 @

@z

� z

p

� �
¼ M0(z)

� z

p

� �
; ð30Þ

with

M0 ¼
�k 2g (k 2 � !2=c20)=�0

�0(!
4 � !2!2

T � k 2g2) k 2g

" #
; ð31Þ
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where !T , defined by

!2
T � � dg

dz
; ð32Þ

represents the tidal effect of the Sun’s gravitational gradient,
whose imaginary value of (0.88 mHz)i at the solar surface is
sufficient to qualify it as a computational irritant.

Given � z and p at any depth, zref , we can extrapolate these
for nonzero !2 to any other depth z by applying Runge-Kutta
to equation (30). However, for an accurate numerical extrap-
olation, the depth range of the extrapolation must be parti-
tioned on a scale comfortably small with respect to the scale
over which � z and p characteristically vary. Elementary con-
siderations with respect to the vertical energy flux of propa-
gating waves generally render the amplitudes of � z and p to
be roughly in the following proportions:

j� zj � (c0�0)
�1=2; ð33Þ

and

j pj � (c0�0)
þ1=2: ð34Þ

The numerical extrapolation is therefore considerably more
stable in equations for the vertical evolution of the variables

� � (c0�0)
1=2!� z ð35Þ

and

� � (c0�0)
�1=2p: ð36Þ

The equation that evolves (�; �) retains the same basic form
as equation (30):

!2 @

@z

�

�

� �
¼ M(z)

�

�

� �
; ð37Þ

with

M ¼
(!2	 � k 2g) �(!2=c20 � k 2)(!c0)

(!4 � !2!2
T � k 2g2)=(!c0) �(!2	 � k 2g)

" #
;

ð38Þ

where

	 � 1

2

d

dz
(ln �0 þ ln c0) ð39Þ

is the scale depth of (�0c0)
1=2 and M otherwise contains no

reference to rapidly evolving �0.
To separate the purely upward- and downward-propagating

modes at any particular depth, z0, we consider the case in
which M is constant,

M(z) ¼ M(z0); ð40Þ

in the neighborhood of z0. In that case, equation (37) has
analytic solutions of the form

�

�

� �
¼

�0

�0

� �
ei
z; ð41Þ

with the relation between 
, k, and ! fixed by the requirement
that the determinant of

M � !2i
I ¼

(!2	 � k 2g)� !2i
 �(!2=c20 � k 2)(!c0)

(!4 � !2!2
T � k 2g2)=(!c0) �(!2	 � k 2g)� !2i


" #
ð42Þ

must vanish. This leads to the secular equation,

!4 !2 � !2
T þ (	2 þ 
2)c20

� �� �
� !2 !2 � (2	g� g2=c20 þ !2

T )
� �

k 2c20 ¼ 0: ð43Þ

The secular equation is solved by ! ¼ 0, indicating the exis-
tence of perturbations that remain static. For nonzero values
of !, the secular equation is easily reduced to an equation for

 in terms of ! and k:


 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
!2 � !2

a

c20

�
�
�
1�

!2
g

!2

�
k 2

s
; ð44Þ

where the characteristic frequencies !a and !g are defined
here by

!2
a ¼ 	 2c20 þ !2

T ; ð45Þ

and

!2
g ¼ 2	g� g2

c20
þ !2

T : ð46Þ

The characteristic frequency !g should not be confused with
the familiar Brunt-Väisälä frequency, N, from which it differs
by the relation

!2
g ¼ N 2 þ g

d

dz
ln c0 þ !2

T : ð47Þ

Deep in the convection zone, where !a and !g can be
neglected, 
 reduces to


 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c20
� k 2

s
; ð48Þ

which is the integrand of the eikonal integral expressed by
equation (14). Where 
 is imaginary, acoustic waves are essen-
tially excluded, or able to penetrate a limited depth as the inci-
dent wave flux is turned around and reflected back toward
the solar surface. Where 
, is real, waves can be roughly
regarded as freely propagating. The purely downward- or
upward-propagating modes are represented by the eigenvectors,
(�� ; �� ), of M corresponding to the respective positive or
negative values of i
 to satisfy the secular equation (44). These
conveniently allow us to select the wave mode imposed by
whichever of Assumptions 1 and 2 apply.
In general, an amplitude (�; �) that is an eigenvector of M

at one depth will not be an eigenvector at another depth where
M is significantly different. However, throughout a depth
range over which 


 d


dz




T
2; ð49Þ
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the progression of (�; �) can be regarded as ‘‘adiabatic,’’ in
the sense that if it began as an eigenvector, it will evolve so as
to adhere closely to that eigenvector throughout such a range.
When 
 changes suddenly, equation (49) fails, and specular
reflections are generally created, contaminating either single
mode with the one propagating in the opposite direction on at
least one side or the other of the anomaly. Familiar examples
of reflections caused by the failure of equation (49) are those
characterizing the surface of a pond or window glass.

The condition stated by equation (49) must eventually fail
altogether for substantial values of k at the lower turning point,
zl, of the wave, at which the sound speed, c0, becomes suffi-
cient to drive 
2 negative. When 
2 becomes negative, i

becomes real and the solutions of equation (37) explode or
collapse, as suggested by equation (41). A mode that is purely
upward- or downward-propagating where equation (49) is
satisfied invariably contains an exploding component when

2 becomes negative. Where 
2 is positive, �þ and �þ wind
counterclockwise in the complex plane around the origin (a
downward-propagating wave) as shown in Figure 2. As 
2

plummets through zero, the loci of �þ and �þ straighten out
and accelerate rapidly outward, converging toward an asymp-
tote, E, whose argument depends on the initial argument
assigned to �þ. The lower turning point is indicated in Figure 2
on the loci of �þ and �þ by the label ‘‘LTP.’’ In this example we
have chosen the initial argument of �þ so that the asymptote, E,
lies along the positive imaginary axis. In that case, the loci of �þ
and �þ make a figure resembling a backward G-clef centered at
the origin. In this perspective we represent �� and �� by the
elementary complex functions U� and V � , respectively, with
real and imaginary decompositions defined as follows:

U� (k; !; z) ¼ Ur(k; !; z) � iUi(k; !; z);

V � (k; !; z) ¼ Vr(k; !; z) � iVi(k; !; z): ð50Þ

In general, (Uþ; Vþ) represents a purely downward-propagating
wave, while (U�; V�) represents an upward-propagating one.
The elementary real and imaginary components, Ur, Ui, Vr ,
and Vi are plotted in Figure 3 as functions of depth. Because Ui

and Vi explode violently beneath the lower turning point, we
infer that they cannot be substantial constituents in acoustic
disturbances initiated anywhere near the solar surface. It is
nevertheless useful for a broad variety of diagnostic purposes
to express acoustic disturbances in the shallow subphotosphere
in terms of (Uþ; Vþ) and (U�; V�), which contain both of
these components. We will address these considerations in the
following section.

