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ABSTRACT
The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however

a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric
boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying
multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolu-
tions, prepared from a single Hinode/SOT-SP scan of NOAA Active Region 10978 on 2007 December 13. We analyze
the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence
errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with
the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of
the input boundary data, and that using more highly resolved boundary data yields more self-consistent results. The free
energies of the resulting solutions generally trend higher with increasing resolution, while relative magnetic helicity
values vary significantly between resolutions for all methods. All methods require changing the horizontal components,
and for some methods also the vertical components, of the vector magnetogram boundary field in excess of nominal
uncertainties in the data. The solutions produced by the various methods are significantly different at each resolution
level. We continue to recommend verifying agreement between the modeled field lines and corresponding coronal loop
images before any NLFFF model is used in a scientific setting.

Subject headings: Sun: corona — Sun: magnetic fields

1. Introduction

The solar coronal magnetic field produces solar activity,
including extremely energetic solar flares and coronal mass
ejections. There is considerable interest in accurate modeling
of magnetic fields in and around active regions on the Sun, the
locations of the most intense coronal fields and the drivers of
flares and many mass ejections, with the aim of better under-
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standing the physics underlying magnetic energy release, and
improving the ability to predict space weather storms caused
by large events.

A popular model for the coronal magnetic field B is the
nonlinear force-free field (NLFFF) model (see the reviews by
Wiegelmann & Sakurai 2012 and Régnier 2013), which as-
sumes a static configuration with a zero Lorentz force,

J ×B = 0, (1)

where J = µ−10 ∇×B is the electric current density, together
with the solenoidal condition,

∇ ·B = 0. (2)

The model current density is everywhere parallel to the mag-
netic field, and Equation (1) is often written

∇×B = αB, (3)

where α is the force-free parameter. The proper boundary
conditions on the model are the specification of the normal
component of the field Bn over the bounding surfaces of the
solution domain, together with the normal component of the
electric current density Jn (or, alternatively, α) over one po-
larity of the field in the boundary (i.e., either over the region
where Bn > 0 or over the region where Bn < 0) (Grad &
Rubin 1958). The current density is only required over one
polarity of the field because current density streamlines fol-
low magnetic field lines, so values of Jn at one polarity are
“mapped” to the other polarity by the geometry of the field
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lines of the solution. Stated another way, taking the diver-
gence of Equation (3) and applying the solenoidal condition
yields the general property

B · ∇α = 0, (4)

which indicates that α is invariant along magnetic field lines
(though α may be different from line to line). In the follow-
ing, we consider the problem in a half space (z > 0), with
the plane z = 0 representing the base of the (assumed force-
free) corona. This geometry neglects solar curvature, which
is appropriate for the local modeling done in this study.

Solar observations provide a set of boundary data for ap-
plication of the model. Spectro-polarimetric measurements of
magnetically sensitive lines (del Toro Iniesta 2003) are used
to construct vector (three-component) magnetogram data that
are presumed to be located on a planar surface representing
the top of the photosphere. The vertical current density Jz
may be estimated from such vector magnetogram data using

µ0Jz|z=0 =

[
∂By

∂x
− ∂Bx

∂y

]
z=0

, (5)

provided the 180-degree ambiguity in the direction of the field
transverse to the line of sight is resolved (Metcalf et al. 2006;
Leka et al. 2009).

Vector magnetogram data are now routinely produced by
ground based instruments, and more recently have been pro-
vided by two space-based vector magnetographs: the So-
lar Optical Telescope/Spectro-Polarimeter (SOT-SP) on the
Hinode satellite (Tsuneta et al. 2008), and the Helioseis-
mic and Magnetic Imager on the Solar Dynamics Observa-
tory (SDO/HMI; Schou et al. 2012). The use of such vec-
tor magnetogram data for NLFFF modeling builds on earlier
work done with data from the Haleakala Stokes Polarimeter
(HSP), the Imaging Vector Magnetograph (IVM), the Solar
Flare Telescope (SFT), and the Advanced Stokes Polarime-
ter (ASP) in the previous decades (e.g., Mikic & McClymont
1994; Roumeliotis 1996; Thalmann & Wiegelmann 2008).
The earliest vector magnetogram data possessed spatial res-
olutions of multiple arc seconds, whereas the Hinode/SOT-SP
magnetogram data have a resolution as high as 0.′′32.

