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ABSTRACT

Solar flares produce radiation that can have an almost immediate effect on the near-Earth environment, making it
crucial to forecast flares in order to mitigate their negative effects. The number of published approaches to flare
forecasting using photospheric magnetic field observations has proliferated, with varying claims about how well
each works. Because of the different analysis techniques and data sets used, it is essentially impossible to compare
the results from the literature. This problem is exacerbated by the low event rates of large solar flares. The
challenges of forecasting rare events have long been recognized in the meteorology community, but have yet to be
fully acknowledged by the space weather community. During the interagency workshop on “all clear” forecasts
held in Boulder, CO in 2009, the performance of a number of existing algorithms was compared on common data
sets, specifically line-of-sight magnetic field and continuum intensity images from the Michelson Doppler Imager,
with consistent definitions of what constitutes an event. We demonstrate the importance of making such systematic
comparisons, and of using standard verification statistics to determine what constitutes a good prediction scheme.
When a comparison was made in this fashion, no one method clearly outperformed all others, which may in part be
due to the strong correlations among the parameters used by different methods to characterize an active region. For
M-class flares and above, the set of methods tends toward a weakly positive skill score (as measured with several
distinct metrics), with no participating method proving substantially better than climatological forecasts.
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1. INTRODUCTION

Solar flares produce X-rays which can have an almost
immediate effect on the near-Earth environment, especially the
terrestrial ionosphere. With only eight minutes delay between
the event occurring and its effects at Earth, it is crucial to be
able to forecast solar flare events in order to mitigate negative
socio-economic effects. As such, it is desirable to be able to
predict when a solar flare event will occur and how large it will
be prior to observing the flare itself. In the last decade, the
number of published approaches to flare forecasting using
photospheric magnetic field observations has proliferated, with
widely varying evaluations about how well each works (e.g.,
Abramenko 2005; McAteer et al. 2005a; Jing et al. 2006; Leka
& Barnes 2007; Schrijver 2007; Barnes & Leka 2008; Mason
& Hoeksema 2010; Yu et al. 2010; Yang et al. 2013; Al-

Ghraibah et al. 2015; Boucheron et al. 2015, in addition to
references for each method described, below).
Some of the discrepancy in reporting success arises from

how success is evaluated, a problem exacerbated by the low
event rates typical of large solar flares. The challenges of
forecasting when event rates are low have long been recognized
in the meteorology community (e.g., Murphy 1996), but have
yet to be fully acknowledged by the space weather community.
The use of climatological skill scores (Woodcock 1976; Jolliffe
& Stephenson 2003), which account for event climatology and
in some cases for underlying sample discrepancies, enables a
more informative assessment of forecast performance (Balch
2008; Barnes & Leka 2008; Bloomfield et al. 2012;
Crown 2012).
Comparisons of different studies are also difficult because of

differences in data sets, and in the definition of an event used.
The requirements and limitations of the data required for any
two techniques may differ (e.g., in the field of view required,
imposed limits on viewing angle, and the data required for a
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training set). Event definitions vary in the temporal window
(how long a forecast is applicable), the latency (time between
the observation and the start of the forecast window), and more
fundamentally in what phenomenon constitutes an event,
specifically the flare magnitude.

A workshop was held in Boulder, CO in 2009 to develop a
framework to compare the performance of different flare
forecasting methods. The workshop was sponsored jointly by
the NASA/Space Radiation Analysis Group and the National
Weather Service/Space Weather Prediction Center, hosted at
the National Center for Atmospheric Research/High Altitude
Observatory, with data preparation and analysis for workshop
participants performed by NorthWest Research Associates
under funding from NASA/Targeted Research and Technol-
ogy program. In addition to presentations by representatives of
interested commercial entities and federal agencies, researchers
presented numerous flare forecasting methods.

The focus of the workshop was on “all-clear” forecasts,
namely predicting time intervals during which no flares occur
that are over a given intensity (as measured using the peak
GOES 1–8Å flux). For users of these forecasts, it can be useful
to know when no event will occur because the cost of a missed
event is much higher than the cost of a false alarm. However,
most forecasting methods focus on simply predicting the
probability that a flare will occur. Therefore, the results
presented here focus on comparing flare predictions and are not
specific to all-clear forecasts.

The workshop made a first attempt at direct comparisons
between methods. Data from the Solar and Heliospheric
Observatory/Michelson Doppler Imager (SOHO/MDI; Scher-
rer et al. 1995) were prepared and distributed, and it was
requested that participants with flare-prediction algorithms use
their own methods to make predictions from the data. The data
provided were for a particular time and a particular active
region (or group in close proximity). That is, the predictions are
made using single snapshots and do not include the evolution
of the active regions. Thus, the data were not ideal for many of
the methods. Using time-series data likely increases the
information available and hence the potential for better
forecasts, but at the time of the workshop and as a starting
point for building the infrastructure required for comparisons,
only daily observations were provided (however, see G. Barnes
et al. 2016, in preparation, where time series data were
presented).

The resulting predictions were collected, and standard
verification statistics were calculated for each method. For
the data and event definitions considered, no method achieves
values of the verification statistics that are significantly larger
than all the other methods, and there is considerable room for
improvement for all the methods. There were some trends
common to the majority of the methods, most notably that
higher values of the verification statistics are achieved for
smaller event magnitudes.

The data preparation is described in Section 2, and Section 3
provides an overview of how to evaluate the performance of
forecasts. The methods are summarized in Section 4, with more
details given in Appendix A, and sample results are presented
in Section 5. The results and important trends are discussed in
Section 6. Finally, Appendix B describes how to access the
data used during the workshop, along with many of the results.

2. WORKSHOP DATA

The data prepared and made available for the workshop
participants constitute the basic level of data that was usable for
the majority of methods compared. Some methods could make
use of more sophisticated data or time series or a different
wavelength, but the goal for this particular comparison is to
provide all methods with the same data, so the only differences
are in the methods, not in the input data.
The database prepared for the workshop is comprised of line-

of-sight magnetic field data from the newest MDI calibration
(Level 1.8)15 for the years 2000–2005 inclusive. The
algorithms for region selection and for extracting sub-areas
are described in detail below (Section 2.1). The event data are
solar flares with peak GOES flux magnitude C1.0 and greater,
associated with an active region (see Section 2.2). All these
data are available for the community to view and test new
methods16 (see Appendix B for details).

2.1. Selection and Extraction of MDI Data

The data set provided for analysis contains sub-areas
extracted from the full-disk magnetogram and continuum
images from the SOHO/MDI. These extracted magnetogram
and intensity image files, presented in FITS format, are taken
close to noon each day, specifically daily image #0008 from
the M_96m magnetic field data series, which was generally
obtained between 12:45 and 12:55 UT, and image #0002 from
the Ic_6h continuum intensity series, generally obtained
before 13:00 UT.
To extract regions for a given day, the list of daily active-

region coordinates was used, as provided by the National
Oceanic and Atmospheric Administration (NOAA), and
available through the National Center for Environmental
Information (NCEI).17 The coordinates were rotated to the
continuum image/magnetic field time using differential rota-
tion and the synodic apparent solar rotation rate. A box was
centered on the active region coordinates whose size reflects
the NOAA listed size of the active region in micro-hemispheres
(but not adjusted for any evolution between the issuance and
time of the magnetogram or continuum image). A minimum
active region size of 100 μH was chosen, corresponding to a
minimum box size of 125″ × 125″ at disk center. The extracted
box size was scaled according to the location on the solar disk
to reflect the intrinsic reported area and to roughly preserve the
area on the Sun contained within each box regardless of
observing angle. This procedure most noticeably decreases the
horizontal size near the solar east/west limbs, although the
vertical size is impacted according to the region’s latitude. The
specifics of the scalings and minimum (and maximum) sizes
were chosen empirically for ease of processing, and do not
necessarily reflect any solar physics beyond the reported
distribution of active region sizes reported by NOAA.
During times of high activity, this simple approach to

isolating active regions using rectangular arrays often creates
two boxes which overlap by a significant amount. Such an
overlap, especially when it includes strong-field areas from
another active region, introduces a double-counting bias into
the flare-prediction statistics. To avoid this, regions were
merged when an overlapping criterion based on the geometric

15 See http://soi.stanford.edu/magnetic/Lev1.8/.
16 See http://www.cora.nwra.com/AllClear/.
17 See http://www.ngdc.noaa.gov/stp/stp.html.
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mean of the regions’ respective areas and the total was met. If
two or more of these boxes overlapped such that

( ) ´ >area box area box 0.951 2 , where  is the area of
overlap (in image-grid pixels) of the two boxes, then the two
boxes were combined into one region or “merged cluster.”
Clustering was restricted to occur between regions in the same
hemisphere. No restrictions were imposed to limit the
clustering, and in some cases more than two (at most six)
regions were clustered together. In practice, in fewer than 10
cases, the clustering algorithm was over-ridden by hand in
order to prevent full-Sun clusters, in which case the manual
clustering was done in such a way as to separate clusters along
areas of minimum overlap. The clustering was performed in the
image-plane, although as mentioned above the box sizes took
account of the location on the observed disk. When boxes
merged, a new rectangle was drawn around them. The area not
originally included in a single component active region’s box
was zeroed out. An example of the boxes for active regions and
a two-region cluster for 2002 January 3 is shown in Figure 1.
JPEG images of all regions and clusters similar to Figure 1

(top) are available at the workshop website. Note that a
morphological analysis method based on morphological
erosion and dilation has been used as a robust way to group
or reject neighboring active regions (Zhang et al. 2010)
although it is not implemented here.
The final bounds of each extracted magnetogram file are the

starting point for extracting an accompanying continuum file.
The box was shifted to adjust for the time difference between
the acquisition time of the magnetogram and that of the
continuum file. If the time difference was greater than four
hours, continuum extracted files were not generated for that
day. Also, if the MDI magnetogram 0008 file was unavailable
and the magnetogram nearest noon was obtained more than
96 minutes from noon, then neither the continuum nor the
magnetogram extracted files were made for that day.
Data were provided as FITS files, with headers derived from

the original but modified to include all relevant pointing
information for the extracted area and updated ephemeris
information. Additionally, the NOAA number, the NOAA-
reported area (in μH) and number of spots, and the Hale and

Figure 1. Examples of the active region patches extracted from full-disk images for 2002 January 3. Top: each white rectangle includes a single NOAA numbered
active region; each black rectangle includes a single NOAA numbered active region which is judged to be part of a cluster of active regions and subsequently treated
together. The clustering criterion is a function of the relative box sizes of the regions in question, hence while other boxes overlap, the overlap and respective areas do
not meet the criterion. Left: MDI full-disk continuum intensity image with extracted areas indicated. Right: MDI full-disk line of sight magnetic field image, scaled to
±500 G with the same extracted areas indicated. Bottom: example of the extraction of a cluster. The black area in the figures above (in this case NOAA ARs 09766,
09765 on the left, right respectively) shows the cluster with the areas on the periphery of the cluster zeroed out. Left: the continuum intensity, and right: the line of
sight magnetic field image, scaled to ±500 G. In the latter case, a contour indicates the non-overlap zeroed-out area.
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McIntosh classifications (from the most recent NOAA report)
are included. The number of regions is included in the header,
which is >1 only for clusters. In the case of clusters, all of the
classification data listed above are included separately for each
NOAA region in the cluster.

There was no additional stretching or re-projection per-
formed on the data; the images were presented in plane-of-the-
sky image coordinates. No pre-selection was made for an
observing-angle limit, so many of the boxes are close to the
solar limb. Similarly, no selection conditions were imposed for
active-region size, morphology or flaring history, beyond the
fact that a NOAA active region number was required. The
result is 12,965 data points (daily extracted magnetograms)
between 2000–2005.

2.2. Event Lists

Event lists were constructed from flares recorded in the
NCEI archives. Three definitions of event were considered:

1. at least one C1.0 or greater flare within 24 hr after the
observation,

2. at least one M1.0 or greater flare within 12 hr after the
observation, and

3. at least one M5.0 or greater flare within 12 hr after the
observation.

Table 1 shows the flaring sample size for each event
definition.18 No distinction is made between one and multiple
flares above the specified threshold: a region was considered a
member of the flaring sample whether one or ten flares
occurred that satisfied the event definition. This flaring sample
size defines the climatological rate of one or more flares
occurring for each definition, which in turn forms the baseline
forecast against which results are compared.

A subtlety arises because not all of the observations occur at
exactly the same time of day, whereas the event definitions use
fixed time intervals (i.e., 12 or 24 hr). As such it is possible for
a particular flare to be double-counted. For example, if
magnetograms were obtained at 12:51 UT on day #1 and then
12:48 UT on day#2, and a flare occurred at 12:50 UT on day
#2 then both days would be part of the C1.0+, 24 hr flaring
sample. This situation only arises for the 24 hr event interval
and is likely to be extremely rare. However, it means that not
all the events are strictly independent.