The modes U� normalized to unity at the surface serve as
the basic element of the Green’s functions, Ĝ�, for the su-
perjacent vantage in the standard formalism of computational
seismic holography in the Fourier domain, as represented by
equation (5), where  ̂(k; !) is equated to the vertical dis-
placement, �̂ z , of the solar medium at the surface. Its asso-
ciates, V � , serve the same function for the regression of the
pressure, given observations of only the vertical displacement.
Figure 4 compares the phases of U� and V� with the eikonal,
S̃, prescribed by equation (14).

For an active region near disk center, the MDI observa-
tions give us a close approximation to the vertical velocity,
�̇ ¼ @�=@t. Acoustic progressions applied to the MDI obser-
vations literally as prescribed by the formalism following
equations (19), (20), and (21) therefore render representations
of the time derivative, �̇, of the normalized vertical dis-
placement, �. Under Assumption 1 or 2 the formalism like-
wise gives a Green’s function for � based on the surface value
if �. This offers us the alternative of a focal-plane represen-
tation of the time derivative, �̇, of the normalized acoustic
pressure perturbation from the MDI observations on similar
terms.

Fig. 2.—Complex amplitudes Uþ (solid curve) and Vþ (dashed curve) are
plotted for horizontal spatial frequency l ¼ kR� ¼ 300 and temporal frequency
� ¼ !=2� ¼ 5 mHz. The loci of Uþ and Vþ wind counterclockwise (increasing
phase) about the origin as depth z increases from the surface. As z passes the
lower turning point (LTP)Uþ and Vþ explode along the positive imaginary axis.

Fig. 3.—Real and imaginary parts of amplitudes Uþ (top, normalized
vertical displacement) and Vþ (bottom, normalized pressure) are plotted as a
function of depth z for horizontal spatial frequency l ¼ 300 and temporal
frequency � ¼ !=2� ¼ 5 mHz.
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5.2. Reflections and Vantagges

General acoustic disturbances in the subphotosphere for any
frequency, !, can be expressed in terms of superpositions of
the amplitudes (U� ; V � ) � (Ur � iUi; Vr � iVi). However,
as mentioned before, real physical disturbances can only be
characterized by superpositions for which the coefficients of
the exploding components, i(Ui; Vi), are null. The exploding
components represent waves that would have to be driven by
a source beneath the lower turning point. The physical inter-
pretation is that a wave (Ur þ iUi; Vr þ iVi) created by a
source at the solar surface is reflected at the lower turning
point. The resulting upcoming wave, (Ur � iUi; Vr � iVi),
superposed onto the downward-propagating wave reinforces
the (Ur; Vr) component and annihilates the i(Ui; Vi) contri-
bution by destructive interference. As one sees from the plots
that appear in Figure 3, the standing wave, represented by
(Ur; Vr), penetrates a limited distance beneath the lower
turning point, its amplitude collapsing as rapidly as the am-
plitude of (Ui; Vi) explodes.

In fact, it is useful for various diagnostic purposes to have
the facility to discriminate between upward- and downward-
propagating components, even while neither is thought to be
present without the other in the real solar subphotosphere. The
analyst can decide whether to include either component with-
out the other or include both components in his representation
of the Green’s function, G�. This discrimination renders a
basis in the Fourier domain for the distinction between su-
perjacent and subjacent vantage holography (see Fig. 1).

For frequencies � ¼ !=(2�) less than �5 mHz, an upper
turning point occurs in the neighborhood of the solar photo-
sphere, when !a exceeds ! and drives 
2 negative for all values
of k. This makes the solar subphotosphere an efficient reflector
of waves whose frequencies are less than �5 mHz. As with
reflections from the lower turning point, the analyst has the
option of representing the surface reflections in the Green’s

function, and this is the basis of ‘‘multiple-skip holography,’’
illustrated in Figures 6 and 7 of Braun & Lindsey (2000a).
Waves with frequencies � above �5 mHz ascend substan-

tially into the photosphere before a turning point is encountered.
At this point it is apparent that the adiabatic representation
conveyed by equation (16) is no longer entirely satisfactory. A
major dynamic factor for which equation (16) does not account
is strong acoustic damping as a result of the escape of elec-
tromagnetic radiation directly into space. It is empirically clear
that acoustic radiation emerging to the quiet solar surface from
below leaves an observable surface signature on its arrival. How-
ever, there is little evidence of a coherent specular reflection at
the higher frequencies. Consequently, multiple-skip holography
of the quiet Sun fails at frequencies above about 5 mHz. As
in electromagnetic optics, it is these high frequencies that offer
the greatest spatial discrimination in wave diagnostics.

5.3. The Local Control Correlations

An important control experiment for holographic projections
is accomplished by drawing the focus to the solar surface, as
illustrated in Figure 1b, and comparing ingressions and egres-
sions separately with the acoustic amplitude,  , observed at
the focus (see x 8.2 of Lindsey & Braun 2000b). The correlation

CLC�(r; 0) � h (r; !)H�
�(r; 0; !)i�! ð51Þ

compares the local acoustic amplitude with waves focused
into the surface focal point, R ¼ (r; 0), from the surrounding
pupil. The time-reverse correlation,

CLCþ(r; 0) � hHþ(r; 0; !) 
�(r; !)i�!; ð52Þ

tells us how a local surface disturbance at (r; 0) propagates
outward to resurface in the pupil minutes later. We apply the
holographic progressions representing vertical displacement to
MDI line-of-sight Doppler observations of a region of quiet
Sun centered at solar disk center, equating  to the normalized
vertical velocity, �̇, at the base of the photosphere. The ho-
lographic projections applied to the MDI observations then
likewise render a representation of �̇, as explained at the end
of x 5.1. We will call CLC� and CLCþ the ‘‘local control cor-
relations,’’ or just the ‘‘control correlations’’ for short.
Figure 5 shows comparative statistics of the normalized

control correlations,

ĈLC� � CLC�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjH�j2ihj j2i

q ; ð53Þ

Fig. 5.—Normalized control correlation ĈLC� (see eq. [52]) for (a) the
quiet-Sun hydromechanical and (b) the eikonal extrapolations are plotted over
the 2–7 mHz spectrum in the left and right panels, respectively, with  in
eqs. (51) and (52) equated to the normalized vertical velocity, �̇. Frequencies
are labeled in mHz along the respective loci.