In practice, however, additional modeling assumptions are
needed in order to use vector magnetogram data with NLFFF
modeling. One problem is that the boundary conditions on Jz
(or α) are inconsistent with the NLFFF model over the two
polarities of Bz (Molodenskii 1969; Aly 1984, 1989). Addi-
tionally, boundary data are not available at the top and side
surfaces of the three-dimensional solution domain. Further-
more, the vector magnetogram measurements contain uncer-
tainties. The polarization measurements are subject to obser-
vational uncertainty, and the process of determining magnetic
field values by inverting the Stokes polarization spectra in-
volves making various assumptions about the radiative trans-
port of polarized radiation through the magnetized solar at-
mosphere.

Given the scientific importance of determining the free en-
ergy in the solar coronal magnetic field, coupled with the

recent increase in availability of vector data over the past
decade, a sequence of yearly workshops was organized be-
tween 2004 and 2009 in an effort to characterize and improve
NLFFF modeling. The workshops demonstrated that NLFFF
methods work for analytic test cases and for synthetic, solar-
like test data, but encounter specific problems in application to
photospheric vector magnetogram data (Schrijver et al. 2006;
Metcalf et al. 2008; Schrijver et al. 2008; De Rosa et al. 2009).
There are a number of different methods of solution of the
NLFFF model in use, which were found to produce signifi-
cantly different results. Discrepancies include the locations
and magnitudes of currents within the solution volume, and
the total magnetic energy in the solution domain. Issues iden-
tified during these studies include the inconsistency of photo-
spheric vector magnetogram data with the NLFFF model, the
possibility that high spatial-resolution data are needed to ac-
count for small-scale currents, the limited field of view of the
data, and the lack of account of the substantial uncertainties
in the boundary field values.

More recently, additional NLFFF modeling workshops1

were held to address these issues. In this article, we follow up
on one such issue and characterize the influence of the spatial
resolution of vector magnetogram data on the results of the
modeling. Examining this issue at this time is motivated by
the increasing availability of vector data from various space-
and ground-based instrumentation, all of which provide vec-
tor data at different spatial resolutions. For instance, the Na-
tional Solar Observatory’s Synoptic Optical Long-term Inves-
tigations of the Sun Vector SpectroMagnetograph instrument
(SOLIS/VSM) provides full disk data with a spatial sampling
of 1.′′1 (Henney et al. 2006, 2009), while SDO/HMI full-disk
vector magnetograms have a pixel size of 0.′′5 (Hoeksema
et al. 2014), and “normal-map” and “fast-map” Hinode/SOT-
SP data are sampled at 0.′′16 and 0.′′32 respectively (Lites et al.
2013).

To assess the sensitivity of the results of NLFFF model-
ing to variations in spatial resolution, we use data for NOAA
Active Region (AR) 10978. Vector magnetograms are con-
structed from a Hinode/SOT-SP normal-map scan of this re-
gion, with the spatial resolution of the data artificially de-
graded by a sequence of binning factors. The methodology
is to perform inversions on rebinned polarization spectra (as
opposed to simply rebinning the resulting vector data inverted
from spectra at the native Hinode/SOT-SP resolution) in order
to approximate observations of AR 10978 by instruments hav-
ing different spatial resolutions. In common with the earlier
workshop studies, we apply a number of different methods
of solution of the NLFFF model in order to also gauge the
dependence of the results on the solution method.