The NOAA active region number associated with each event
from NCEI is used to determine the source of the flare. When no
NOAA active region number is assigned, a flare is assumed not to
have come from any visible active region, although it is possible
that the flare came from an active region but no observations were
available to determine its source. For large-magnitude flares, the
vast majority of events (≈85% for M-class and larger flares,
≈93% for M5.0 and larger, and ≈93% for X-class flares) are

associated with an active region, but a substantial fraction of small
flares are not (≈38% for all C-class flares).

3. OVERVIEW OF EVALUATION METHODS

To quantify the performance of binary, categorical forecasts,
contingency tables and a variety of skill scores are used (e.g.,
Woodcock 1976; Jolliffe & Stephenson 2003). A contingency
table (illustrated in Table 2),19 summarizes the performance of
categorical forecasts in terms of the number of true positives,
TP (hits), true negatives, TN (correct rejections), false
positives, FP (false alarms), and false negatives, FN (misses).
The elements of the contingency table can be combined in a
variety of ways to obtain a single number quantifying the
performance of a given method.
One quantity that at least superficially seems to measure

forecast performance is the Rate Correct. This is simply the
fraction correctly predicted, for both event and no-event categories,

( ) ( )= + NRC TP TN , 1

where = + + +N TP FP FN TN is the total number of
forecasts. A perfect forecast has RC=1, while a set of
completely incorrect forecasts has RC=0. The accuracy is an
intuitive score, but can be misleading for very unbalanced event/
no-event ratios (e.g., + +TP FN FP TN) such as larger
flares because it is possible to get a very high accuracy by always
forecasting no event (see, for example Murphy 1996, for an
extensive discussion of this issue in the context of the famous
“Finley Affair” in tornado forecasting). A forecast system that
always predicts no event has ( )= +RC TN TN FN , which
approaches one as the event/no-event ratio goes to zero (i.e.,
FN=TN). A widely used approach to avoid this issue is to
normalize the performance of a method to a reference forecast by
using a skill score (Woodcock 1976; Jolliffe & Stephenson 2003;
Barnes et al. 2007; Bloomfield et al. 2012).20

A generalized skill score takes the form:

( )=
-
-

A A

A A
Skill , 2forecast reference

perfect reference

where Aforecast is the accuracy of the method under considera-
tion, which can be any measure of how well the forecasts
correspond to the observed outcome. Aperfect is the accuracy of

Table 1
Flare Event Rates

Event Definition Number in Event Sample Fraction in Event Sample

C1.0+, 24 hr 2609 0.201
M1.0+, 12 hr 400 0.031
M5.0+, 12 hr 93 0.007

Table 2
Example Contingency Table

Predicted

Observed Event No Event

Event True Positive (TP, hit) False Negative (FN, miss)
No Event False Positive (FP, false

alarm)
True Negative (TN, correct
negative)

Note. The number of events is TP+FN, the number of non-events is
FP+TN, and the sum of all entries, = + + +N TP FP TN FN, is the
sample size.

18 Whether each magnetogram file was associated with an event for each
definition is published as supplementary material in machine-readable format.

19 The reader should note that many published contingency tables flip axes
relative to each other. We follow the convention of Woodcock (1976) and
Bloomfield et al. (2012), but this is opposite, for example, to that of Jolliffe &
Stephenson (2003), Crown (2012).
20 See also http://www.cawcr.gov.au/projects/verification/#What_makes_
a_forecast_good.
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a perfect forecast (i.e., the entire sample is forecast correctly),
and Areference is the expected accuracy of the reference method.
Skill scores are referred to by multiple names, having been
rediscovered by different authors over spans of decades; we
follow the naming convention used in Woodcock (1976). Each
skill score has advantages and disadvantages, and quantifies the
performance with slightly different emphasis, but in general,
Skill=1 is perfect performance, Skill=0 is no improvement
over a reference forecast, and Skill<0 indicates worse
performance than the reference.

For binary, categorical forecasts, a measure of the forecast
accuracy is the rate correct,

( ) ( )= +A NTP TN , 3forecast

and the corresponding accuracy of perfect forecasts is
Aperfect=1. Three standard skill scores based on different
reference forecasts are described below.

Appleman’s Skill Score (ApSS) uses the unskilled predictor
(i.e., the climatological event rate) as a reference:

( )=
+

A
N

TN FP
, 4reference

for the case that the number of events is less than the number of
non-events( )+ < +TP FN TN FP , as is typically the case for
large flares. When the converse is true ( )+ > +TP FN TN FP ,

( )=
+

A
N

TP FN
. 5reference

ApSS treats the cost of each type of error (miss and false alarm)
as equal.

The Heidke Skill Score (HSS) uses a random forecast as a
reference. Assuming that the event occurrences and the
forecasts for events are statistically independent, the probability
of a hit (TP) is the product of the event rate with the forecast

rate, and the probability of a correct rejection (TN) is the
product of the rate of non-events with the rate of forecasting
non-events. Thus the reference accuracy is

( ) ( )

( ) ( ) ( )

=
+ +

+
+ +

A
N N

N N

TP FN TP FP

TN FN TN FP
. 6

reference

The HSS is very commonly used, but the random reference
forecast has to be used carefully since the quality scale has a
dependence on the event rate (climatology).
Hanssen & Kuipers’ Discriminant (H&KSS) uses a reference

accuracy

( ) ( )
[ ( ) ( )]

( )=
+ + +
+ + +

A
N

FN TN FP FP TP FN

FN TN FP FP TP FN
7reference

2 2

constructed such that both the random and unskilled predictors
score zero. The H&KSS, also known as the True Skill Statistic,
can be written as the sum of two ratio tests, one for events (the
probability of detection) and one for non-events (the false
alarm rate),

( )=
+

-
+

H&KSS
TP

TP FN

FP

FP TN
. 8

As such it is not sensitive to differences in the size of the event
and no-event samples, provided the samples are drawn from the
same populations. This can be particularly helpful when
comparing studies performed on different data sets (Hanssen
& Kuipers 1965; Bloomfield et al. 2012).
One way to visualize the H&KSS is to use a probability

forecast to generate a receiver operating characteristic (ROC)
curve (Figure 2, left), in which the probability of detection
(POD, first term on the right-hand side of Equation (8)) is

Figure 2. Example forecast verification plots for results using a sub-set of data (MCD#1, discussed in Section 5) from one method (the machine-learning BBSO
method, see Appendix A.2), for the C1.0+, 24 hr event definition. Left: a receiver operating characteristic plot shows the probability of detection as a function of the
false alarm rate by varying the threshold above which a region is predicted to produce a flare. Example thresholds with [ ]Îp 0.07, 0.12, 0.25, 0.45, 0.75 are labeled.
In this case the maximum H&KSS occurs for p = 0.13, and is indicated by a dashed vertical line. Right: a reliability plot in which the observed frequency of flaring is
plotted as a function of the forecast probability. Perfect reliability occurs when all points lie on the x=y line. For this case, there is a slight tendency to overprediction
(i.e., points lying below and to the right of the x = y) in the three largest probability bins. The error bars are based on the sample sizes in each relevant bin.
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plotted as a function of the false alarm rate (FAR, second term
on the right-hand side of Equation (8)) by varying the
probability threshold above which a region is predicted to
flare. When the threshold is set to one, all regions are forecast
to remain flare quiet, hence TP=FP=0, which corresponds
to the point (0, 0) on the ROC diagram; when the threshold is
set to zero, all regions are forecast to flare, hence
FN=TN=0, which corresponds to the point (1, 1) on the
ROC diagram. For perfect forecasts, the curve consists of line
segments from (0, 0) to (0, 1) then from (0, 1) to (1, 1). A
method that has an ROC curve that stays close to POD = 1
while the FAR drops will be good at issuing all-clear forecasts;
a method that has an ROC curve that stays close to FAR = 0
while the POD rises will be good at forecasting events.

The flare forecasting methods discussed here generally
predict the probability of a flare of a given class occurring,
rather than a binary, categorical forecast. A measure of
accuracy for probabilistic forecasts is the mean square error
(MSE),

( ) ( ) ( )= = á - ñA p o p oMSE , , 9f fforecast
2

where pf is the forecast probability, and o is the observed
outcome (o= 0 for no event, o= 1 for an event). Perfect
accuracy corresponds to a MSE of zero, Aperfect=0.

The Brier Skill Score (BSS) uses the climatological event
rate as a reference forecast with a corresponding accuracy

( ) ( )= á ñA o oMSE , 10reference

thus

( ) ( )
( )

( )=
- á ñ

- á ñ

p o o o

o o
BSS

MSE , MSE ,

0 MSE ,
. 11

f

The BSS can be complemented by a reliability plot, which
compares the predicted probabilities with observed event rates,
as demonstrated in Figure 2, right. To construct a reliability
plot, predicted probability intervals are selected, and the
frequency of observed events within each interval is deter-
mined. This observed frequency is then plotted versus the
predicted probability, with error bars estimated based on the
number of points which lie in each bin (e.g., Wheatland 2005).
Predictions with perfect reliability lie along the x=y line, with
observed frequency equal to predicted probability. Points lying
above the line indicate underprediction while points lying
below the line indicate overprediction. Perfect reliability is not
enough to guarantee perfect forecasts. For example, climatol-
ogy has perfect reliability with a single point lying on the x=y
line, but does not resolve events and non-events.

In order to make a meaningful comparison of the
performance of methods, it is important not just to use an
appropriate metric such as a skill score, but also to estimate the
uncertainty in the metric. For the present study, no systematic
attempt was made to estimate the uncertainties. However, this
has been done for several individual methods using either
bootstrap or jackknife approaches (e.g., Efron & Gong 1983).
For the nonparametric discriminant analysis (NPDA) described
in Appendix A.5, a bootstrap method estimate of the one-sigma
uncertainties gives values of order ±0.01, ±0.02, ±0.03 for the
C1.0+, 24 hr, M1.0+, 12 hr, and M5.0+, 12 hr sets, respec-
tively. Given these values, all skill scores are quoted to two
decimal places. A “+0.00” or “−0.00” result signals that there
was an extremely small value on that side of zero.

All the methods produce probabilistic forecasts, so it was
necessary to pick a probability threshold to convert to the
categorical forecasts needed for the binary, categorical skill
scores presented here. That is, a threshold probability was
selected such that any forecast probability over the threshold
was considered to be a forecast for an event, and anything less
was considered to be a forecast for a non-event. Bloomfield
et al. (2012) found that for the Poisson method, the best
H&KSS and HSS are typically produced by picking a threshold
that depends on the ratio FN/FP, with FN/FP≈1 giving the
best HSS, and » N NFN FP event no event giving the best
H&KSS. A similar approach to Bloomfield et al. (2012) of
stepping through the probability threshold was followed for
each combination of method, skill score and event definition
using the optimal data set for that method to determine the
value that produced the maximum skill score. The tables in
Appendix A include the probability thresholds used, and ROC
plots are presented for each method, with the best H&KSS
shown by selecting the appropriate threshold.

4. OVERVIEW OF PREDICTION METHODS

Each participant in the workshop was invited to make
predictions based on the data set provided (Section 2), and the
event definitions described (Section 2.2). Generally, forecasting
methods consist of two parts: (1) parameterization of the
observational solar data to characterize the target active region,
such as calculating the total magnetic flux, the length of strong
neutral lines, etc., and (2) a statistical method by which prior
parameters or flaring activity is used to evaluate a particular
target’s parameters and predict whether or not it is going
to flare.
The data analysis used by the methods broadly falls into two

categories: those which characterize the photosphere (magnetic
field and/or continuum intensity) directly (Appendices A.2–
A.7, A.9, A.11), and those which characterize the coronal
magnetic field based on the photospheric magnetic field
(Appendices A.1, A.8). These are supplemented by an event
statistics approach (Appendix A.10), which uses only the past
flaring history, and thus serves as a baseline against which to
compare the other methods.
A variety of statistical methods are employed to produce the

forecasts from the parameterizations. At one end of this
spectrum are methods based on a McIntosh-like classification
(McIntosh 1990) from which a historical flaring rate is
employed as a look-up table. At the other end are sophisticated
machine-learning techniques that generally do not employ
a priori classifications. It may be possible to improve forecasts
by combining the parameterization used by one group with the
prediction algorithm of another group, but for the results
presented here, no such attempt is explicitly made.
For each method, a brief description is provided here, with a

more detailed description and some summary metrics of the
performance of each method on its optimal subset of the data
given in Appendix A. A comparison of methods on common
data sets is presented in Section 5.
The Effective Connected Magnetic Field—M.Georgoulis,

A.1. The analysis presented in Georgoulis & Rust (2007)
describes the coronal magnetic connectivity using the effective
connected magnetic field strength (Beff). The Beff parameter is
calculated following inference of a connectivity matrix in the
magnetic-flux distribution of the target active region. From the
distribution of Beff, flare forecasts are generated using Bayesian
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inference and Laplace’s rule of succession (Jaynes & Bretthorst
2003, p. 154).