Fig. 4.—Phases of amplitudes U� (solid curve) and V�(long-dashed curve)
are compared with the eikonal, S̃ (short-dashed curve), for horizontal spatial
frequency l ¼ 300 and temporal frequency � ¼ !=2� ¼ 5 mHz. The latter is
integrated from the lower turning point (LTP).
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for the quiet Sun, computed hydromechanically for �̇ (Fig. 5a)
and using the eikonal approximation (Fig. 5b). In each case
the acoustic progressions were computed over an annular
pupil 15–45 Mm in radial extent. These are plotted in the
complex plane over the range 2–7 mHz. Frequencies are la-
beled in mHz along the respective loci. It is the spatial aver-
ages of ĈLCþ and ĈLC� over a substantial area that are actually
plotted in Figure 5. The two are indistinguishable in the quiet
Sun, but become unmistakably different when the focus is in
an active region photosphere. Figure 6 shows the amplitudes
and phase of the normalized correlations plotted in Figure 5
as functions of frequency.

The difference between the hydromechanical and eikonal
phases profiles (Figs. 6b and 6d ) renders an appraisal of the
effects of dispersion that escape the eikonal computation. This
partially addresses issues raised by Barnes & Cally (2001) re-
garding the inability of the eikonal computation by itself to
account for dispersion. It is nevertheless evident that even the
hydromechanical phase varies substantially over the 2–7 mHz
range.

5.4. The Phase Proggression

We will proceed here to address considerations that bear
on the hydromechanical phase progression in the control cor-
relations. The theoretical framework needed for a realistic in-
terpretation of the correlations plotted in Figures 5 and 6 has not
been worked out in its entirety. This includes considerations
such as how upcoming waves are reflected back into the solar
interior and the effects of electromagnetic radiative damping,
for which equation (16) contains no account. It is apparent that
upcoming waves above about 5 mHz are strongly absorbed by
the overlying photosphere or chromosphere (Duvall et al. 1993;
Lindsey & Braun 1999; Braun & Lindsey 2000b). It is actually
possible that the upcoming waves are substantially reflected but
with scrambled phases. In any case, they are somehow replaced
by down-going waves that have no apparent phase relation with
the originals. The high-frequency waves are of special interest
because of the relatively fine spatial discrimination they offer.
The correlations plotted in Figures 5 and 6 are probably diag-
nostic of important aspects of how the waves are generated,

particularly at the higher frequencies, where specular reflec-
tions from the photosphere are relatively weak.

We will not attempt a realistic analysis of any of the factors
that give rise to the phase progression in this paper. However,
we will suggest some elements of formalism that could fa-
cilitate such an examination. To clarify some of the important
distinctions, we begin with a control model under which the
phase progression of the local control correlations is null. We
will call this reference model, which is illustrated in Figure 7a,
‘‘Acoustic Model 0.’’ Model 0 assumes that the waves we
see at the solar surface are emitted downward from an over-
lying surface, above the base of the photosphere where we
observe the disturbances that manifest them. In such a model,
all waves register in helioseismic observations twice: The first
registration, represented by the field  #, is that of the wave
passing downward through the base of the photosphere on
its way into the solar interior. The second,  ", is that of
the upward-propagating echo on its way back to the source
layer. The helioseismic observations generally register the
sum,

 ¼  # þ  "; ð54Þ

and are unable to distinguish between the individual compo-
nents,  # and  ". Consequently, when we compute an acoustic

Fig. 6.—Moduli and phases of the quiet-Sun control correlation, ĈLC�,
plotted in Fig. 5, are plotted here as functions of frequency. Left column shows
(a) modulus and (b) phase of the hydromechanical correlation in which  is the
vertical velocity. Right column shows (c) modulus and (d ) phase under the
eikonal extrapolation.

Fig. 7.—Diagrams showing wave fronts for downward-propagating (short-
dashed curves) and upward-propagating (long-dashed curves) components of a
wave mode driven at (a) a surface above the photosphere and (b) by a surface
at depth zs beneath the photosphere. Arrows labeled K"# indicate gradients
of the phase for the upward- and downward-propagating components at the
photosphere in (a) and the driving surface in (b). The arrows labeled k indicate
the horizontal component of K"#. Solid curves indicate the ray path of least
travel time.
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progression, as prescribed by equation (4), we are computing
the sum,

H� ¼ H"� þ H#� ; ð55Þ

where

H"#� (r; z; !) �
Z
P
d 2r0G� (jr� r0j; z; !) "#(r

0; !): ð56Þ

This is somewhat unfortunate, since we are only actually
interested in H#� and in H"þ. When computing the control
correlations, h H�

�i and hHþ 
�i, the undesired acoustic pro-

gressions H"� and H#þ contribute noise.
The correlation of diagnostic interest contained in CLCþ, for

example, can be expressed by the component

CLC"#þ(r; 0) � hH"þ(r; 0; !) 
�
#(r; !)i�!; ð57Þ

representing the egression, H"þ(r; 0; !), of just the upcoming
radiation in the pupil correlated with only the radiation
emitted downward from the focal point. Because we cannot
distinguish the up-going from the down-going components,
the full correlation, CLCþ, contains the foregoing component,
CLC"#þ, plus three ‘‘ghost’’ components,

CLCþ ¼ CLC"#þ þ CLC""þ þ CLC##þ þ CLC#"þ; ð58Þ

where we generalize the correlation CLC"#þ, defined by equa-
tion (57), by the formalism

CLC��� (r; 0) � hH�� (r; 0; !) 
�
�(r; 0; !)i�!; ð59Þ

with �; �2f"; #g.
In the case of the local correlations, the expectations of the

ghosts CLC""� and CLC##� turn out to be essentially null, and
CLC#"þ and CLC"#� are nearly so for large pupils, such as for
an annulus whose radial range corresponds to a range of time
delays that is many times the period of the wave. The ghosts
then simply contribute neutral noise to CLC� with a nearly null
expectation. If Model 0 were accurate, both CLCþ and CLC�
would be real and positive, provided that the acoustic pro-
gressions were computed properly.