The effects of spatial resolution on coronal field modeling
have been discussed in several earlier studies. Parker (1996)
claimed that the concentration of photospheric magnetic fields

1These workshops were hosted and in part supported by the International
Space Science Institute (ISSI) in Bern, Switzerland. The first workshop was
held from 2013 January 29 to February 1 and the second 2014 January 13–16.
Some online meeting materials are available at http://www.issibern.
ch/teams/solarcorona.
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into unresolved fibrils renders currents inferred from vector
magnetograms meaningless, but McClymont et al. (1997) ar-
gued in response that it is only necessary to resolve the large-
scale twist in the field to correctly infer the current. Semel &
Skumanich (1998) presented a method for inferring |Jz| (for
observations at disk center) that is independent of the ambi-
guity resolution, and argued for the reality of electric currents
obtained using this method applied to ASP data. More re-
cently, Leka et al. (2009) investigated the influence of noise
and spatial resolution on the ambiguity resolution step in the
treatment of vector magnetogram data (see also Georgoulis
2012, Leka et al. 2012, and Crouch 2013). A hare-and-hounds
exercise was run on an analytic test case, and it was shown
that failure to resolve observed structures due to low resolu-
tion leads to serious errors in ambiguity resolution.

Leka & Barnes (2012) also looked at the results of arti-
ficial degradation of Hinode/SOT-SP data on vector magnetic
field values, including degrading observed Stokes spectra, and
using full-resolution spectra but degrading the field values de-
rived from the spectra. They examined, in particular, the ef-
fect of these steps on the statistics of the derived fields. They
found that degraded resolution data can exhibit increased av-
erage flux densities, lower total flux, and field vectors shifted
towards the line of sight. The distribution of Jz was found to
be very sensitive to the spatial resolution. Recently Thalmann
et al. (2013) compared NLFFF reconstructions for an active
region based on Hinode/SOT-SP and SDO/HMI data, includ-
ing calculations for the Hinode data at original resolution and
rebinned to match the HMI data. They found similar results
for the different-resolution data from Hinode, but significantly
different results for data between the two instruments, in par-
ticular, e.g., differences in magnetic connectivity. We note
that Thalmann et al. (2013) rebinned vector magnetogram
field values, rather than rebinning the original Hinode/SOT-
SP spectral data as is done in the experiments presented here.
Rebinning the spectra was shown in Leka & Barnes (2012) to
produce different vector magnetogram values than rebinning
the field values. These earlier studies motivate the present in-
vestigation of the influence of resolution on NLFFF modeling.

The structure of the paper is as follows. In Section 2 the
data used and the different methods are presented, with Sec-
tion 2.1 describing the preparation of the different resolution
vector magnetograms, and Section 2.2 explaining the meth-
ods of solution of the NLFFF model, and their treatment of
boundary conditions. In Section 3 we present a quantitative
analysis of the energy and relative magnetic helicity of the
resulting solution fields (Section 3.1), including assessment
of non-solenoidal field errors, and an analysis of how the so-
lution methods alter the vector magnetogram boundary data
(Section 3.2). In Section 4, results are discussed and conclu-
sions drawn.

2. Data and Methods

2.1. Vector Magnetogram Data for Active Region 10978

An ideal active region for this study would be one that is
flux-balanced and is mostly isolated, shows evidence of non-

potentiality, is located near disk center, is small enough for the
full active region to be observed with high-resolution spec-
tropolarimetry, and has accompanying high-resolution coro-
nal imagery suitable for comparisons between coronal loops
and the field lines from the resulting extrapolations. Unfortu-
nately, no such target satisfying all of these criteria was found
from archive data. As a result, we prioritized the require-
ments for the nonpotentiality, location, isolation, and size for
the magnetic field, and present in Section 3 performance met-
rics that do not rely on coronal loop data. Although some
data from both the X-Ray Telescope (XRT) on Hinode and the
Transition Region and Coronal Explorer (TRACE) instrument
were available, there were an insufficient number of distinct
and discernible loops for useful analysis.

Based on the above specifications, NOAA AR 10978 was
selected from the archive of Hinode/SOT-SP observations.
The SOT-SP instrument returns full Stokes spectra for the
Fe I doublet at approximately 630.2 nm with high spectral
sampling (2.15 pm). Polarization spectra for AR 10978 were
obtained in normal-map mode on 2007 December 13, 12:18–
13:41 UT2

over a field of view of approximately 164′′×164′′ (on a
1024×1024 grid), with high spatial sampling (0.′′16) both
along the slit and in the direction of the scan.