Automated Solar Activity Prediction (ASAP)—T.Colak,
R.Qahwaji, A.2. The ASAP (Colak & Qahwaji 2008, 2009)
system uses a feature-recognition system to generate McIntosh
classifications for active regions from MDI white-light images.
From the McIntosh classifications, a machine-learning system
is used to make forecasts.

Big Bear Solar Observatory/Machine Learning Techniques
—Y.Yuan,A.3. The method developed at NJIT (Yuan et al.
2010, 2011) computes three parameters describing an active
region: the total unsigned magnetic flux, the length of the
strong-gradient neutral line, and the total magnetic energy
dissipation, following Abramenko et al. (2003). Ordinal
logistic regression and support vector machines are used to
make predictions.

Total Nonpotentiality of Active Regions—D.Falconer,A.4.
Two parameters are calculated in the approach of Falconer
et al. (2008): a measure of the free magnetic energy based on
the presence of strong gradient neutral lines, WLSG2, and the
total unsigned magnetic flux. A least-squares power-law fit to
the event rates is constructed as a function of these parameters,
and the predicted event rate is converted through Poisson
statistics to the probability of an event in the forecast interval.
The rate-fitting algorithm is best for larger flares, and so no
forecasts were made for the C1.0+, 24 hr events.

Magnetic Field Moment Analysis and Discriminant Analysis
—K.D.Leka, G.Barnes,A.5. The NWRA moment analysis
parameterizes the observed magnetic field, its spatial deriva-
tives, and the character of magnetic neutral lines using the first
four moments (mean, standard deviation, skew and kurtosis),
plus totals and net values when appropriate (Leka & Barnes
2003a). The neutral line category includes a variation on the
parameter described in Appendix A.6. NPDA (e.g., Kendall
et al. 1983; Silverman 1986) is combined with Bayes’s theorem
to produce a probability forecast using pairs of variables
simultaneously.

Magnetic Flux Close to High-Gradient Polarity Inversion
Lines—C.Schrijver,A.6. Schrijver (2007) proposed a para-
meter , measuring the flux close to high gradient polarity
inversion lines, as a proxy for the emergence of current-
carrying magnetic flux. For the results here, the  parameter
was calculated as part of the NWRA magnetic field analysis
(Appendix A.5), but is also included in the parameterizations
by other groups (e.g., SMART, see Appendix A.9), with
slightly different implementations (see Section 5.3). For the
results presented here, predictions using  were made using
one-variable NPDA (Appendix A.5).

Generalized Correlation Dimension (GCD)—R.T.J.McA-
teer,A.7. The generalized correlation (akin to a fractal)
dimension DBC describes the morphology of a flux concentra-
tion (active region) (McAteer et al. 2010). The generalized
correlation dimensions were calculated for “q-moment” values
from 0.1 to 8.0. For the results presented here, predictions with
these fractal-related parameterizations were made using one-
variable NPDA (Appendix A.5).

Magnetic Charge Topology (MCT) and Discriminant
Analysis—G.Barnes, K.D.Leka,A.8. In an MCT coronal
model (Barnes et al. 2005, and references therein), the
photospheric field is partitioned into flux concentrations with
each one represented as a point source. The potential field due
to these point sources is used as a model for the coronal field,

and determines the flux connecting each pair of sources. This
model is parameterized by quantities such as the number,
orientation, and flux in the connections (Barnes et al. 2005;
Barnes & Leka 2006, 2008), including a quantity, f2,tot, that is
very similar to Beff (Appendix A.1). Two-variable NPDA with
cross-validation is used to make a prediction (Appendices A.5,
Barnes & Leka 2006).
Solar Monitor Active Region Tracker (SMART) with

Cascade Correlation Neural Networks (CCNN)—P.A.Higgins,
O.W.Ahmed,A.9. The SMART2 code package (Higgins et al.
2011) computes twenty parameters, including measures of the
area and flux of each active region, properties of the spatial
gradients of the field, the length of polarity separation lines, and
the measures of the flux near strong gradient polarity inversion
lines (Appendix A.6, Schrijver 2007) and WLSG2 (Appendix
A.4, Falconer et al. 2008). These parameters are used to make
forecasts using the CCNN method (Qahwaji et al. 2008) using
the SMART-ASAP algorithm (Ahmed et al. 2013).
Event Statistics—M.S.Wheatland,A.10. The event statistics

method (Wheatland 2004) predicts flaring probability for
different flare sizes using only the flaring history of observed
active regions. The method assumes that solar flares (the
events) obey a power-law frequency-size distribution and that
events occur randomly in time, on short timescales following a
Poisson process with a constant mean rate. Given a past history
of events above a small size, the method infers the current
mean rate of events subject to the Poisson assumption, and then
uses the power-law distribution to infer probabilities for
occurrence of larger events within a given time. Three
applications of the method were run for these tests: active
region forecasts for which a minimum of five prior events was
required for a prediction, active region forecasts for which ten
prior events were required, and a full-disk prediction.
Active Region McIntosh Class Poisson Probabilities—D.

S.Bloomfield, P.A.Higgins, P.T.Gallagher,A.11. The McIn-
tosh–Poisson method uses the historical flare rates from
McIntosh active region classifications to make forecasts using
Poisson probabilities (Gallagher et al. 2002; Bloomfield et al.
2012). The McIntosh class was obtained for each region on a
given day by cross-referencing the NOAA region number(s)
provided in the NOAA Solar Region Summary file for that day.
Unfortunately, forecasts for the M5.0+, 12 hr event definition
could not be produced by this approach because the event rates
in the historical data (Kildahl 1980) were only identified by
GOES class bands (i.e., C, M, or X) and not the complete class
and magnitude.

5. COMPARISON OF METHOD PERFORMANCE

A comparison is presented here of the different methods’
ability to forecast a solar flare for select definitions of an event
(as described in Section 2.2). The goal is not to identify any
method as a winner or loser. Rather, the hope is to identify
successful trends being used to identify the flare-productivity
state of active regions, as well as failing characteristics, to assist
with future development of prediction methods. The focus is on
the BSS, since methods generally return probability forecasts,
but the Appleman skill score is used to indicate the
performance on categorical forecasts. The ApSS effectively
treats each type of error (misses and false alarms) as equally
important, and so gives a good overall indication of the
performance of a method. In practice, which skill score is
chosen does not greatly change the ranking of the methods, or
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the overall conclusions, with a few exceptions discussed in
more detail below.

5.1. Data Subsets

The request was made for every method to provide a forecast
for each and every data set provided. Many methods, as alluded
to in the descriptions in Appendix A, had restrictions on where
it was believed they would perform reliably, and so each
method did not provide a forecast in every case. The resulting
variation in the sample sizes, as shown in the summary tables,
is not fully accounted for in the skill scores reported (Section 3),
meaning that direct comparisons between methods with
different sample sets is not reliable. Even the H&KSS is not
fully comparable among data sets if the samples of events and
non-events are drawn from different populations, for example
all regions versus only those regions with strong magnetic
neutral lines.

To account for the different samples, three additional data
sets are considered for performance comparison. The first is all
data (AD), with an unskilled forecast (the climatology, or event
rate) used if a method did not provide a forecast for that
particular target. In this way, forecasts are produced for all data
for all methods. However, this approach penalizes methods that
produce forecasts for only a limited subset of data.

The second approach is to extract the largest subset from AD
for which all methods provided forecasts. Two such maximum
common data sets were constructed, one (MCD#1) for all
methods except the event-statistics, while the second
(MCD#2) included the additional event-statistics restrictions
imposed by requiring at least ten prior events.21 One method
(MSFC/Falconer, Appendix A.4) did not return results for
C1.0+, 24 hr, so strictly speaking these should be null sets.
However, for the purposes of this paper, that method was
removed for constructing the MCDs for C1.0+, 24 hr. A
drawback to the MCD approach arises for the methods that
were trained using larger data samples, i.e., samples which
included regions that were not part of the MCD. For methods
that trained on AD, for example, many additional regions were
used for training, while for methods with the most restrictive
assumptions, almost all the regions used for training are
included in MCD#1, hence the impact of using the maximum
common data sets varies from method to method. In the case of
MCD#1, where the primary restriction is on the distance of
regions from the disk center, this may not be a large handicap
since the inherent properties of the regions are not expected to
change based on their location on the disk, although the noise
in the data and the magnitude of projection effects do change.

However, for MCD#2, the requirement of a minimum number
of prior events means the samples are drawn from very
different populations. For any method, training on a sample
from one population then forecasting on a sample drawn from a
different population adversely affects the performance of the
method.
The magnitude of the changes in the populations from which

the samples are drawn can be roughly seen in the changes in the
event rates shown in Table 3. Between AD and MCD#1, the
event rates change by no more than about 10%; between AD
and MCD#2, the event rates change by up to an order of
magnitude for the smaller event sizes such that MCD#2 for
C1.0+, 24 hr is the only category with more events than non-
events. The similarity in the event rates of AD and MCD#1 is
consistent with the hypothesis that they are drawn from similar
underlying populations. However, based on the changes in the
event rates, it is fairly certain that MCD#2 is drawn from
different populations than AD and MCD#1. Despite this
difference, measures of the performance of the methods are
presented for all three subsets to illustrate the magnitude of the
effect and the challenge in making meaningful comparisons of
how well the methods perform.

5.2. Method Performance Comparisons

The Appleman skill scores and BSSs for each method are
listed for each event definition in Tables 4–6, separately for
each of the three direct-comparison data sets: AD, MCD #1
(without the event-statistics restrictions) and #2 (with the
further restrictions from event statistics). As described in
Section 3, the probability thresholds for generating the binary,
categorical classifications used for calculating the ApSS were
chosen to maximize the ApSS computed for each event
definition using each method’s optimal data set (see
Appendix A).22 When a method produces more than one
forecast (e.g., the generalized correlation dimension, Appendix
A.7, which produces a separate forecast for each q value), the
one with the highest BSS is presented. Using a different skill
score to select which forecast is presented generally results in
the same forecast being selected, so the results are not sensitive
to this choice.
Recalling that skill scores are normalized to unity, none of

the methods achieves a particularly high skill score. No method
for any event definition achieves an ApSS or BSS value greater
than 0.4, and for the large event magnitudes, the highest skill
score values are close to 0.2. Thus there is considerable room
for improvement in flare forecasting. The skill scores for some
methods are much lower than might be expected from prior

Table 3
Sample Sizes of All Data (AD) vs. Maximum Common Datasets (MCDs)

Event Event No Event Event No Event Event No Event
List Event Rate Event Rate Event Rate

AD MCD#1 MCD#2

C1.0+, 24 hr 2609 10356 0.201 789 3751 0.174 249 128 0.660
M1.0+, 12 hr 400 12565 0.031 102 3162 0.031 70 220 0.241
M5.0+, 12 hr 93 12872 0.007 26 3633 0.007 21 270 0.072

21 Whether each magnetogram file is a member of each maximum common
data set is published as supplementary material in machine-readable format.

22 A complete set of the probability forecasts for all methods is published as
supplementary material in machine-readable format.
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published results. This is likely a combination of the data set
provided here not being optimal for any of the algorithms, and
variations in performance based on the particular time interval
and event definitions being considered.

In each category of event definition and for most data sets, at
least three methods perform comparably given a typical
uncertainty in the skill score, so there is no single method
that is clearly better than the others for flare prediction in

Table 4
Performance on All Data with Reference Forecast

Parameter/ Statistical C1.0+, 24 hr M1.0+, 12 hr M5.0+, 12 hr

Method Method ApSS BSS ApSS BSS ApSS BSS

Beff Bayesian 0.12 0.06 0.00 0.03 0.00 0.02
ASAP Machine 0.25 0.30 0.01 −0.01 0.00 −0.84
BBSO Machine 0.08 0.10 0.03 0.06 0.00 −0.01
WLSG2 Curve fitting N/A N/A 0.04 0.06 0.00 0.02
NWRA MAG 2-VAR NPDA 0.24 0.32 0.04 0.13 0.00 0.06

( )log NPDA 0.17 0.22 0.01 0.10 0.02 0.04
GCD NPDA 0.02 0.07 0.00 0.03 0.00 0.02
NWRA MCT 2-VAR NPDA 0.23 0.28 0.05 0.14 0.00 0.06
SMART2 CCNN 0.24 −0.12 0.01 −4.31 0.00 −11.2
Event Statistics, 10 prior Bayesian 0.13 0.04 0.01 0.10 0.01 0.00
McIntosh Poisson 0.15 0.07 0.00 −0.06 N/A N/A

Note. An entry of N/A indicates that the method did not provide forecasts for this event definition.