The phase progression shown by Figures 5 and 6 reflect
attributes of the real solar photosphere that Model 0 does
not possess. This includes strong specular reflections from the
upper subphotosphere and photosphere in the 2–5 mHz spec-
trum and radiative damping, not included in equation (16). It is
also evident that the p-modes are generated beneath the pho-
tosphere (Kumar 1994; Kumar & Basu 2000), not above it. In
the 2–5 mHz spectrum the solar photosphere reflections are
certain to be the predominant factor in the phase progression of
the control correlations. Above 5 mHz the reflectivity appears
to diminish rapidly with frequency, suggesting a model for
high frequencies that retains the absorber at the upper bound-
ary of Model 0.

We will proceed accordingly to consider the acoustic
model illustrated by Figure 7b, which we will call ‘‘Acoustic
Model 1.’’ In this model waves are emitted both upward and
downward from a surface submerged to depth zS . For sim-
plicity we suppose that all waves passing upward through the
photosphere continue to be absorbed by an overlying surface,
as illustrated.

The formalism needed to represent Model 1 is different
from that for Model 0 in a number of important respects. The

down-going field,  #, of its predecessor no longer exists.
What appears in its place is a field propagating upward from
the source layer. In the following discussion, we will use the
field propagating upward from the source layer as a proxy for
the wave propagating downward from it at the same angle. We
will now represent the relevant amplitudes in the spatially
Fourier transformed domain. The amplitudes of the upward-
and downward-propagating waves emanating from the source
layer will be represented by Ŝ" and Ŝ#, respectively. For
a downward-propagating wave of amplitude Ŝ# with a local
wavenumber K# ¼ (k; 
) and frequency !, there is an upward-
propagating wave, Ŝ", with wavenumber K" ¼ (k; �
) at that
same frequency. Because we propose to use the surface dis-
turbance caused by the upward-propagating component as a
proxy for the downward-propagating wave, we represent it by
the symbol  #, notwithstanding that it is now propagating up-
ward, like the echo,  ", of its initially downward-propagating
counterpart. The use of  # for such a proxy clearly depends on
a significant statistical correlation, hŜ#Ŝ�"i, between Ŝ# and Ŝ".
The acoustic progression from depth zS to the surface is

represented by applying the appropriate Green’s function to
Ŝ":

 ̂# ¼ Ĝ"�Ŝ": ð60Þ

Here Ĝ"� represents both the propagation of the wave from
source to surface and any additional surface dynamics that
influence how the wave actually registers as a helioseismic
signature,  ̂#.
The downward-propagating wave, Ŝ#, proceeds into the

solar interior, penetrating to the lower turning point, zl, before
it is refracted back to the surface to register the signature  ̂".
Let Ĝ#� represent the propagation of Ŝ# from depth zS to zl
and back up to depth zS . We then apply Ĝ"� to Ĝ#�Ŝ# to
complete the propagation of the reflected wave the remaining
vertical distance, zS , back to the surface:

 ̂" ¼ Ĝ"�Ĝ#�Ŝ#: ð61Þ

For the following discussion we will distinguish between
the Green’s functions,GC

� , that characterize the acoustic model
for purposes of computing holographic progressions, H� , and
those discussed above, Ĝ� , which we will suppose characterize
the real solar atmosphere so as to include details of which we
may not be entirely aware. The holographic components of
interest in phase correlation diagnostics are

Ĥ#� ¼ ĜC
#� ̂#;

Ĥ"þ ¼ ĜC
#þ ̂": ð62Þ

Applying equations (60) and (61) to equation (62) as appro-
priate, it follows directly that the correlations representing the
substantial statistical components of CLCþ (see eqs. [57] and
[58]) and CLC� are related to S" and S# by

hĤ"þ ̂
�
#i ¼ h ̂"Ĥ

�
"�i ¼ jĜ"�j2(ĜC

#þĜ#�)hŜ#Ŝ�"i: ð63Þ

The correlation, hŜ#Ŝ�"i, between Ŝ# and Ŝ" is certain to be
quite strong under certain conditions, for example if the waves
are generated exclusively by dipole emitters in a thin layer.
However, if wave generation is characterized by indepen-
dently phased sources distributed over a half-wavelength or
more in depth, then hŜ#Ŝ�"i can be considerably reduced.
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For an intuitive discussion of the relationship expressed by
equation (63), the downward-propagating disturbance can be
regarded as having a head start with respect to phase travel
time, by a margin

�t ¼ 1

!

Z zS

0


dz; ð64Þ

while the arrival of its upward-propagating counterpart at the
surface, as the downward-propagating proxy, is delayed by
�t. While we should expect to see a strong correlation be-
tween the egression and the local amplitude based on the re-
turn of the wave to the solar surface some distance away, the
phase delay between the local signature and the egression
signature is reduced by 2�t, giving rise to a phase progression
of �2!�t with frequency.

Below �5 mHz, the correlation amplitudes are dominated
by strong specular reflections of upcoming waves back into the
solar interior from various levels in or below the photosphere
that depend on frequency. A detailed account of the reflections,
not attempted here, will entail further phase and modulus
corrections. Further phase shifts not accounted for in this study
include those introduced in the shallow subphotosphere by
radiative damping and by any errors in the acoustic model.

The small modulus of the normalized correlation in
Figures 6a and 6c above 5 mHz suggests a relatively low
correlation, hŜ#Ŝ�"i, between the up-going and down-going ra-
diation. This suggests that a predominant fraction of the high-
frequency acoustic power originates from sources distributed
over a range of order 1.0 Mm in depth, somewhat greater than
that suggested by earlier work (Kumar 1994; Kumar & Basu
2000). This and alternative possibilities need to be carefully
examined.

In some applications, it is useful to correct the correlation
phase shifts plotted in Figures 5 and 6 without consideration as
to their interpretation in terms of acoustics. Phase-correlation
imaging of active regions on the Sun’s far surface, for example,
depends on correlation statistics integrated over a fairly broad
spectrum, of acoustic radiation that has been reflected from the
surface several times. If the phase progression is not corrected,
then contributions to the correlation signature from different
frequencies will be subject to destructive interference, so that
the full statistical value of the correlation over a substantial
range, �!, can be substantially lost. It can therefore be very
profitable, as a general diagnostic utility, for the analyst to have
the facility at his disposal for correcting these phase shifts
before the correlation statistics are integrated over frequency.
This is conveniently accomplished by fitting the phase curves
plotted in Figure 6 to analytic functions and phase shifting the
Green’s functions accordingly before computing the acoustic
progressions.