Figure 1(a) shows a magnetogram of AR 10978 from
the Michelson Doppler Interferometer (MDI; Scherrer et al.
1995) on board the Solar and Heliospheric Observatory
(SOHO) on 2007 December 13. The region is isolated, being
the only numbered active region on the disk at the time. The
inset in Figure 1(b) shows the soft X-ray emission from the
core of the region, as observed by Hinode/XRT. The core of
the active region, where the strongest vertical currents (of crit-
ical importance to NLFFF modeling) are often located, lies
within the Hinode/SOT-SP scan area, which is demarcated by
the white boxes in Figures 1(a) and (b). Figures 1(c) and (d)
illustrate the continuum intensity and the longitudinal mag-
netic field from Hinode/SOT-SP. The region is sufficiently
small to allow the Hinode field of view to encompass most of
the magnetic flux.

In the middle of its disk passage, AR 10978 possessed a
Hale classification of βγ, indicating a high degree of flare pro-
ductivity, and indeed almost 30 soft X-ray flares are attributed
to the region in the National Geophysical Data Center GOES
soft X-ray event lists3 over the course of its observed history
on the solar disk. All were relatively small and short events.
The largest flare was a very short and impulsive C4.5 flare
which occurred at 09:39 UT on 2007 December 13, a few
hours before the Hinode/SOT-SP normal-map scan used here
was recorded. Additionally, the region produced a C1.0 flare

2To download the Level-1 data for this Hinode/SOT-SP scan, please
see the corresponding entry in the Heliophysics Coverage Registry
and links therein: http://www.lmsal.com/hek/hcr?cmd=
view-event&event-id=ivo%3A%2F%2Fsot.lmsal.com%
2FVOEvent%23VOEvent_ObsSP2007-12-13T12%3A18%3A05.
117.xml.

3Available from ftp://ftp.ngdc.noaa.gov/STP/
space-weather/solar-data/solar-features/
solar-flares/x-rays/goes/.
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(b)

(c)

(d)

Fig. 1.— Images of NOAA AR 10978 on 2007 December 13. Panel (a) shows the SOHO/MDI full-disk magnetogram at 12:46 UT,
obtained within the interval of the Hinode normal-map scan used in this study. The image saturates at ±1000 Mx cm–2. Panel (b)
shows a logarithmically scaled Hinode/XRT images (Ti/Poly filter) averaged over the scan interval, for context. Representative
Hinode/SOT-SP data are shown in the two smaller panels (both 162′′×162′′) at right: panel (c) is the continuum intensity, and
panel (d) shows the longitudinal magnetic field derived from the Hinode polarization spectra (scaled to ±1500 Mx cm–2). The white
boxes in panels (a) and (b) correspond to the region represented by panels (c) and (d). The black dashed outline in panel (d) indicates
the region subsequently remapped into helioplanar coordinates for use in this study.

within the hour following the completion of the scan.
In this study, we construct a set of vector magnetograms

from the chosen Hinode/SOT-SP scan of AR 10978 in order
to investigate the effects of spatial resolution on the subse-
quent NLFFF extrapolations. Vector magnetograms are pre-
pared at near-Hinode normal-map resolution, and also at spa-
tial resolutions lowered by factors ranging from 2 to 16. The
northernmost 25% of the Hinode field of view (mostly con-
taining quiet sun) is excluded in order to make the subsequent
NLFFF extrapolations more computationally tractable. The
region considered for modeling is contained within the dashed
box in Figure 1(d).

Because the codes used for NLFFF modeling in this pa-
per assume a Cartesian geometry, it is necessary to project
the Hinode data onto a regular helioplanar grid. The field of
view of the Hinode observations is small relative to the solar
radius, making the effects of curvature small, and as a result
this remapping is not expected to significantly affect the mod-
eling results. During the remapping process, B is reprojected
so that it appears as if the active region were located at disk

center. The resulting set of remapped vector magnetograms4

span a region approximately 168 Mm×124 Mm in size. The
local helioplanar coordinates are denoted (x, y, z), with x de-
noting solar west direction, y solar north, and z the vertical
direction.