Table 5
Performance on Maximum Common Dataset #1

Parameter/ Statistical C1.0+, 24 hr M1.0+, 12 hr M5.0+, 12 hr

Method Method ApSS BSS ApSS BSS ApSS BSS

Beff Bayesian 0.23 0.06 0.00 0.12 0.00 0.04
ASAP Machine 0.29 0.32 0.07 0.05 0.00 −0.81
BBSO Machine 0.24 0.30 0.12 0.17 0.00 −0.07
WLSG2 Curve fitting N/A N/A 0.14 0.24 0.00 0.10
NWRA MAG 2-VAR NPDA 0.30 0.38 0.08 0.16 0.00 0.07

( )log NPDA 0.29 0.38 0.07 0.21 0.00 0.08
GCD NPDA 0.05 0.13 0.00 0.07 0.00 0.03
NWRA MCT 2-VAR NPDA 0.29 0.37 0.09 0.21 0.04 0.08
SMART2 CCNN 0.27 −0.22 0.03 −4.46 0.00 −12.49
Event Statistics, 10 prior Bayesian N/A N/A N/A N/A N/A N/A
McIntosh Poisson 0.12 −0.03 0.00 −0.05 N/A N/A

Note. An entry of N/A indicates that the method did not provide forecasts for this event definition.

Table 6
Performance on Maximum Common Dataset #2

Parameter/ Statistical C1.0+, 24 hr M1.0+, 12 hr M5.0+, 12 hr

Method Method ApSS BSS ApSS BSS ApSS BSS

Beff Bayesian 0.12 0.13 0.00 0.08 0.00 0.01
ASAP Machine 0.22 0.22 0.14 0.09 0.00 −0.72
BBSO Machine 0.23 0.17 0.17 0.11 0.00 −0.13
WLSG2 Curve fitting N/A N/A 0.19 0.18 0.00 0.08
NWRA MAG 2-VAR NPDA 0.38 0.29 0.11 0.08 0.00 0.04

( )log NPDA 0.23 0.26 0.10 0.13 0.00 0.05
GCD NPDA −0.47 −0.37 0.00 −0.10 0.00 −0.02
NWRA MCT 2-VAR NPDA 0.23 0.25 0.11 0.10 0.05 0.04
SMART2 CCNN 0.15 0.18 0.03 −0.15 0.00 −1.47
Event Statistics, 10 prior Bayesian 0.05 −0.21 0.06 0.13 0.00 −0.03
McIntosh Poisson 0.02 −0.09 0.00 0.01 N/A N/A

Note. An entry of N/A indicates that the method did not provide forecasts for this event definition.
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general. For a specific event definition, some methods achieve
significantly higher skill scores. There is a tendency for the
machine learning algorithms to produce the best categorical
forecasts, as evidenced by some of the highest ApSS values in
Tables 4–6, and for NPDA to produce the best probability
forecasts, as evidenced by some of the highest BSS values.

For rare events, most of the machine learning methods
(ASAP, SMART2/CCNN, and to a lesser degree BBSO)
produce negative BSS values, even when the value of the ApSS
for the method is positive. This is likely a result of the training
of the machine learning algorithms, which were generally
optimized on one or more of the categorical skill scores with a
probability threshold of 0.5. The maximum H&KSS is obtained
for a probability threshold that is much smaller than 0.5 when
the event rate is low (Bloomfield et al. 2012). When a machine
learning algorithm is trained to maximize the H&KSS with a
threshold of 0.5, it compensates for the threshold being higher
than optimal by overpredicting (see the reliability plots in
Appendix A). That is, by imposing a threshold of 0.5 and
systematically overpredicting, a similar classification table is
produced as when a lower threshold is chosen and the method
is not overpredicting. The former results in higher categorical
skill score values, but reduces the value of the BSS because the

latter does not use a threshold but is sensitive to overprediction.
In contrast, discriminant analysis is designed to produce the
best probabilistic forecasts and so it tends to have high
reliability (does not overpredict or underpredict). This results in
good BSS and ApSS values.
Skill scores from the different methods for the three data sets

and different event definitions are shown in Figure 3. Several
trends are seen in the results. From the left panels, it can be
seen that forecasting methods perform better on smaller
magnitude events, whether evaluated based on the Brier or
the Appleman skill score, with the most notable exceptions
being ones for which the BSS is negative for C1.0+, 24 hr,
including the event statistics method. The event statistics
method uses the small events to forecast the large events, and
thus is not as well suited to forecasting smaller events. The
other exceptions are for the MCD#2, and thus are likely a
result of a mismatch between the training and the forecasting
data sets. The overall trend for most methods is likely due to
the smaller sample sizes and lower event rates for the M1.0+,
12 hr and M5.0+, 12 hr categories, and holds for AD and both
MCD sets. The smaller sample sizes make it more difficult to
train forecasting algorithms, and the lower event rates result in
smaller prior probabilities for an event to occur.

Figure 3. Skill scores from different methods for different data sets and different event definitions. Top: the Brier skill score and bottom: the Appleman skill score as a
function of the event definition (left) and the data set used (right). Not all methods produced forecasts for all event definitions and data sets, so a few points are missing
from the plots. Several trends are clearly present in the results: methods generally perform better on smaller magnitude events, whether evaluated based on the Brier or
the Appleman skill score, and most methods perform better on MCD#1 than on other datasets. The ranking of methods changes between the different data sets,
showing the importance of using consistent data sets when comparing forecasting algorithms.
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The right panels of Figure 3 show that almost all methods
achieve higher skill scores on MCD#1 than on AD, although
the improvement is modest. For methods that did not provide a
forecast for every region, this is simply a result of the methods
making better predictions than climatology. For methods
providing a forecast for every region, it suggests that restricting
the forecasts to close to disk center improves the quality of the
forecasts, although the effect is not large. However, methods
trained on AD and then applied to MCD#1 may show a more
substantial improvement if trained on MCD#1. One of the
main restrictions in many methods is the distance from disk
center due to projection effects. Thus it is likely that improved
results would be achieved by using vector magnetograms.

Most methods also achieve higher skill scores on MCD#2
than on AD, but a considerable fraction have lower skill scores,
and there is more variability in the changes between AD and
MCD#2, as measured by the standard deviation of the change
in skill score, than in the changes between AD and MCD#1.
This supports the hypothesis that AD and MCD#1 draw from
similar populations, while MCD#2 draws from significantly
different populations. The ranking of methods changes some-
what between AD and MCD#1, but more significantly
between AD and MCD#2. This highlights the danger of using
a subset of data to compare methods, particularly when the
subset is drawn from a different population than the set used for
training.

As discussed, different skill scores emphasize different
aspects of performance. This is demonstrated by the results for
the Beff and the BBSO methods shown in Table 5, for C1.0+,
24 hr using MCD#1. The forecasts using these methods result
in essentially the same values of the ApSS of 0.23 and 0.24,
respectively. However, the corresponding BSS values of 0.06
and 0.30 are quite different. This is graphically illustrated in
comparing Figure 4 with Figure 2, right. The Beff method
(Figure 4) systematically overpredicts for forecast probabilities

less than about 0.6, but slightly underpredicts for larger forecast
probabilities. Thus the probabilistic forecasts result in a small
BSS, but by making a categorical forecast of an event for any
region with a probability greater than 0.55, the method
produces a much higher ApSS. The SMART/CCNN method
produces a similar systematic under- and overprediction (see
Appendix A.9) while most methods (e.g., the BBSO method
shown in Figure 2) have little systematic over- or under-
prediction, so the Brier and Appleman skill scores are similar.
Inspection of reliability plots for a single method (Figure 5)

shows a phenomenon common to most methods: the maximum
forecast probability typically decreases with increasing event
size, so most methods only produce low-probability forecasts
for, say, M5.0+, 12 hr event definitions. This explains the
small values of the ApSS for larger event definitions as very
few or no regions have high enough forecast probabilities to be
considered a predicted event in a categorical forecast. It also
suggests that all-clear forecasts have more promise than general
forecasts. However, attention to the possibility of missed events
would be critical from an operations point of view.

5.3. Differences and Similarities in Approach

All groups were given the same data, and many computed
the same parameters. However, implementations differ sig-
nificantly, so values for the same parameter are substantially
different in some instances. In other cases, two parameters
computed using completely different algorithms lead to
parameter values that are extremely well correlated.
The total unsigned magnetic flux of a region, ∣ ∣å Bz , is often

considered a standard candle for forecasting. Larger regions
have long being associated with greater propensity for greater-
sized events, and the total flux is a direct measure of region
size, hence it provides a standard for flare-forecast perfor-
mance. Four groups calculated the total magnetic flux for this
exercise, and provided the value for each target region. By
necessity, since the MDI data provide only the line-of-sight
component of the field vector, approximations were made,
which varied between groups, and one group (NWRA)
calculated the flux in two ways, using different approximations.
There are also different thresholds used to mitigate the
influence of noise, and different observing-angle limits beyond
which some groups do not calculate this parameter. How large
are the effects of these different assumptions and approxima-
tions on the inferred value of the total unsigned flux, and what
is the impact on flare forecasting?
The distributions of the total flux parameter for the four

groups are shown in Figure 6, estimated from the MCD#1,
which includes the same regions. There are considerable
differences among the distributions. In general, the NWRA
values of the flux are larger than the other groups, although the
SMART values have similar peak values, but with a tail to
lower values than seen in the NWRA flux distribution. The
NWRA distributions are also more sharply peaked than the
other groups’ distributions.
To understand these differences, Figure 7 shows the values

for each group plotted versus the NWRA values, for all regions
for which the flux was computed by that group. The NWRA
method is used as the reference because it has a value for every
region in the data set. The values for regions in the MCD#1
(black) generally show much less scatter than when all
available regions are considered. However, there are systematic
offsets in values for NWRA versus BBSO and MSFC even for

Figure 4. Reliability plot for the MCD#1, C1.0+, 24 hr forecasts based on
Bayesian statistics and the Beff method, for comparison with Figure 2, right.
The two forecasts have essentially identical Appleman skill scores, but very
different Brier skill scores.
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the MCD#1. The MCD#1 only includes regions relatively
close to the disk center, so much of the scatter may be a result
of how projection effects are accounted for. This is particularly
apparent for the SMART values.

How much influence do the variations in the total flux
resulting from different implementations have on forecasting
flares? To separate out the effects of the statistical method,
NPDA was applied to all of the total-flux related parameters.
The forecast performance solely as a single-variable parameter
with NPDA is summarized in Table 7. Because different
approximations may not influence how well the determination
of total flux works toward the limb, entries are included using
both AD files (without restriction), and using only the MCD.

Despite differences in the inferred values of the total
unsigned flux, the resulting skill scores for the MCD#1 are
effectively the same for all the implementations. The AD
forecasting results use a climatology forecast where a method
did not provide a total flux measurement (because it was
beyond their particular limits, for example). This difference can

be seen in the variation between the results for AD and
MCD#1, in particular for the BBSO implementation, which
had the most restrictive condition on the distance from the disk
center for computing the total unsigned flux. Overall, the
different implementations result in significantly different skill
scores for AD.
There is also evidence that different approximations applied

to the Blos to retrieve an estimate of Bz, the radial field, can
make a difference. The NWRA potential field implementation
performs nearly as well on AD as on the MCD#1, and better
than the other implementations on AD. This suggests that, for
flare forecasting, the potential field approximation is better than
the μ-correction when only measurements of the line-of-sight
component are available.
Details of the implementation are also important for other

parameters. Figure 8 illustrates the impact of implementation
on the measure of the strong gradient polarity inversion lines
proposed by Schrijver (2007), and on the measure Beff of the
connectivity of the coronal magnetic field proposed by
Georgoulis & Rust (2007) as computed by different groups.
The difference is more pronounced in the connectivity measure.
Although the same mathematical formula for Beff is used, the
differences are due to the distinct approaches followed for
partitioning a magnetogram to determine the point sources, and
for inferring the connectivity matrix for a given set of sources,
as noted in Appendix A.8.
In contrast to the differences in a parameter as implemented

by different groups, parameters proposed by different research-
ers can also be strongly correlated. For example, the parameter
 proposed by Schrijver and the parameterWLSG2 proposed by
Falconer are both measures of strong gradient polarity
inversion lines. The methods by which they are calculated
are quite different, but the linear correlation coefficient between
the two is r = 0.95 (Figure 9, left). Perhaps even more
surprising is that WLSG2 is also strongly correlated with the
parameter Beff of Georgoulis & Rust (2007), which is a
measure of the connectivity of the coronal magnetic field
(Figure 9, right).
Two conclusions can be drawn from this exercise. First,

implementation details can greatly influence the resulting
parameter values, although this makes surprisingly little
difference in the forecasting ability of the quantities considered.

Figure 5. Reliability plots for the BBSO predictions for (from left to right) the C1.0+, 24 hr, M1.0+, 12 hr, M5.0+, 12 hr event definitions and All Data treatment
(reference forecast is used when no forecast was otherwise returned). Note the increasingly poor performance with event size and the increasing size of the error bars.
This reflects the decreasing sample size for the larger events.

Figure 6. The distribution of the total unsigned flux, Φtot, as computed by
different groups for the MCD#1. There are considerable differences in both the
width of the distribution and the location of its peak among the different
implementations.
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Second, there may be a limited amount of information available
for flare forecasting from only the line-of-sight magnetic field
without additional modeling. Even if additional modeling is
used, such as when the coronal connectivity is used to

determine Beff, solar active regions that are small tend to be
simpler, larger regions tend to be more complex, and
differentiating those with imminent flare potential remains
difficult.