5.5. Phase-Correlation Hologgraphy from the Lateral Vantagge

We now turn to the application of phase-correlation holog-
raphy to the shallow subphotosphere. In the discussion that
follows we will apply to seismic holography in the lateral
vantage, whose generality is illustrated in Figures 1c and 1d. In
this configuration we compare the ingression, HR

� (r; z; !),
over a pupil,R, with the egression,HL

þ(r; z; !), over a pupil L
with a common focal point, (r; z), such that acoustic radiation
passing from L to R through the neighborhood of r passes r
laterally, on the average:

CLR(r; z; !) ¼ hHL
þ(r; z; !)H

R�
� (r; z; !)i: ð65Þ

In general, L and R may or may not be separate regions.
Appropriately differentiated pupils can allow the analyst to
discriminate between acoustic anomalies in the neighborhood
of the focal point that are refractive in nature on one hand and
advective along the axis of the cone of illumination of r on
the other. The symmetric phase shift,

�S � 1

2
(arg CLRþ arg CRL); ð66Þ

is sensitive in the first order to refractive perturbations that
retard or advance the phase of the radiation that passes
through them equally in both directions. The antisymmetric
phase shift,

�A � 1

2
(arg CLR � argCRL); ð67Þ

is sensitive in the first order to Doppler perturbations, which
advance the phase in the direction of motion and retard it
against. Both �S and �A have higher order sensitivities under
certain circumstances.

5.6. Path Conjuggality

An important concept regarding the relationship between the
ingression and egression pupils, L and R, is that of mutual
conjugality with respect to ray paths that connect the focus, r,
to the pupils. Let r0 be a point in L, and �r; r 0 be the ray path
that connects r0 to the focal point, r. Let r00 be the point at
which the continuation of �r; r 0 past the focal point returns to
the surface. We will call r00 the conjugate point of r0. We will
call the set, P 0, of all points that are conjugate to the points in a
pupil P for focus r the conjugate pupil of P with respect to r,
and say that P and P 0 are mutually conjugate (with respect
to r). When the ingression and egression pupils, R and L are
mutually conjugate, as they are in Figures 1c and 1d, the
correlations CLR and CLR will generally be quite strong in the
absence of acoustic anomalies. In that case, the function of a
local anomaly in the neighborhood of the focal point when L
and R are mutually conjugate is to phase shift or otherwise
perturb a correlation that is nominally strong. The analyst
might alternatively fashion L and R to avoid each other’s
conjugates, whereby CLR and CLR would devolve to nomi-
nally null values that would be disturbed by a strong compact
scatterer. According to our understanding a relatively extended
but subtle anomaly that only slightly deflects acoustic radiation
passing through it will generally render a more definite sig-
nature, in terms of a phase shift, when the pupils are devised to
maximize the correlation in the absence of such an anomaly.

5.7. Phase-Correlation Hologgraphy
of the Quiet Subphotosphere

In the discussion that follows we will concentrate our at-
tention on refractive anomalies and their effect on �S when
CLR and CRL are optimized in the absence of anomalies. The
pupil, P, for both ingression and egression computations will
be the complete self-conjugate annulus, encompassing the
endpoints of all ray paths that pass through the focal point at
angles up to �45� from the horizontal plane thereat. As illus-
trated by Figure 1d, the pupil shrinks as the focal point
approaches the surface. For zero depth the inner radius of the
pupil shrinks to zero, while the outer radius approaches a well-
defined limit, the surface-to-surface skip distance of a ray
whose tangent angle is 45

�
at the surface path angle from the
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horizontal plane at the surface focal point. In the case of the
full-disk MDI observations, the spectrum of the 5 mHz Green’s
function expands to include wavenumbers that approach the
resolution limit of the full-disk MDI images for focal depths
substantially less than 4 Mm.

Figure 8 shows statistics of the ‘‘normalized ingression-
egression correlation,’’

Ĉ � Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjHþj2ihjH�j2i

q ; ð68Þ

in the range 4.5–5.5 mHz for the quiet subphotosphere at a
depth of 7 Mm. Figure 8a shows the normalized control cor-
relation, ĈLC� , in the 4.5–5.5 mHz range for comparison, taken
from Figure 5a. Figure 8b shows the egression-ingression
correlation with the acoustic progressions computed for the
normalized pressure, �̇.3 The difference between the two is
considerable. This leads us to a recognition of analogs of the
‘‘ghost signatures’’ introduced in x 5.3, which now contribute
noise that is not only quite significant but also systematic.

5.8. The Ghosts

If we could compute only the correlation

C"#(r; z) � hH"þ(r; z; !)H
�
#�(r; z; !)i�!; ð69Þ

we would expect little systematic difference between C and
the control correlations, CLC� (outside of a phase shift to ac-
count for phase differences between � and � ). In fact, the full
ingression-egression correlation, C, contains analogs of the
ghost signatures introduced in x 5.3 (see eq. [58]). It is the sum
of C"# and three cross terms:

C ¼ C"# þ C## þ C"" þ C#"; ð70Þ

where we generalize C"# defined by equation (69) by a for-
malism analogous to that expressed by equation (59) for the
control correlations:

C��(r; z) � hH�þ(r; z; !)H
�
��(r; z; !)i�!; ð71Þ

with �; � 2f"; #g. As in their analogs in the control corre-
lations (see eqs. [58] and [59]), it is the unwelcome cross terms,
C##, C"", and C#", that we call the ghost signatures. These
components interfere with C"# to produce the deformed-
paperclip–like locus plotted in Figure 8b.

The ghost signatures projected by individual shallow, hori-
zontally localized acoustic sources defocus as the focal plane
submerges, spreading out over a large area and therefore fading
rapidly. However, integrated over a large area, as are the sta-
tistics plotted in Figure 8, the ghosts can persist to a significant
depth at any single frequency.

The components C"" and C## represent the ghost con-
tributions to ingression and egression computations in a
common pupil of the same noise field, as opposed to one that
is an echo of another from a lower turning point. These can be
simulated simply by computing the ingression of a random

noise field with no acoustic echo. Figure 8c demonstrates this
by plotting C for acoustic projections applied to simple, nu-
merically created random Gaussian noise whose spatial spec-
trum is uniform out to the value of k for the fundamental mode,
where it is sharply truncated. The phases of C"" and C## tend to
progress at a rate d�=d! � T , where T can be regarded as the
travel time, averaged over the pupil, of acoustic radiation from
the solar surface to the lower turning point and back. It should
be clear that the expectations of both C"" and C## will be es-
sentially null when the ingression and egression pupils are
separate and disjoint.
The third ghost, C#", is the result of progressions applied

to real acoustic noise that does have an echo but is traveling in
the direction opposite to that of the disturbances on which C"#
is focused. Elementary considerations in optics can be used to
show that if the ingression and egression pupils are substantial
in extent but well separated, thenC#", likeC"" andC##, is largely
neutralized. As a result, when the ingression and egression
are computed over mutually conjugate quarter-annular pupils
(see Fig. 8d ), the locus of C, while relatively noisier as a result
of considerably reduced statistics, recovers a shape similar to
that of the control correlations. This is not strictly the case for
phase-correlation statistics beneath a strong magnetic region.