The procedure followed in preparing the vector magne-
togram data at each resolution level is as follows: (1) the
Level-1 Hinode/SOT-SP polarization spectra are rebinned by
the specified factor; (2) a spectral inversion using the High
Altitude Observatory Milne-Eddington inversion code (Sku-
manich & Lites 1987; Leka & Barnes 2012) is performed; (3)
the 180◦ disambiguity is resolved using the NorthWest Re-
search Associates “ME0” minimum energy algorithm (Leka
& Barnes 2012); (4) helioplanar components of B, and val-
ues for the vertical component of the current density Jz and
force-free parameter α = µ0Jz/Bz , are calculated; and (5)
the resulting values are remapped (interpolated) onto a regu-
lar and uniformly spaced helioplanar grid.

4The remapped vector magnetogram data, with uncertainties, are available for
download from http://dx.doi.org/10.7910/DVN/KOUAOU.
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Throughout this article, we refer to the various vector mag-
netograms by the factor by which the observed polarization
spectra are rebinned in step (1). For example, “bin 2” data are
rebinned by a factor of two in each dimension, “bin 3” data
are rebinned by a factor of three in each dimension, etc. We
also retain a “bin 1” dataset that is prepared without any re-
binning. The grid and pixel sizes for these data as a function
of the bin level are summarized in the first three columns of
Table 1.

Uncertainties are provided for the components of B, for
Jz , and for the force-free parameter α, based on propagation
of uncertainties from the inversion and disambiguation steps.
The disambiguation uncertainties comprise azimuthal errors
of 180◦ assigned to points where multiple trials of the dis-
ambiguation code produced different results with a frequency
greater than 10% when the optimization procedure used is
seeded with different sets of random numbers.

Figure 2 illustrates the reprojected vector magnetogram
data. The figure shows maps of Bz and Jz for the bin 1 and
bin 8 data (with the Jz values shown only for points where
the signal-to-noise ratio in α is greater than 0.25). We have
set B = 0 at points in the reprojected coordinate system that
lie outside of the Hinode field of view (such points are located
at the eastern and western edges of the remapped data). The
dashed boxes in the figure correspond to the region used for
comparing NLFFF extrapolations in Section 3, and is slightly
smaller than the remapped field of view. As expected, Fig-
ure 2 shows that large-scale structures present in Jz at the
photosphere are retained in the reduced-resolution data (al-
beit with a smaller magnitude), but structures on scales below
the reduced resolution limit are lost.

The structure of the magnetic field, which is inferred from
the rebinned polarization spectra, is affected by the spatial
resolution, sometimes in non-intuitive ways. Some of the
trends depend on the underlying structure. To illustrate this
effect, we use continuum intensity maps from Hinode/SOT-
SP to segment the boundary data into umbral and penumbral
regions. Figure 3(a) shows a bin 1 continuum intensity image
with contours outlining umbral and penumbral regions over-
laid. When downsampling the contours from the bin 1 data
down to the resolution of the bin 16 data and comparing with
the rebinned intensity image, as shown in Figure 3(b), differ-
ences between the downsampled contours and the locations of
umbral and penumbral pixels are evident. This effect is espe-
cially noticeable in regions in the bin 1 data where small-scale
features are present, leading to the classification of some pix-
els determined to be in the umbral region in the bin 1 image
being identified as penumbral in the bin 16 image.

Figure 4 shows how the magnetogram-averaged absolute
vertical flux density |Bz|, absolute horizontal flux density
Bh = (B2

x + B2
y)1/2, |Jz|, and α vary as the spatial reso-

lution changes. In the set of plots, the inferred values of these
quantities are plotted as a function of spatial resolution in two
ways, depending on whether the contours used in the segmen-
tation are determined from the rebinned continuum images
or are determined from downsampling those from the high-
resolution bin 1 image. The differences between the two pairs

of curves in 〈|Bz|〉 and 〈Bh〉 (Figs. 4(a) and (b)) as a function
of resolution are often due to the spatial resolution affecting
whether pixels are classified as being within the umbral or
penumbral contours.