Figure 7. The total unsigned flux, Φtot, as computed by different groups, plotted as a function of Φtot computed by NWRA, with the Pearson correlation coefficient
shown in each plot. Black points are part of the MCD#1 used to compute the distributions in Figure 6, while red points are not. Although the values computed by
some groups show strong correlation (e.g., BBSO and NWRA), others show only moderate (e.g., MSFC and NWRA) or weak correlations (e.g., SMART and
NWRA). The correlations are stronger when considering only the MCD#1 points, indicating that most of the scatter is a result of the treatment of projection effects. In
addition to scatter, there are systematic difference among the values from the different groups, even for the MCD#1 points.

Table 7
NPDA Forecasts from Total Flux, C1.0+, 24 hr

Group/ Appleman Skill Score Brier Skill Score

I.D. MCD#1 All Data MCD#1 All Data

BBSO 0.19±0.02 0.06±0.01 0.268±0.016 0.103±0.006
MSFC 0.19±0.02 0.13±0.01 0.265±0.015 0.182±0.008
NWRA Φlos 0.18±0.02 0.14±0.01 0.276±0.015 0.224±0.008
NWRA Φpot 0.18±0.02 0.18±0.01 0.276±0.014 0.246±0.008
SMART 0.17±0.02 0.06±0.01 0.267±0.015 0.204±0.008
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6. DISCUSSION AND SPECULATION

During the workshop and subsequent group discussions, a
few salient points regarding flare forecasting methods emerged,
and are discussed here.

Using NOAA ARs may be a less than optimal approach for
forecasting. Sometimes there is no obvious photospheric
division in the magnetic field of two NOAA ARs with clear
coronal connectivity. Since the flux systems are physically
interacting, they may be best treated as a single entity for the
purpose of prediction. Yet identifying them thus can result in
extremely large fractions of the Sun becoming a single

forecasting target. Growing sunspot groups can occasionally
be flare productive prior to acquiring a number by NOAA, and
this will bias the results. Many groups are working on better
active-region identification methods, but testing each is beyond
the scope of this paper. Ideally, we would like to know where
on the Sun a flare will occur, independent of the assignment of
an active region number.
The data used here were not ideal for any method. Each had

different specific requirements on the data needed for a
forecast, and it was difficult to accommodate these needs.
Only by inserting a reference forecast when methods did not

Figure 8. Values of the same parameter obtained with different implementations. Left: a measure of the strong gradient polarity inversion lines,  proposed by
Schrijver (2007) as computed by two different groups. Right: a measure of the connectivity of the coronal magnetic field, Beff proposed by Georgoulis & Rust (2007)
as computed by two different groups. In both cases, there are noticeable differences in the values of the parameter, depending on implementation.

Figure 9. Values of parameters characterizing different physical quantities. Left: two measures of the strong gradient polarity inversion lines, proposed by Schrijver
(2007) andWLSG2 proposed by Falconer et al. (2008). Right: theWLSG2 measure of the strong gradient polarity inversion lines calculated by Falconer et al. (2008) and
the Beff measure of the coronal magnetic connectivity proposed by Georgoulis & Rust (2007). Although these measures are based on different physical quantities, they
are as strongly correlated as different implementations of Beff (see Figure 8, right).
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provide one, or by restricting the comparisons to the maximum
common data sets, which relied upon only data for which all
methods could provide forecasts, could a systematic compar-
ison be made. For most combinations of event definition and
data set, the best three methods resulted in comparable skill
scores, so that no one method was clearly superior to the rest,
and even which three methods resulted in the highest skill
scores varied with event definition and data set.23 This result
emphasizes that comparison of reported skill scores is
impossible unless the underlying data, limits, treatment of
missing forecasts, and event rates, are all standardized. Ideally,
a common data set should be established in advance, such that
all methods can train and forecast on exactly the same data,
thus circumventing many of the difficulties in making a
comparison.

There is a limit to how much information is available in a
single line-of-sight magnetogram. Many of the parameters used
by different methods and groups are correlated with each other,
meaning that they bring no independent information to the
forecasts. Of more concern is that parameter calculation and
implementation differences, for even such a simple quantity as
the total magnetic flux in a region, can significantly change the
value of the parameter. Surprisingly, this had only a minor

effect on forecasting ability for the cases considered. The use of
vector field data and prior flare history may improve forecast
performance by providing independent information.
Defining an event based on the peak output in a particular

wavelength band (GOES 1–8Å) is not based on the physics of
flares. The soft X-ray signature (and hence magnitude) is not a
direct measure of the total energy released in a reconnection
event (Emslie et al. 2012), yet the parameters currently being
computed are generally measures of the total energy of an
active region. Considering how the energy release is partitioned
between particles, thermal heating and bulk flow may lead to
improved forecasts for the peak soft X-ray flux. Likewise,
defining the validity period for a forecast based on a time
interval related to the Earth’s rotational period (12 hr or 24 hr
for the results presented here) has no basis in the physics of
flares. Studies looking at either longer (Falconer et al. 2014) or
shorter (Al-Ghraibah et al. 2015) validity periods do not show a
substantial increase in performance. Nevertheless, considering
the evolution of an active region on an appropriate timescale
may better indicate when energy will be released and thus lead
to improved forecasts.
The forecast of an all-clear is an easier problem for large

events than providing accurate event forecasts because there
must be sufficient energy present for a large event to occur.
When no active region has a large amount of free energy, and

Figure 10. Effective connected magnetic field (Appendix A.1) for NOAA AR 09767 on the 2002 January 3 MDI magnetogram (shown in Figure 1). Left: the line-of-
sight magnetic field, saturated at ±1500 G, with the outlines of the flux partitions (black/white contours for positive/negative polarity). A “×” symbol marks the flux-
weighted center of each partition. Right: the connectivity matrix, with color indicating the flux in the identified connections (in units of 1019 Mx). Flux connecting to
the flux-balance ring is shown connecting outside the box. In this example, Beff=789.2 G.

Table 8
Optimal Performance Results and Probability Thresholds: Beff

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hr 6234 0.197 0.85 (0.55) 0.51 (0.50) 0.26 (0.55) 0.58 (0.39) 0.12
M1.0+, 12 hr ” 0.030 0.97 (0.40) 0.33 (0.22) 0.01 (0.40) 0.68 (0.10) 0.07
M5.0+, 12 hr ” 0.008 0.99 (0.14) 0.14 (0.05) 0.00 (0.14) 0.80 (0.03) 0.03

23 A complete set of the probability forecasts for all methods is published as
supplementary material in machine-readable format.
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particularly during times when no active region faces the Earth,
geo-effective solar activity is low in general and the possibility
of a large flare is lower still. The low event rate for large events
does mean that it is relatively easy to achieve a low false alarm
rate. Still, during epochs when regions are on the disk, the
inability of the prediction methods (admittedly, tested on old
data) to achieve any high skill score values is discouraging, and
shows that there is still plenty of opportunity to improve
forecast methods.

In summary, numerous parameters and different statistical
forecast methods are shown here to provide improved
prediction over climatological forecasts, but none achieve
large skill score values. This result may improve when updated
methods and data are used. For those who could separate the
prediction process into first characterizing an active region by
way of one or more parameters, and then separately using a
statistical technique to arrive at a prediction, both parameters
and predictions were collected separately. It may be possible to
increase the skill score values by combining the prediction
algorithm from one method with the parameterization from a
different method. Nonetheless, this study presents the first
systematic, focused head-to-head comparison of many ways of
characterizing solar magnetic regions and different statistical
forecasting approaches.

This work is the outcome of many collaborative and
cooperative efforts. The 2009 “Forecasting the All-Clear”

Workshop in Boulder, CO was sponsored by NASA/Johnson
Space Flight Center’s Space Radiation Analysis Group, the
National Center for Atmospheric Research, and the NOAA/
Space Weather Prediction Center, with additional travel
support for participating scientists from NASA LWS TRT
NNH09CE72C to NWRA. The authors thank the participants
of that workshop, in particular Drs.Neal Zapp, Dan Fry, Doug
Biesecker, for the informative discussions during those three
days, and NCAR’s Susan Baltuch and NWRA’s Janet Biggs
for organizational prowess. Workshop preparation and analysis
support was provided for GB, KDL by NASA LWS TRT
NNH09CE72C, NASA Heliophysics GI NNH12CG10C, and
NSF award NSWP 0519107. PAH and DSB received funding
from the European Space Agency PRODEX Programme, while
DSB and MKG also received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No.640216 (FLARECAST project).
MKG also acknowledges research performed under the
A-EFFort project and subsequent service implementation,
supported under ESA Contract number 4000111994/14/D/
MPR. YY was supported by the National Science Foundation
under grants ATM 09-36665, ATM 07-16950, ATM-0745744
and by NASA under grants NNX0-7AH78G, NNXO-
8AQ90G. YY owes his deepest gratitude to his advisers
Professor Frank Y.Shih, Professor Haimin Wang and
Professor Ju Jing for long discussions, for reading previous
drafts of his work and providing many valuable comments that

Figure 11. Summary plots (see Section 3 and Figure 2) of the forecasting performance of Beff for the three different event definitions left:right C1.0+, 24 hr, M1.0+,
12 hr, M5.0+, 12 hr. Top: reliability plots, including indications of sample-size within bin (error bars) and the x=y line (L), Bottom: relative operating characteristic
(ROC) curve, with annotation indicating the location on the curve of the 50% probability results (quoted elsewhere), the location of the peak H&KSS score on the
curve (dashed line) and at what probability threshold that occurs. The x=y line (L) is also included for reference.
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improved the presentation and contents of this work. JMA was
supported by NSF Career Grant AGS-1255024 and by a
NMSU Vice President for Research Interdisciplinary Research
Grant.

APPENDIX A
PREDICTION METHOD DESCRIPTIONS

A more detailed description of each method referred to in the
text is provided here. Since several methods implement similar-
sounding techniques in slightly different manners, a few salient
points are included as appropriate, such as specifics of data
analysis and any free parameters available. A summary of each
method’s performance is presented for its optimal application.
That is, skill scores are computed based only on the data for
which the method provided a forecast, and a different probability
threshold is selected to maximize each presented categorical skill
score for each event definition. Many methods have a restriction
on when a forecast is made, for example a restriction on the
observing angle of the active region. Such restrictions reduce the

sample sizes from the original full data set, and these reductions
(if any) are indicated. As such, the summary metrics presented
for the optimal performance give an indication of each method’s
performance, but should not generally be used to directly
compare methods. A comparison of methods on common data
sets is presented above in Section 5.
Even when the methods are evaluated on different data sets,

there are some common trends in the results. As was the case
for the common data sets, most methods have higher skill
scores for smaller event magnitudes, with the event statistics
methods again being the exception. However, the ROC plots,
the H&KSS, and the rate correct show the opposite trend for
most methods, with larger area under the ROC curve, a higher
H&KSS, and a higher rate correct for larger event magnitudes.
This is an indication that the populations of events and
non-events are well separated in parameter space for large
events, but the prior probability of an event is sufficiently small
that most measures of the forecast performance have a small
value.

Figure 12. Same as Figure 11 but for ASAP.

Table 9
Optimal Performance Results: ASAP

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hr 12965 0.201 0.85 (0.58) 0.49 (0.35) 0.25 (0.58) 0.52 (0.25) 0.30
M1.0+, 12 hr ” 0.031 0.97 (0.74) 0.36 (0.42) 0.01 (0.74) 0.64 (0.06) −0.01
M5.0+, 12 hr ” 0.007 0.99 (0.90) 0.22 (0.37) 0.00 (0.90) 0.73 (0.03) −0.84

17

The Astrophysical Journal, 829:89 (32pp), 2016 October 1 Barnes et al.



A.1. The Effective Connected Magnetic Field—M.Georgoulis

The analysis presented in Georgoulis & Rust (2007)
describes the coronal magnetic connectivity using the effective
connected magnetic field strength Beff. The Beff parameter is
calculated following inference of a connectivity matrix in the
magnetic-flux distribution of the target active region (employ-
ing q»B B cosz los , where θ is the angle from the disk center).
An additional multiplicative correction factor of 1.56 (plage)
and 1.45 (sunspots) was applied to correct for systematic
insensitivity (Berger & Lites 2003).

The resulting flare forecast relies on an event probability
using Bayesian inference and Laplace’s rule of succession
(Jaynes & Bretthorst 2003, p. 154). In particular, the steps used
to produce a forecast are:

1. Partition the photospheric vertical magnetic field into
(e.g.,) N+ positive-polarity and N− negative-polarity
magnetic-flux concentrations (Figure 10, left), generally
following Barnes et al. (2005). Particulars include: 50 G

noise threshold, minimum partition flux of 1020 Mx,
minimum partition size of 40 pixels, and a slight
smoothing (mean-neighborhood by a factor 2) applied
prior to partitioning, only in order to draw smoother
partition outlines.