6. PHASE-CORRELATION HOLOGRAPHY
OF AN ACTIVE REGION

Figure 9 shows subphotospheric phase-correlation maps of
NOAA AR 8179 (magnetic complex centered in gray-tone
panels) and 8178 (isolated sunspot above and left of panel
center) on 1998 March 15 integrated over a 10.6 hr interval
beginning at 11:00 UT with the focal plane at a depth of
4.2 Mm. The top two panels show the visible continuum (a)

Fig. 8.—Normalized correlation amplitude statistics over the frequency
range 4.5–5.5 mHz. Panel (a) shows the normalized control correlation, ĈLC�
(see eq. [51]), for the quiet Sun (also plotted in Fig. 5a). Panel (b) shows the
normalized egression-ingression correlation, Ĉ, (see eq. [68]) with both in-
gression and egression computed in the lateral vantage over a common same
annular self-conjugate pupil with the focal point 7 Mm beneath the quiet
photosphere. Panel (c) shows the same computation for simulated noise, to
draw out the ghost component C""� þ C##�. Panel (d ) shows Ĉ with ingression
and egression computed in the lateral vantage over mutually conjugate quarter-
annular pupils separated in the east-west direction. Statistics are poorer because
of the reduced pupils. However, the ghost signatures are greatly reduced,
resulting in a locus whose shape is similar to that of the control correlations.

3 Because vertical acoustic motion at the surface translates to primarily
horizontal motion at a lateral focal point, the acoustic projections for C plotted
in Figs. 8b and 8d were computed for the time derivative of normalized
pressure, �̇, not vertical displacement, �̇. No correction is applied to account
for the phase shift between � and � in Figs. 8b and 8d.
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and the vertical component of the magnetic field, Bz(b),
computed from the MDI magnetogram of 1998 March 15,
16:00 UT, assuming that the magnetic vector, B, is the gra-
dient of a potential. Hydromechanical acoustic regressions,
Hþ, and progressions, H�, for normalized displacement, �,

and normalized pressure, �, were applied to the observations,
and respective phase correlations, C, integrated over the 4.5–
5.5 mHz spectrum as prescribed by equation (9). The acoustic
projections were phase-corrected for dispersion as described
in the last paragraph of x 5.3. The resulting phase correlation
maps are shown in the second and third rows of the figure.
Panels at left and right show the real and imaginary parts of C,
respectively, with  equated to �̇. The hydromechanical
regressions therefore represent �̇ (second row) and �̇ (third
row). C is also shown for progressions computed under the
eikonal formalism (bottom row, see x 3).

The difference between the correlation signatures of vertical
displacement and pressure is considerable, the granular texture
of the former being considerably coarser. The reason for this is
that the waves with highest l are those whose turning points
are at or above the focal plane, and the kinetic energy of the
wave mode at the turning point is invested primarily in hori-
zontal motion at the expense of vertical. This consideration
can be assessed in quantitative terms by comparing the real
parts, Ur and Vr, of U

� and V � as plotted in Figures 2 and 3.
Well above the turning point, Ur and Vr range over compa-
rable limits in amplitude. In the neighborhood of the turning
point and below, jVrj is generally much greater than jUrj.
When the correlation is computed, the suppression ratio is
effectively squared. The signature in �̇ is therefore more rep-
resentative of the lower l waves, whose turning points are
some distance beneath the focal plane. By comparison, the
pressure signature, �̇, represents the entirety of the compres-
sional energy at the turning point as elsewhere. It therefore
represents the high-l spectrum much more in proportion to the
total energy that penetrates to the focal plane.

The similarity between the eikonal correlation map and that
of normalized pressure, �̇, in Figure 9 is as conspicuous as the
difference between the latter and that of the normalized vertical
displacement, �̇. Figure 10 shows statistical plots comparing
moduli (Fig. 10a) and phases (Fig. 10b) of individual hydro-
mechanical and eikonal pixels at 4.2 Mm depth. The correla-
tions are high even for individual pixels at the diffraction limit.
When corrected for a factor of 2.5 by which the moduli differ

Fig. 10.—Egression-ingression correlation values, C, are plotted for hydromechanical progressions of the time derivative of pressure (horizontal axes) and
eikonal progression (vertical axes) at a depth of 4.2 Mm, as shown in Fig. 9. Left panel compares the moduli, jCj, of C. Right panel compares the phases of C. Red
data points represent focal points that lie directly beneath a point at which the surface magnetic field exceeds 100 G. The correlation moduli are normalized to the
mean 4.5–5.5 mHz acoustic power in �̇ in the quiet Sun as registered by the MDI observations, which is 2.1 kW m�2 at the base of the photosphere.

Fig. 9.—Maps of egression-ingression correlation, C, 4.2 Mm beneath
NOAAAR 8179 integrated over the 4.5–5.5 mHz spectrum. Panel (a) shows an
MDI white-light image of the active region. Panel (b) shows the vertical
component, Bz, of the magnetic field. Panels (c) and (d ) show the real and
imaginary parts, respectively, of C for hydromechanical progressions of the
normalized vertical velocity, �̇. Panels (e) and ( f ) show the same for the time
derivative of normalized pressure, �̇. Panels (g) and (h) show the correlation
amplitude for eikonal progressions. The average value ofC for the quiet Sun has
been subtracted from all of the phase-correlation maps for an optimal repre-
sentation of the signature of the active region with respect to the quiet Sun.
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and a phase difference of 5N8 between the two, the eikonal
approximation renders an excellent facsimile of the hydro-
mechanical computations in the 4.5–5.5 mHz spectrum for a
depth of 4.2 Mm or below. A careful comparison between
active region (red pixels) and quiet Sun (black) shows that the
basic relationship between hydromechanical and eikonal cor-
relations is substantially independent of the magnetic field
strength in the pupil.