More strikingly, the average vertical current densities
〈|Jz|〉 are seen to decrease as the spatial resolution decreases,
indicating that the vertical currents often have structure on
small scales. This effect also affects the trend in α, with both
umbral and penumbral values getting closer to zero (i.e., po-
tential) as the spatial resolution decreases. The penumbral
and umbral values of α possess different signs for most bin
levels, though the mean α value in penumbral areas changes
sign as the boundary data become less resolved.

Table 1 lists values of the net magnetic flux Φ, and the
components Fi (with i = x, y, z) of the magnetic force on
the coronal volume, as a function of the bin level. The flux is
calculated by integrating Bz over the magnetogram area, and
the force components are obtained by performing the integrals
in Molodenskii (1969), which are derived from moments of
Equation (3). The net flux Φ is expressed as a fraction of the
unsigned magnetic flux Φ0 (the integral of |Bz| over the mag-
netogram area), and the force components are in units of F0,
the integral of the magnetic pressure over the magnetogram
area. The net flux is zero if the observed area is in flux bal-
ance, and the force components vanish if the boundary data
are consistent with the NLFFF model. The values in the table
indicate that the region is close to flux-balanced. The region
has relatively small horizontal force components and larger
vertical forces (cf. Metcalf et al. 1995).

2.2. Methods and Codes Used

Many methods of solution of the NLFFF equations exist.
In the study presented here, implementations of three such
methods — the optimization, magnetofrictional, and Grad-
Rubin methods — are applied to the sequence of vector mag-
netogram data described in Section 2.1. Altogether there are
five codes (one code implementing the optimization method,
one code implementing the magnetofrictional method, and
three codes implementing the Grad-Rubin method in differ-
ent ways).

Each of the five codes solves for a NLFFF on a uniform
three-dimensional Cartesian grid with equal grid spacing in
each dimension. The grids used are defined by the helioplanar
vector magnetogram boundary data at the lower boundary and
the choice of a vertical height for the grid. The codes differ
in how they incorporate the vector magnetogram data at the
lower boundary, and how they use the information provided
by the uncertainties in the data. The boundary conditions at
the side and top of the computational domain are not con-
strained by the observational data, and as a consequence the
different codes handle boundary conditions at these surfaces
in different ways. In the following subsections, we briefly
describe each of the specific codes used in this study.
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TABLE 1
PROPERTIESa OF AR 10978 REMAPPED VECTOR MAGNETOGRAM DATA

Bin Level Size (pixels) Pixel Scale (Mm) Φ/Φ0 Fx/F0 Fy/F0 Fz/F0 F0 [N]

1 1129×837 0.106 –0.030 8.3×10–4 –1.1×10–2 –0.37 2.4×1019

2 564×418 0.212 –0.026 9.7×10–4 –1.1×10–2 –0.37 2.4×1019

3 375×278 0.318 –0.024 –3.6×10–4 –1.1×10–2 –0.36 2.5×1019

4 282×209 0.424 –0.026 –9.3×10–4 –9.5×10–3 –0.36 2.4×1019

6 187×138 0.635 –0.024 –4.8×10–3 –8.2×10–3 –0.36 2.5×1019

8 141×104 0.847 –0.026 –5.1×10–3 –5.9×10–3 –0.35 2.7×1019

10 112×82 1.06 –0.031 –8.8×10–3 –5.8×10–3 –0.35 2.6×1019

12 93×68 1.27 –0.029 –7.7×10–3 –7.3×10–3 –0.35 2.8×1019

14 80×58 1.48 –0.030 –1.4×10–2 –6.0×10–3 –0.35 2.8×1019

16 70×52 1.69 –0.038 –1.6×10–2 –5.0×10–3 –0.35 2.9×1019

aThe ratio Φ/Φ0 is the ratio of the net to unsigned flux, and is a measure of the flux imbalance of the magnetogram, and Fx, Fy ,
and Fz are the magnetogram-integrated integrated Lorentz forces, as determined from the integrals in Molodenskii (1969). The forces
are normalized by F0, the magnetogram-integrated magnetic pressure.