2. Determine a connectivity matrix, ψij (Figure 10, right),
whose elements are the magnetic flux connecting the
pairs of sources (i, j), by using simulated annealing to
minimize the functional
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where xi, xj are the vector positions of the flux-weighted
centroids of two opposite-polarity partitions i and j
( { }º ¼ +i N1, , , { }º ¼ -j N1, , ) with respective flux
content F¢i and F¢j and Rmax is a constant, maximum
distance within the studied magnetogram, typically its
diagonal length. The implementation of Rmax in the
functional F is a refinement over the initial approach of

Table 10
Optimal Performance Results: BBSO/Machine Learning

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hr 5560 0.162 0.87 (0.46) 0.47 (0.26) 0.22 (0.46) 0.53 (0.13) 0.28
M1.0+, 12 hr ” 0.026 0.98 (0.59) 0.34 (0.15) 0.09 (0.59) 0.70 (0.02) 0.15
M5.0+, 12 hr ” 0.007 0.99 (0.71) 0.14 (0.04) 0.00 (0.71) 0.76 (0.01) −0.03

Figure 13. Same as Figure 11 but for BBSO/machine learning.
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Georgoulis & Rust (2007). Another refinement is the
introduction of a mirror “flux ring” at a distance well
outside of the studied magnetogram, that makes the flux
distribution exactly balanced prior to annealing (Geor-
goulis et al. 2012). This step consists of introducing a ring
of mirror flux (as much positive-/negative-polarity flux
as the negative-/positive-polarity flux of the active
region) at large distances from the region, typically three
times larger than the largest dimension of the immediate
region. The ring of flux participates in the connectivity
process via the simulated annealing. Magnetic connec-
tions between active-region flux patches and the flux ring
are considered open, that is, closing beyond the confines
of the active region. These connections are not taken into
account in the calculation of Beff.

3. Define the effective connected magnetic field as
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4. Construct the predictive conditional probability of an
event above a certain size according to Laplace’s rule of
succession:
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where ( )Nmag flare is the number of event-producing
magnetic structures (magnetograms) with Beff greater
than a given threshold Beff

th (for a particular event

definition), and Nmag is the total number of magneto-
grams with Beff greater than the same threshold.
Increasing Beff-thresholds are successively selected, and
the resulting curve of Pflare

th as a function of Beff
th (for the

targeted event definition) is then fitted by a sigmoidal
curve; this curve returns the flaring probability for an
incoming Beff measure. The lowest threshold used for a
particular event definition is the minimum Beff found for
all magnetograms for which an event (as defined) was
recorded. Probabilities for magnetograms with Beff less
than this cutoff value are set to zero.

This approach does not use magnetic-field extrapolation.
Instead, the coronal model relies on the minimum value of the
functional F which finds the shortest connections between
opposite-polarity flux concentrations. The Beff values were
calculated for all but one data set. However, following
Georgoulis & Rust (2007), a limit of ±41° from the disk
center is imposed to minimize projection-effect artifacts for the
measures of this method’s optimal performance shown in
Table 8, thus the values differ slightly from those presented in
Tables 4–6 as a different subset of data is used here. All values
of Beff are used in the later AD comparisons (Section 5.2).
The skill-score results are unusual in that there is a large

discrepancy in the performance based on which skill score is
used to evaluate the method, with the HSS and H&KSS skill
score values being much larger than the ApSS or BSS for C1.0
+, 24 hr. The reliability plots (Figure 11, top) show a
systematic over-prediction for lower probabilities and under-
prediction for higher probabilities. As is typical for most
methods, the maximum probability forecast decreases as the
event threshold increases, while the maximum H&KSS value
and the ROC curve (Figure 11, bottom) improve with
increasing event-threshold magnitude.

A.2. Automated Solar Activity Prediction (ASAP)—T.Colak,
R.Qahwaji

A real-time automated flare prediction tool has been
developed at the University of Bradford/Centre for Visual
Computing (Colak & Qahwaji 2008, 2009). The Automated
Solar Activity Prediction (ASAP)24 system uses the following
steps to predict the likelihood of a solar flare:

1. A feature-recognition system generates McIntosh classi-
fications (McIntosh 1990) for active regions from MDI
white-light images.

2. A machine learning system is trained using these
classifications and flare event databases from NCEI.

3. New data are then used to generate real-time predictions.

The system relies upon both MDI magnetic and white-light
data, and hence is unable to make a prediction for those data for
which the white-light data are unavailable. Generally, ASAP
generates a McIntosh classification, as determined by step#1
above. This is difficult for the active region clusters made up of
multiple active regions in the database we presented. Thus, the
recorded McIntosh classifications included in the file headers
were used for the predictions (i.e., step#1 was essentially
skipped), and forecasts were made for the entire database.
However, the performance may have been less than optimal
due to this peculiarity.

Figure 14. Total nonpotentiality of active regions (Appendix A.4) for NOAA AR
09767, 2002 January 3, showing the line-of-sight field ( )B ,los with white/black
indicating field aligned as positive/negative along the line of sight. The strong-
field intervals of the neutral line used for calculating the WLSG2 parameter are
shown by the color curves, with the color indicating the strength of the gradient of
the line of sight field (∣ ∣Blos ). The black rectangle indicates a possibly fictitious
neutral line (one that occurs in the line-of-sight magnetic field, but not in the
vertical magnetic field). For this active region, WLSG2=1.4×107 G2 Mm−1.
Excluding the boxed area gives = ´ -WL 9.7 10 G MmSG2

6 2 1.

24 See http://spaceweather.inf.brad.ac.uk/asap/.
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The results for ASAP (Table 9) compared to the average
show higher values for HSS and H&KSS skill but lower for
ApSS and BSS, a common result for machine-learning based
forecasting algorithms which are typically trained to produce
the largest HSS or H&KSS. The reliability plots (Figure 12,
top) show a systematic over-prediction for the larger event
thresholds, and ROC plots (Figure 12, bottom) show lower
probability of detection for high false alarm rates than most
other methods.

A.3. Big Bear Solar Observatory/Machine Learning
Techniques—Y.Yuan

Another approach that uses a machine learning technique as
the statistical forecasting method has been developed at the
New Jersey Institute of Technology (Yuan et al. 2010, 2011).
The steps in this method are:

1. Compute three parameters describing an active region:
i. total unsigned magnetic flux, computed using only the
pixels for which the absolute value of the field is
greater than the mean value plus three times the
standard deviation of all field in the area under
consideration;

ii. the length of the strong-gradient neutral line (above
50 GMm−1);

iii. the total magnetic energy dissipation Ediss=ò 4[(∂Bz/
∂ x)2+ (∂Bz/∂y)

2]+ 2(∂Bz/∂x+ ∂Bz/∂y)
2dA, follow-

ing Abramenko et al. (2003).
2. Use ordinal logistic regression and support vector

machines (SVMs) to make predictions.

An SVM is a supervised learning method used for
classification (Boser et al. 1992), whose principle is to
minimize the structural risk (Vapnik 2000). An SVM tries to
find a plane in an n-dimensional space that separates input data
into two classes. The larger the distance from the plane to the
two different classes of data points in the n-dimensional space,
the smaller the classification error (Cortes & Vapnik 1995). The
results presented here used the open-source SVM implementa-
tion called LIBSVM (Chang & Lin 2011).

The summary of results is given in Table 10. The method
used and made forecasts only on extracted data that had a
single NOAA active region within ±40° of the disk center,
reducing the sample to less than half that provided. This
restriction also presents an example of a method whose
requirements are not well met by the data used for this
workshop, and thus whose skill scores may be penalized as a
result. When calculating the flux, only pixels for which the
absolute value of the field is greater than the mean value plus
three times the standard deviation of all field in the area under
consideration are included. The summary plots (Figure 13)
show a weak trend toward overprediction at higher

probabilities, but with larger error bars due to the smaller
sample sizes. The ROC plots are fairly typical.

A.4. Total Nonpotentiality of Active Regions—D.Falconer

Falconer et al. (2008) presented a prediction method based
on parameterizing active region magnetic morphology that was
first applied to CME prediction (Falconer et al. 2002, 2003) but
more recently extended to flares. The modern version has been
implemented in a code called MAG-4 (Falconer et al. 2011),
running at the Community Coordinated Modeling Center and
elsewhere. The results presented here are from a predecessor of
MAG-4.
Two parameters are calculated. A measure of the free

magnetic energy is estimated based on the presence of strong
gradient neutral lines:

( ) ( )ò =WL B dl. 12
NL

SG2 los
2

An example of strong gradient neutral lines is shown in
Figure 14. The measure WLSG2 is supplemented with the total
unsigned magnetic flux (for pixels above 100 G) in the target
active region. No correction to the Blos data is performed. The
utility of WLSG2 was shown in Falconer et al. (2008) where
parameterizations using vector magnetogram data were favor-
ably compared to the WLSG2 proxy, which can be calculated
from line-of-sight data. In this study, the parameterizations for
both WLSG2 and total magnetic flux Φtot were calculated for all
extracted data sets, but the method is generally restricted to
regions within 30° of the disk center. Table 11, summarizing
the method’s performance, is restricted to this subset of
predictions. It is expected that line-of-sight data beyond 30° do
not provide reliable estimates of WLSG2.
With these parameterizations, a least-squares power-law fit

to the event rates as a function of WLSG2 and total flux was
constructed for each event definition using only the data within
the 30° limit. These event rates were converted into
probabilities as a function of the length of time t of the
forecast interval, assuming that the event rate is constant over
the larger forecast interval (in this case 2000–2005). The
conversion from event rate to probability assumes Poisson
statistics (Moon et al. 2001; Wheatland 2001): the probability
of an event is ( ) ( )= ´ - l-P t e100 1 t where λ is the flaring
rate for the particular event definition.
The rate-fitting algorithm is best for larger flares, and so no

forecasts were made for the C1.0+, 24 hr events. It has been
found that combining this strong gradient neutral line with
secondary measures (e.g., total magnetic flux, and more
recently with prior flare history, Falconer et al. 2012) is likely
to give more accurate forecasts, but these secondary measures
are not included for the forecasts presented here. The results for
the workshop data set are shown in Table 11, and only include
the regions with higher confidence. The values of the BSS are

Table 11
Optimal Performance Results: MSFC

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hr N/A N/A N/A N/A N/A N/A N/A
M1.0+, 12 hr 4510 0.030 0.97 (0.52) 0.40 (0.16) 0.10 (0.52) 0.72 (0.01) 0.19
M5.0+, 12 hr ” 0.007 0.99 (0.53) 0.22 (0.17) 0.00 (0.53) 0.78 (0.01) 0.05
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among the best, although the small sample sizes are reflected in
the larger error bars in the reliability plots (Figure 15, top). The
ROC curves show that the probability of detection remains near
one to relatively small values of the false alarm rate, hence this
is one of the better methods for issuing all-clear forecasts.

A.5. Magnetic Field Moment Analysis and Discriminant
Analysis—K.D.Leka, G.Barnes

The NWRA moment analysis parameterizes the observed
magnetic field and its spatial derivatives using the first four
moments (mean, standard deviation, skew and kurtosis), plus
totals and net values when appropriate (Leka & Barnes 2003a).
The moments of the observed field strength describe its
distribution, while an approximation of the total flux indicates
how large the region is based on both its area and field strength.
The higher-order moments can be sensitive to the presence of
small areas of complex field that are missed in the lower-order
moments and summations (Leka & Barnes 2003a).

The default boundary is the observed line-of-sight data.
A correction is applied to these data: ( ) »B x y B,z los
( ) ( )qx y x y, cos , , meaning that each observed point is divided
by the cosine of its observing angle, θ, rather than an average
observing angle or the observing angle of the center of the field
of view. This correction is especially important at large
observing angles. Additionally, a magnetic-field boundary that
more closely approximates the radial field is prepared by
computing the potential field that matches the line-of-sight
observed component (e.g., Alissandrakis 1981) and using the
resulting radial field as a boundary for some parameters. This

approach has the effect of mitigating the appearance of the
magnetic neutral lines that are solely a manifestation of
projection effects. For the potential-field approximation of the
radial field, no additional correction using the observing angle
is needed. For both boundaries, however, a limit of q >cos 0.1
is imposed: parameters are not computed for observing
angles 85°.
The parameters considered are the subset of those presented

in Leka & Barnes (2003a) which can be computed using solely
the line-of-sight component of the field. Over 50 parameters are
considered, describing the photospheric field distribution using
three basic categories:

1. The distribution of the approximated radial (vertical)
component of the magnetic field.

2. The horizontal gradient of that distribution ∣ ∣Bz .
3. The character of inferred magnetic neutral lines.

The last category includes a variation on the  parameter
described in Appendix A.6.
The forecast is produced with discriminant analysis (DA,

e.g., Kendall et al. 1983; Silverman 1986). This statistical
approach classifies new measurements as belonging to one of
two populations by dividing parameter space into two regions
based on where the probability density of one population (e.g.,
flaring regions) exceeds the other (flare-quiet regions). A set of
new measurements, i.e., a new active region, that falls on the
appropriate side of the division is then predicted to flare (see
Figure 16). Using Bayes’s theorem, the probability that a new
measurement belongs to a given population can be estimated
from the probability density estimates (Barnes et al. 2007).