In view of the more proportionate representation of the
high-l acoustic spectrum and the finer spatial resolution it
offers, we will focus our attention from this point on corre-
lation amplitudes for the normalized pressure, �̇. Figure 11
shows comparative images of the real and imaginary parts of
the correlation amplitude and its modulus and phase. As in
Figure 9, the top row shows the visible continuum (left) and
the vertical component, Bz, of the magnetic field (right). The
second row shows the real (left) and imaginary (right) parts of
C, as in the third row of Figure 9. The bottom row shows the
modulus (left, rendered logarithmically) and the phase (right)
of C, for which a negative (dark) perturbation is equivalent to
a reduced travel time from the surface through the focus and
back. The modulus of C in the active region is only a small
fraction of that of the quiet Sun. In general, the photospheric
Doppler signature of acoustic waves impinging from the solar
interior into regions whose surface magnetic fields are stron-
ger than about 250 G is considerably smaller than in the quiet
Sun. This complicates the discrimination of detail near the
diffraction limit in the shallow subphotospheres of active
regions. For the moment we will concern ourselves with only
the relatively large-scale phase variation of C, leaving the
effects of the surface magnetic fields uncorrected.

Figure 12 shows lateral-vantage phase maps of �S for a
single self-conjugate pupil, which in this case is simply argC,
for AR 8179 over focal plane depths ranging from 1.4 to
8.4 Mm. The left column shows the signature of the active
region. The panel to the right of each phase map in Figure 12
contains a map of the real part of the Green’s function applied

to the surface acoustic field to focus it to the depth indicated
above. These ‘‘point-source holograms’’ are characterized by
a pattern of circular fringes truncated by the pupil annulus.
Because the fringes of the shallower holograms are a little bit
too fine to print on the scale of the phase maps, they are
rendered here at twice the magnification of the latter.
Figure 13 shows maps of the symmetric phase, �S , for

AR 8179 (see eq. [66]), for which the ingression and egression
pupils are separate quarter annuli, lying to the east and west of
the focal point. The gray-tone panels in the left column show
the phase maps. The gray-tone panels in the right column show
respective Green’s functions truncated by the union of the east
and west pupils. Figures 12 and 13 show significant differences
as well as some fairly conspicuous similarities. These will be
the subject of some of the discussion in the next section.

7. DISCUSSION

7.1. Accuracy of the Eikonal Approximation

Barnes & Cally (2001) expressed concerns as to the validity
of the eikonal approximation for diagnostic applications in the
shallow subphotosphere where dispersion is significant. The
formalism we have applied heretofore (Lindsey & Braun 1997,
2000b) to correct the eikonal approximation for dispersion is
relatively crude, based on empirical statistics that neglect the
dependence of dispersion on l, which Barnes & Cally (2001)
showed to be significant at relatively low frequencies in the

Fig. 11.—Real and imaginary parts of the complex correlation amplitude,
C, of NOAA AR 8179 at a focal-plane depth of 4.2 Mm, integrated over the
4.5–5.5 mHz spectrum, are compared with the modulus and phase of C. The
acoustic progressions in this figure represent the time derivative of the nor-
malized pressure, �̇. The top row shows white-light and vertical magnetic field
images (same as top row of Fig. 9). The second row shows the real and
imaginary parts of C (same as third row of Fig. 9). Panel (e) shows of the
modulus of C, rendered logarithmically. Panel ( f ) shows the phase of C.

Fig. 12.—Lateral-vantage maps of phase, �S , of C over the 4.5–5.5 mHz
spectrum with H� computed over a self-conjugate annular pupil are rendered
in gray tones at depths ranging from 1.4 to 8.4 Mm beneath the photosphere of
NOAA AR 8179. The top row shows white-light (left) and vertical magnetic
(right) images of the region. Underlying panels in left column show �S at
depths expressed above respective upper right corners. The panel to the right
of each phase map shows the real part of the Green’s function, truncated by
the lateral-vantage pupil. The scale on which the Green’s functions are ren-
dered is magnified with respect to that of the phase maps by a factor of 2.

LINDSEY & BRAUN222 Vol. 155



shallow subphotosphere. The concerns raised by Barnes &
Cally (2001) were based on computations of wave-packet
trajectories, which deviate somewhat more from the eikonal
trajectories than do phase trajectories, which follow the gra-
dient of the phase of G� (see eqs. [10] and [11]). As Barnes &
Cally (2001) themselves mentioned, the basis of holographic
reconstruction is more a matter of phase coherence than of
wave-packet trajectories. The trajectories plotted by Barnes &
Cally (2001) deviate little more than a Mm (�0.7 pixel) from
the eikonal for frequencies in the range 4.5–5.5 mHz with
focal plane depths of order 5 Mm. It should therefore not be
surprising that the eikonal approximation renders phase cor-
relation maps very close to those derived from the hydro-
mechanical reconstruction of pressure for depths in the
neighborhood of 5 Mm and frequencies above 4.5 mHz. For
lower frequencies and shallower focal planes, the eikonal ap-
proximation is open to more significant errors. Our compar-
isons suggest that the eikonal approximation is safe when the
eikonal travel time from the focal plane to the photosphere is
greater than approximately 1.5/�. Pending a more extensive
study, the most reliable answer to the concerns cited by Barnes
& Cally (2001) is hydromechanical computations in place of
the eikonal for eikonal travel times less than 1.5/�.

7.2. The Largge-Scale Activve Reggion Siggnature

The phase signatures of AR 8179 beneath 5.6 Mm in
Figures 12 and 13 can be characterized predominantly as a
defocused representation of the surface magnetic regions as

the focal plane submerges. The signature reaches a maximum
directly beneath the large sunspot on the east side of AR 8179.
The maximum is 2.5 radian at 5.6 Mm and gradually decrease
with depth, to 1.7 radian at 8.6 Mm. These signatures convey
phase advances, equivalent to travel time reductions of 80 s
and 54 s, respectively, for 5 mHz radiation. Phase-correlation
holography applied to superficial model anomalies by Lindsey
& Braun (2004a, 2004b) support the proposition that the phase
signatures seen at 5.6 Mm and below in Figures 12 and 13 are
predominantly the result of an acoustic anomaly that is rela-
tively superficial. For modeling purposes, such an anomaly can
be roughly characterized by the removal of the upper �350 km
of the solar subphotosphere, or equivalently depressing the
solar surface so that the wave arrives at the photosphere sub-
stantially ahead of schedule as compared to the nonmagnetic
subphotosphere (Lindsey & Braun 2004b). By removing the
upper 350 km from the model subphotosphere of Christensen-
Dalsgaard et al. (1993), for example, we reduce the one-way
travel time by 40 s, for a two-way reduction that matches the
phase signature of AR 8179 at 5.6 Mm.

We will refer to the superficial part of the anomaly that
causes the large-scale diffuse signature by the term ‘‘acoustic
Wilson depression.’’ It should be understood that, while
magnetic forces are known to depress the solar photosphere
visibly (Bray & Loughead 1964), shortening the ray path and
thereby reducing the travel time, the actual mechanism of the
phase shift caused by magnetic fields is considerably more
complicated than a simple removal of the upper few hundred
km of the subphotosphere. There is good reason to suppose
that the large-scale diffuse signature is at least partly the result
of a change in the amplitude of a photospheric or subphoto-
spheric reflection, or the depth from which such a reflection
occurs (Braun & Lindsey 2000b). Other likely contributors
include magnetic forces, any thermal anomaly too shallow to
be resolved acoustically, a local variation in the parameter zS
(see eq. [64]) that characterizes the range over which acoustic
waves are generated, and other qualities of the shallow mag-
netic subphotosphere that differ acoustically from those of the
quiet subphotosphere. There are arguments grounded in ele-
mentary MHD, for example, to suggest that relatively modest
photospheric magnetic fields can introduce local phase shifts
up to a radian (Cally et al. 2003), apart from a physical dis-
placement of the medium.

Until the acoustics of the shallow magnetic subphotosphere
are better understood, and a diagnostic basis for distinguishing
different superficial anomalies from one another is secured, we
will use the term ‘‘acoustic Wilson depression’’ to encompass
the generality of physical mechanisms, and prospective super-
ficial anomalies based thereon, that could give rise to the large-
scale diffuse phase-correlation signature. It should therefore be
understood that we will now use this term in a more general
sense than before, for example, in Braun & Lindsey (2000b).

7.3. The Ghosts, Revvisited Thereby

The phase signature of AR 7179 at depth 4.2 Mm in
Figure 12 shows sharply defined ‘‘islands’’ of positive phase
directly beneath regions of relatively strong Bz. We attribute
these islands largely to the ghosts, introduced in x 5.6. In the
case of Figure 12, this attribution is based heavily on the
considerable weakening of these apparitions when the ingres-
sion and egression pupils are separated (see Fig. 13). The ghost
contributions of compact anomalies fade rapidly with in-
creasing depth as a result of defocusing. As we mentioned in
x 5.6, by computing Hþ and H� over disjoint pupils, C"" and

Fig. 13.—Symmetric phase, �S of the of the 4.5–5.5 mHz ingression-
egression correlations for separate, mutually conjugate ingression and egres-
sion pupils is rendered as in Fig. 12. The pupils are quarter-annuli identical in
inner and outer radii to respective pupils applied in Fig. 12, separated in the
east-west direction. The panel to the right of each phase map shows the real
part of the Green’s function, truncated by the union of the ingression and
egression pupils. The scale on which the Green’s functions are rendered is
magnified with respect to that of the phase maps by a factor of 2.
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C## are eliminated. For the well-separated quarter-annular
pupils, the ghost signature C#" is a small fraction of the desired
C"# correlation for a focus substantially submerged beneath the
quiet photosphere. However, according to our present under-
standing, large phase perturbations due to strong photospheric
magnetic fields can reintroduce significant contamination of C
by C#", among other complications, even when the ingression
and egression pupils are substantially separated. Under these
conditions there are good reasons to at least suspect that the
relative contribution from C"#, and interference therefrom,
could be a significant contributor to the somewhat reduced but
still conspicuous island-like signatures seen in Figure 13. All
of the sharply defined signatures in Figure 13, including the
deep one indicated by an arrow at 7 Mm, occur in regions
where jĈj is severely reduced, as in Figure 11e, where inter-
ference from a relatively small perturbation on C can exert a
violent phase shift. Implications of the ghost signatures in
active region acoustics are addressed in somewhat more detail
by Lindsey & Braun (2004b).

7.4. The Acoustic Showergglass

At this point we confront a major problem that looms over
local helioseismic diagnostics of the shallow subphotospheres
of active regions in some generality, particularly at high fre-
quencies. It is now evident that the strong acoustic anomalies
that pervade the upper few hundred km of the subphotosphere
introduce large phase perturbations that significantly impair the
coherence of acoustic radiation propagating into them from
beneath. The phase maps rendered in Figures 12 and 13 indi-
cate one-way phase shifts exceeding 3 radians from the quiet
Sun to the centers of large sunspots. It is rapidly becoming
evident (Lindsey & Braun 2003, 2004a, 2004b) that most of
these phase perturbations occur within a few hundred km of the
surface. This means not only that acoustic anomalies signifi-
cantly beneath active region photospheres are dwarfed by those
that lie above them, but that the Born approximation is sub-
stantially violated by the surface perturbation alone. For pur-
poses of acoustics, the active region photosphere can be likened
to the function of the familiar ‘‘showerglass’’ in electromagnetic
optics. The assessment and correction of the acoustic show-
erglass is a substantial undertaking, currently under develop-
ment, that runs somewhat beyond the practical scope of this
paper. This is the subject of a forthcoming publication (Lindsey
& Braun 2004a, 2004b) specifically focused on this problem in
acoustic diagnostics of active region subphotospheres.

8. SUMMARY

We have worked out the general ‘‘hydromechanical’’ for-
malism for computational seismic holography in the plane-
parallel approximation according to standard acoustic models

of the solar interior. We have applied the hydromechanical
formalism for phase-correlation holography to helioseismic
observations of an active region and favorably compared the
resulting signatures to those computed under the ‘‘eikonal
approximation,’’ under which helioseismic holography was
substantially developed. Comparisons between holographic
images computed according to the eikonal formalism of
Lindsey & Braun (1997, 2000b) and those based on the hydro-
mechanical formalism show that eikonal reconstruction with a
fairly simple correction for dispersion serves as an excellent
approximation to hydromechanical acoustics for a broad range
of diagnostic applications.
The phase correlation between ingression and egression

computations generally contains artifacts we call ‘‘ghost sig-
natures.’’ These are largely the result of ambiguity in the travel
direction of waves based on the surface disturbance recorded in
standard helioseismic observations. The ghost signatures can
be largely eliminated in the quiet subphotosphere by keeping
the ingression and egression pupils well separated, provided
the individual pupils are sufficient in radial extent. This is
not entirely the case for acoustic diagnostics of a magnetic
subphotosphere.
The phase correlation signatures of the shallow subphoto-

spheres of active regions are predominated by large amplitude
and phase perturbations imposed by surface magnetic fields.
These act as an ‘‘acoustic showerglass,’’ significantly impair-
ing the coherence of acoustic radiation from subsurface
acoustic anomalies. Intelligible diagnostics of the shallow
subphotospheres of active regions require a particularly careful
account of the showerglass effect.
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