Figure 15. Same as Figure 11 but for the MSFC method. In this case, predictions were not constructed for the C1.0+, 24 hr event definition.
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Given an accurate representation of the probability density of a
parameter, DA will maximize the overall accuracy of
predictions (see Leka & Barnes 2003b, 2007, for examples).

The probability density is typically either assumed to be
Gaussian, which results in a linear discriminant function, or it is
estimated nonparametrically. For the results presented here, a
nonparametric density estimate was made using the Epanech-
nikov kernel with the smoothing parameter chosen optimal for
a Gaussian distribution (Silverman 1986). One strength of DA
is that multiple variables can be considered simultaneously.
Two-variable combinations are employed here, as noted in the
tables. Cross-validation is employed by default in order to
remove bias in the skill scores.

The results for the variable combination with the highest
BSS for each event definition are given in Table 12. Other
variable combinations may produce higher values of other skill
scores, but only the results for the variable combination with
the highest BSS are listed here. The reliability plots for
Schrijver’s implementation of  and one-variable DA show a
slight tendency for over-prediction for the M1.0+, 12 hr
threshold at higher probabilities, but less of such a trend for
M5.0+, 12 hr (Figure 17, top).

A.6. Magnetic Flux Close to High-gradient Polarity Inversion
Lines—C.Schrijver

In Schrijver (2007), a parameter  was proposed as a proxy
for the emergence of current-carrying magnetic flux, i.e.,

magnetic systems with significant free magnetic energy which
would be carried through the photosphere and into the solar
corona, enabling solar flares. The (and, specifically, (log ))
parameter was proposed and demonstrated as useful for
forecasting solar flares in Schrijver (2007) by determining an
empirical threshold above which flare activity was significant.
The parameter  was computed from the line-of-sight

magnetic field maps using the following steps:

1. Dilate bitmaps of the magnetograms where the positive or
negative flux density exceeds a threshold (150Mx cm−2).

2. Define high-gradient polarity-separation lines as areas
where the bitmaps overlap.

3. Convolve the resulting high-gradient polarity-separation
line bitmap with a Gaussian to obtain a “weighting map.”

4. Obtain  by multiplying the weighting map by the
unsigned line of sight field and computing the total.

For the results here, the  parameter was calculated as part
of the NWRA magnetic field analysis (Appendix A.5), but is
also included in the parameterizations by other groups (e.g.,
SMART, see Appendix A.9), with slightly different imple-
mentations (see Section 5.3). Within the NWRA magnetic
parameterization,  is calculated first so as to replicate the
parameter in Schrijver (2007): Blos is used directly, and a fixed
width of 10 MDI pixels is used for the Gaussian used in the
convolution, to identify an area within roughly 15Mm of a
magnetic neutral line. The targets are restricted to those within
45° of disk center, which limits the sample size. An image of
the boundary of the inferred high-gradient neutral lines from
this replication of Schrijver (2007) is shown in Figure 18.
The second implementation within the NWRA magnetic

parameterization uses the Bz potential-field boundary as
described in Appendix A.5, and varies the width of the
convolution function such that it effectively preserves the target
15Mm physical distance on the Sun and performs all
calculations in a helioplanar coordinate system. A comparison
of this implementation with the original is also shown in
Figure 18.
For the results here, predictions using  were made using

one-variable NPDA with cross-validation (Appendix A.5), and
the resulting skill scores are shown in Table 13. The NWRA
implementation is not included here, but it is included in one
high-performing two-variable combination in Table 12. The
reliability plots (Figure 19, top) show a slight underprediction
at the lower probabilities for C1.0+, 24 hr, and little trending
otherwise with the exception of points in the highest predicted
probability bins for both M1.0+, 12 hr and M5.0+, 12 hr. The
ROC curves (Figure 19, bottom) show that the probability of
detection for the M1.0+, 12 hr and M5.0+, 12 hr event
definitions remain close to one for relatively small values of the
false alarm rate, thus this is another method that may be well
suited to issuing all-clear forecasts.

A.7. Generalized Correlation Dimension—R.T.J.McAteer

The morphology of a flux concentration (active region) can be
described by the fractal dimension and related quantities. This
approach is useful for understanding the underlying influence of
turbulence on solar structures (McAteer et al. 2010).
The generalized correlation (akin to a fractal) dimension DBC

of an active region is computed using images of the magnetic
field distribution. Images were processed in the same manner as
McAteer et al. (2005b), which includes applying multiplicative

Figure 16. Magnetic field moment analysis and discriminant analysis (Appendix
A.5) for two-variable nonparametric discriminant analysis of the log of
C.Schrijver’s  parameter and the standard deviation of the distribution of the
magnitude of the horizontal gradient of the line-of-sight field, (∣ ∣)s Blos . Red/
black curves are contours of the probability density estimate for the flaring/non-
flaring samples (specifically for a flaring threshold of C1.0 and prediction window
of 24 hr). The probability of a flare occurring is estimated from the ratio of the
density estimates at any specified value of (, (∣ ∣)s Blos ). The blue line
indicates where the probability density estimates for the flaring and non-flaring
regions are equal. Regions within the blue curves are predicted to remain flare-
quiet (i.e., have a greater non-flaring probability than flaring probability).
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corrections to stronger/weaker areas and an observing-angle
correction q»B B cosz los . The images were also subjected to
a thresholding algorithm in the same manner as McAteer et al.
(2005b) and a box counting algorithm (with cancellation) was
applied to the resulting binary images. Only regions within
θ<60° were considered. The generalized correlation dimen-
sions were calculated for q values of 0.1, 0.5, 1.5, 2.0, 8.0 (q
referring to the “q-moment,” which governs the influence of
strong versus weak areas in the DBC measure, see McAteer
et al. 2010).

The fractal dimension is a parameterization of the active
region, and does not include a statistical flare prediction
method per se. In McAteer et al. (2005a), the fractal dimension
was shown to be related to a region’s flare productivity: lower
limits of DBC=1.2(1.25) were found to be required for

M-class (X-class) flares (with q= 8). Extensions of this work
involving the multifractal spectrum (Conlon et al. 2008, 2010)
were not computed for this study. Georgoulis (2012) show that
one multifractal algorithm is resolution-dependent. However,
McAteer (2015) and McAteer et al. (2016) show that a
multifractal analysis that uses the wavelet transform modulus
maxima approach, performed over a series of images, may
produce a useful measure of the energy stored in the coronal
magnetic field.
For the results here, predictions were made using one-

variable NPDA with cross-validation (Appendix A.5) with
these fractal-related parameterizations. The best-performing
parameterization is shown in Table 14, and is the q = 8.0
variable as expected from prior work, and thus is subsequently
the only variable presented here. The performance as measured

Table 12
Optimal Performance Results: NWRA Field Parameterizations, Non-parametric Discriminant Analysis, Two-variable Combinations

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hra 12965 0.201 0.85 (0.48) 0.50 (0.35) 0.24 (0.48) 0.56 (0.22) 0.32
M1.0+, 12 hrb ” 0.031 0.97 (0.42) 0.29 (0.12) 0.04 (0.42) 0.58 (0.03) 0.13
M5.0+, 12 hrc ” 0.007 0.99 (0.47) 0.20 (0.07) 0.00 (0.47) 0.72 (0.01) 0.06

Notes.
a Variable combination: [ ( ∣ ∣) ( )s B , loglos nwra

pot ].
b Variable combination: [ ( ) ( )V sB B,los z

pot ].
c Variable combination: [ ( ) ( )V sB B,los z

pot ].

Figure 17. Same as Figure 11 but for the NWRA/discriminant analysis method.
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by the BSS is comparatively higher than for the H&KSS as
expected from the NPDA. The ROC curves (Figure 20) show
the usual improvement with increasing event magnitude, but
overall show worse performance than most other methods.

A.8. Magnetic Charge Topology and Discriminant Analysis—
G.Barnes, K.D.Leka

A corona with a very complex magnetic topology is one
which will more readily allow initiation of fast magnetic
reconnection, and hence an energetic event. Indeed, Barnes &
Leka (2006) demonstrated that parameters derived using a
magnetic charge topology coronal model (MCT; Barnes
et al. 2005, and reference therein) out-performed those
describing the photospheric field in distinguishing flare-
imminent from flare-quiet times for seven active regions (see
Table5 of Barnes & Leka 2006.) To implement the MCT
model, the following steps are followed:

1. Partition the photospheric field into magnetic field
concentrations and represent each partition as a single
point source, located at the flux-weighted center of the

partition, xi, with magnitude equal to the flux in the
partition, Φi.

2. Represent the coronal magnetic field as the potential field
associated with this collection of point sources.

3. Define the magnetic connectivity matrix as the amount of
magnetic flux in each coronal connection, ψij, and
estimate it by tracing field lines.

4. Calculate the location of magnetic null points (places
where the magnetic field vanishes) using the method
described in Barnes (2007).

An example of the results is shown in Figure 21. Compared
to the partitioning used to compute Beff (Appendix A.1), this
implementation represents the plage areas with fewer sources.
Despite this, the resulting connectivity matrix typically has
more connections per source.
Almost 50 parameters were calculated based on moments

and totals of the distributions of properties of the sources and
the connectivity matrix. These properties characterize quan-
tities such as the number, orientation, and flux in the
connections (Barnes et al. 2005; Barnes & Leka 2006, 2008),
and include ∣ ∣f y= å -x xij i jtot , the total of each connec-
tion’s distance-weighted connection flux, as well as moments

Figure 18. Magnetic flux close to high-gradient polarity inversion lines (Appendix A.6). Red curves show the areas near high-gradient magnetic neutral lines used for
computing the  parameter (Schrijver 2007) for NOAA AR 09767, 2002 January 3, following previous figures. The results from two methods are shown. The axis
labels are in pixels, and the underlying magnetic boundary images are saturated at ±500 G. Left: the approach which replicates Schrijver (2007) using the line-of-sight
magnetic field component and a Gaussian weighting function of fixed 10-pixels width. Right: the NWRA implementation using the potential-field Bz boundary, and a
Gaussian width that preserves the 15 Mm distance on the Sun. While the projection-effect polarity-inversion lines are not strong in this example (since it is relatively
close to disk center), there are some differences between the two implementations, such as near the sunspot at (x, y)≈(70, 70).

Table 13
Optimal Performance Results: Schrijver ( )log (+NPDA)

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hr 7299 0.200 0.86 (0.50) 0.55 (0.36) 0.31 (0.50) 0.62 (0.18) 0.38
M1.0+, 12 hr ” 0.031 0.97 (0.42) 0.38 (0.17) 0.03 (0.42) 0.71 (0.04) 0.18
M5.0+, 12 hr ” 0.007 0.99 (0.20) 0.19 (0.08) 0.00 (0.20) 0.78 (0.02) 0.07
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of the distribution of ∣ ∣y -x xij i j , and the moments of the
distribution of ∣ ∣y -x xij i j

2. The total of this quantity, denoted
f2,tot, is essentially the same as Beff (Appendix A.1; Georgoulis
& Rust 2007, but see the discussion in Barnes & Leka2008)
except in how the connectivity matrix is inferred. NPDA with
cross-validation is used to make a prediction (Appendix A.5,
Barnes & Leka 2006), with the resulting skill scores for the
variable combinations that resulted in the best BSS values
shown in Table 15; the M5.0+, 12 hrBSS is one of the better
quoted in this study, but still not overly impressive. The
reliability plots (Figure 22, top) show a slight tendency for
underprediction at high probabilities for the M1.0+, 12 hr and
M5.0+, 12 hr categories. The ROC curves (Figure 22, bottom)
are fairly typical.

A.9. Solar Monitor Active Region Tracker with Cascade
Correlation Neural Networks—P.A.Higgins, O.W.Ahmed

The Solar Monitor Active Region Tracker (SMART) method
is incorporated into the well-known SolarMonitor.org
resource, as the SMART2 code package, which performs a
combination of detecting, tracking, and characterizing active
regions (Higgins et al. 2011). For the present comparison, the
provided patches are used rather than the full-disk MDI data,
but all subsequent analysis proceeds as described in Higgins
et al. (2011). This includes smoothing and thresholding to
differentiate plage from spot regions, and an observing angle
correction similar to other methods, but no additional multi-
plicative factor correction.

Since only one magnetogram per day was provided, the
parameters that characterize temporal variations were not
calculated. Twenty parameters were calculated including:

1. Area of the final dilated mask, and relevant totals, net,
min/max and moments of the flux within the final dilated
mask, and the area of the mask.

2. Maximum, mean, and median of the field spatial
gradients.

3. Length of the line of sight polarity separation lines and
strong-gradient neutral lines.

4. Amount of flux near strong-gradient polarity separation
lines and non-potentiality gauges following Schrijver
(2007) (Appendix A.6) and Falconer et al. (2008)
(Appendix A.4), with two different thresholds applied.

These parameters are used to make forecasts using the
cascade correlation neural networks method (CCNN; Qahwaji
et al. 2008) implemented in Ahmed et al. (2013). For the
machine-learning task, all active regions with a finite value of
the parameters were considered, providing 8137 forecasts, and
the six years are alternately rotated to enable training on five
years of data at a time, in a jackknife manner (e.g., Efron &
Gong 1983). This training is performed separately for each
flare event definition, using all parameters simultaneously. The
CCNN is trained to optimize H&KSS. The skill results shown
in Table 16 confirm this, with the highest H&KSS and HSS
scores of any method, especially for the larger thresholds—but
with the worst BSS skill of any method, as well.
The reliability plots (Figure 23, top) show that the method is

substantially overpredicting events in almost all cases. This is

Figure 19. Same as Figure 11 but for the Schrijver ( )ln parameter with NPDA.
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likely a consequence of optimizing on the H&KSS: by
overpredicting and using a threshold of 0.5 to convert to a
categorical forecast, a similar classification table is achieved to
making accurate probabilistic forecasts but using a lower
threshold for converting to categorical forecasts. This appears
to be supported by the ROC plots (Figure 23, bottom), in which
the largest H&KSS is obtained for a threshold value close to
0.5, as compared to most methods for which the threshold for
the maximum H&KSS is much lower. The ROC curves also
show a relatively rapid decrease in the probability of detection
as the false alarm rate decreases, indicating that this method
may not be well suited to issuing all-clear forecasts.

A.10. Event Statistics—M.Wheatland

Wheatland (2004) presented a Bayesian method to predict
flaring probability for different flare sizes using only the flaring
history of observed active regions. Since it uses only flare
history as input, the results from this approach serve as a

baseline for comparison with methods using magnetogram
and/or white-light image data.
The event statistics method assumes that solar flares (the

events) obey a power-law frequency-size distribution:

( ) ( ) ( )l g= - g g- -N S S S1 , 131 1
1

where N(S) denotes the number of events per unit time and per
unit size S, where λ1 is the mean rate of events above size S1,
and where γ is the power-law index. The method also assumes
that events occur randomly in time, on short timescales
following a Poisson process with a constant mean rate, so that
the event waiting-time distribution above size S is

( ) ( ) ( )t l lt= -P exp , 14

where τ denotes the waiting time for events above size S, and
where λ is the corresponding mean rate of events. Given a past
history of events above a small size S1, the method infers the

Figure 20. Same as Figure 11 but for the generalized correlation dimensions parameter with NPDA.

Table 14
Optimal Performance Results: Generalized Correlation Dimensions (+NPDA)

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hr 9339 0.195 0.81 (0.49) 0.27 (0.30) 0.04 (0.49) 0.31 (0.18) 0.11
M1.0+, 12 hr ” 0.027 0.97 (0.30) 0.15 (0.07) 0.00 (0.30) 0.48 (0.02) 0.05
M5.0+, 12 hr ” 0.007 0.99 (0.13) 0.09 (0.05) 0.00 (0.13) 0.62 (0.01) 0.02
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current mean rate λ1 of events subject to the Poisson
assumption, and then uses the power-law distribution to infer
probabilities for occurrence of larger events within a
given time.

Wheatland (2005) presented an implementation of the event
statistics method for whole-Sun prediction of GOES soft X-ray
events. Figure 24 shows a GOES light curve, from which
GOES event lists are routinely produced. In the application to
GOES data the event size S is taken to be the peak
1–8ÅGOES flux in the GOES X-ray event lists, and the
times of events are identified with the corresponding tabulated
peak times. The whole-Sun method presented in Wheatland
(2005) is used in this study, and the method is also applied (for
the first time) to events in individual active regions.

Three applications of the method were run for these tests:
active region forecasts for which a minimum of five prior
events was required for a prediction, active region forecasts for
which ten prior events were required, and a full-disk prediction.
Since none of the other methods produced a full-disk flare

probability, those results are included for this study just for
completeness. This method has no explicit restriction on the
position of an active region on the disk, although the minimum
number of events means that predictions are not made for
regions that have just rotated into view. The sample sizes for
the region forecasts with ten prior events are the smallest of any
method, indicating that a substantial fraction of regions do not
produce even ten events.
A summary of skill results is given in Table 17. The results

for C1.0+, 24 hr are arguably the worst of any method, but the
approach is biased against regions that produce only a few
small events. The values of the skill scores generally increase
when more prior events are included, so the five prior event
case has most skill score values lower than the ten prior event
case, which in turn has most skill score values lower than the
full disk case. It is likely that the larger number of prior events
simply allows for a better estimate of the power-law index and
the mean rate of events above a given size. The accuracy of the
forecast is expected to scale as -N1

1 2, where N1 is the number

Figure 21. Magnetic charge topology (MCT) method. Example of the partitioning and connectivity for NOAA AR 9767 on 2002 January 3, for the MCT model
described in Appendix A.8, in the same format as Figure 10. Note that there are substantial differences in the partitions (left panel), with this implementation typically
representing the plage with fewer sources than that used to compute Beff (Appendix A.1). Likewise, there are noticeable differences in the connectivity matrix, with
this implementation typically having more connections per source, despite fewer overall sources.

Table 15
Optimal Performance Results: Magnetic Charge Topology, Two-variable Combinations, Non-parametric Discriminant Analysis

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hra 12965 0.201 0.85 (0.55) 0.48 (0.29) 0.23 (0.55) 0.52 (0.17) 0.28
M1.0+, 12 hrb ” 0.031 0.97 (0.50) 0.31 (0.19) 0.05 (0.50) 0.61 (0.03) 0.14
M5.0+, 12 hrb ” 0.007 0.99 (0.33) 0.20 (0.08) 0.00 (0.33) 0.70 (0.01) 0.06

Notes.
a Variable combination: [ ( )f s f,2,tot 2 ].
b Variable combination: [ ∣ ∣f -x x, i jtot

null null ].
c Variable combination: [ ∣ ∣f -x x, i jtot

null null ].
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of small events observed and used to infer the rate λ1
(Wheatland 2004).

The summary plots (Figure 25) are shown only for the region
forecasts requiring ten prior events. The reliability plots show a
systematic overprediction for all event definitions, and the
ROC plots do not noticeably improve with increasing thresh-
old, in contrast to most other methods. The peak H&KSS score
is somewhat low and remarkably consistent across event
definitions.

A.11. Active Region McIntosh Class Poisson Probabilities—D.
S.Bloomfield, P.A.Higgins, P.T.Gallagher

Another method that was applied to the active region patch
data set which did not use the magnetogram data was one based
on historical flare rates from McIntosh active region classifica-
tions. This method is the same as that presented in Bloomfield
et al. (2012), where the occurrence of GOES X-ray flares from

individual McIntosh classifications were collated over
1969–1976 and 1988–1996. These average 24 hr flaring rates,
μ24, lead to a Poisson probability of one or more flares
occurring in any 24 hr interval from Gallagher et al. (2002),

( ) ( ) ( ) m= - -mP N 1 1 exp , 152424

or the probability of one or more flares in any 12 hr interval
from,

( ) ( ) ( ) m= - -mP N 1 1 exp 2 . 162412

The nature of the statistics collated in Bloomfield et al. (2012)
places a limitation on the forecasts outlined in Section 2.2 that
are able to be studied by this method. Forecasts of at least one
C1.0 or greater flare within 24 hr (C1.0+, 24 hr) are directly
achieved by the Poisson flare probabilities for “Above GOES
C1.0” published in Table2 of Bloomfield et al. (2012), while
forecasts of at least one M1.0 or greater flare within 12 hr

Figure 22. Same as Figure 11 but for MCT parameters and forecasts using 2-variable NPDA.

Table 16
Optimal Performance Results: SMART2 with Cascade Correlation Neural Networks

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hr 11536 0.212 0.84 (0.58) 0.50 (0.52) 0.26 (0.58) 0.53 (0.48) −0.13
M1.0+, 12 hr ” 0.032 0.97 (0.76) 0.30 (0.53) 0.02 (0.76) 0.59 (0.46) −4.63
M5.0+, 12 hr ” 0.007 0.99 (0.90) 0.23 (0.52) 0.00 (0.90) 0.60 (0.39) −12.10
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(M1.0+, 12 hr) were calculated by combining the 24 hr M-
and X- class flare rates published in the same Table (μ24) and
applying Equation (16) above. Forecasts of at least one M5.0
flare or greater within 12 hr (M5.0+, 12 hr) were not capable
of being achieved by this method because the flares that were
collated from 1969–1976 (Kildahl 1980) were identified only

by their GOES class and not the complete class and
magnitude.
For each magnetogram patch the observation date and

NOAA region number(s) contained within it were used to
cross-reference the McIntosh class of that active region in that
day’s NOAA Solar Region Summary file. It should be noted
that, even for the C1.0+, 24 hr and M1.0+, 12 hr forecasts,
flare probabilities were not able to be issued for some patches
because the magnetogram was recorded before the active
region had received a NOAA number designation. For the case
of magnetogram patches containing multiple active regions, the
reported flare probability was the largest probability from any
of the regions within that patch.
The summary plots (Figure 26) for the C1.0+, 24 hr and

M1.0+, 12 hr thresholds show an overprediction tendency in
the reliability plots, with marginal improvement with increased
threshold in the ROC plots. The Poisson method as
implemented here is an example of a method whose
requirements are not well met by the data used for this
workshop, and the method is likely penalized as a result, as
evidenced by the relatively low skill score values in Table 18.

APPENDIX B
ACCESSING THE DATABASE

The website for all data is: http://www.cora.nwra.com/
AllClear/. Users are required to register but otherwise access is
completely open. The MDI data sets are provided, as well as
event lists (boolean results of events for each data set according

Figure 23. Same as Figure 11 but for the SMART2 with cascade correlation neural networks.

Figure 24. Event statistics method. The number, timing, and size of flares as
tabulated using GOES data for each active region are the sole data required by
the event statistics prediction method. This figure shows a GOES time history
including the M-class flare on 2002 January 09.
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Table 17
Optimal Performance Results: Event Statistics

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

5 Prior Events:

C1.0+, 24 hr 2367 0.497 0.68 (0.92) 0.35 (0.92) 0.35 (0.92) 0.35 (0.92) −0.41
M1.0+, 12 hr ” 0.116 0.89 (0.65) 0.34 (0.36) 0.03 (0.65) 0.46 (0.22) 0.09
M5.0+, 12 hr ” 0.033 0.97 (0.88) 0.22 (0.21) 0.01 (0.88) 0.51 (0.11) −0.01

10 Prior Events:

C1.0+, 24 hr 1334 0.567 0.70 (0.91) 0.38 (0.94) 0.30 (0.91) 0.40 (0.96) −0.28
M1.0+, 12 hr ” 0.159 0.84 (0.65) 0.34 (0.36) 0.02 (0.65) 0.44 (0.28) 0.09
M5.0+, 12 hr ” 0.047 0.95 (0.88) 0.21 (0.21) 0.02 (0.88) 0.44 (0.11) −0.03

Full Disk:

C1.0+, 24 hr 12965 0.809 0.82 (0.66) 0.36 (0.96) 0.08 (0.66) 0.41 (0.99) −0.00
M1.0+, 12 hr ” 0.199 0.82 (0.62) 0.34 (0.54) 0.09 (0.62) 0.39 (0.36) 0.11
M5.0+, 12 hr ” 0.047 0.95 (0.41) 0.19 (0.14) 0.00 (0.41) 0.39 (0.06) 0.06

Figure 25. Same as Figure 11, but for the event statistics method for region forecasts, requiring 10 prior events.

Table 18
Optimal Performance Results: Poisson Statistics

Event Sample Event RC HSS ApSS H&KSS BSS
Definition Size Rate (Threshold) (Threshold) (Threshold) (Threshold)

C1.0+, 24 hr 11385 0.210 0.82 (0.73) 0.42 (0.41) 0.16 (0.73) 0.44 (0.36) 0.07
M1.0+, 12 hr ” 0.033 0.97 (0.62) 0.28 (0.26) 0.00 (0.62) 0.56 (0.06) −0.06
M5.0+, 12 hr ” N/A N/A N/A N/A N/A N/A
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to event definition). Also provided are all of the parameters
calculated by each group participating, summaries of forecasts
and resulting skill scores. There are multiple ‘‘README’’
files on format and content. We request acknowledgement for
use of the data, and that if you use the data to make predictions,
you agree to allow your results to be added to the database (at
an appropriate time with respect to relevant publications), as all
participants herein have agreed.

We invite groups doing research on active regions and flares,
as well as on statistical analysis, to become involved.
Instructions are posted on how to submit forecasts and/or
new parameters, in order to (for example) benchmark new
techniques against those highlighted here.

Any questions regarding the website should be addressed to
the NWRA authors.
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