Fig. 2.— The vertical magnetic field Bz , as derived from the Hinode data for AR 10978 and after remapping to helioplanar
coordinates, at a resolution close to the Hinode observations (bin 1) is shown in panel (a), and the associated vertical current density
Jz is shown in panel (b). Panels (c) and (d) illustrate Bz and Jz after rebinning the Hinode data by a factor of eight and remapping
into helioplanar coordinates. The color bars in each panel indicate the image scale in Mx cm–2 (for Bz) and mA m–2 (for Jz). The
dashed boxes correspond to the base of the analysis volume used in Section 3 for comparing the resulting NLFFF solutions.
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Fig. 3.— Images of continuum intensity for the (a) bin 1 and (b) bin 16 boundary data. The contours in panel (a) indicate the umbral
(red) and penumbral (purple) boundaries derived from the bin 1 data, while those in panel (b) are derived from the bin 1 data and
subsequently downsampled to the coarser resolution of the bin 16 data. In panel (b), it is evident that the downsampled umbral and
penumbral contours do not exactly correspond to the analogous contours that would be drawn using the bin 16 continuum image.
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Fig. 4.— Variations of the mean values of (a) unsigned vertical magnetic flux density |Bz|, (b) magnitude of the horizontal flux
density Bh = (B2

x + B2
y)1/2, (c) magnitude of the vertical current density |Jz|, and (d) force-free parameter α that characterize

the vector magnetogram data, as averaged over the full area and plotted as a function of spatial resolution. For clarity, we note that
spatial resolution increases leftward (toward smaller pixel sizes) in each plot. In each panel, the averages over all pixels are shown
in red, and averages over pixels inside the umbral and penumbral contours are shown in green and blue, respectively. Dashed curves
indicate that the umbral and penumbral regions were determined from the rebinned data, and solid curves indicate that the regions
were based on contours downsampled from the bin 1 data. (An example of contours that have been downsampled from bin 1 to
bin 16 is shown in Fig. 3(b).) Error bars indicate standard deviations, except for panel (d) where standard errors are shown.
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2.2.1. Optimization Method

The optimization method is a relaxation scheme that seeks
to minimize a volume integral such that, if the integral be-
comes zero, the field is divergence- and force-free. In its orig-
inal form (Wheatland et al. 2000), the method proceeds as
follows. An initial magnetic field is chosen in the computa-
tional volume, and lower boundary values are replaced by the
required vector boundary conditions B. The field is evolved
forward using equations that minimize a functional contain-
ing the magnitudes of the Lorentz force and of the divergence
of B. The process is halted when the field reaches an approx-
imately steady state.

The optimization solutions discussed here are based on the
algorithm described in Wiegelmann & Inhester (2010) and
Wiegelmann et al. (2012), which includes several modifica-
tions to the original method. As discussed in Wiegelmann
et al. (2006), the optimization solutions are found to improve
when a preprocessing scheme is applied to the vector bound-
ary data. Preprocessing reduces the magnitude of the inte-
grals representing the boundary-integrated magnetic force and
torque (which necessarily vanish for a NLFFF), subject to
penalty functions that simultaneously aim to preserve agree-
ment with the observed vector magnetogram data. Spatial
smoothing is also applied to the boundary data. The spe-
cific preprocessing scheme used here involves four weight-
ing parameters that determine which constraints are most
closely met. The values used here are µ1 = µ2 = 1 and
µ3 = µ4 = 10–3, where the weighting parameters are as de-
scribed in Equation (6) in Wiegelmann et al. (2006).

Additionally, modifications of the lower boundary values
are permitted during the optimization process, implemented
by including an additional optimization term in the functional
that takes into account the measurement uncertainties in the
vector magnetogram data. This term allows more substantial
changes to the components of the field at points where the
associated uncertainties are larger. These changes are con-
trolled by a two-dimensional weighting matrix W (x, y) in an
optimization integral over the lower boundary, as described in
Wiegelmann & Inhester (2010).

The modified optimization method also includes three-
dimensional weighting functions wf (x, y, z) and wd(x, y, z)
in the functionals for the volume-integrated Lorentz force and
divergence (see Equation (4) of Wiegelmann et al. 2012).
These weights wf and wd are set to unity in the entire model
volume, except for finite boundary layers adjacent to the lat-
eral and top boundaries of the computational volume, where
they smoothly approach zero. This causes the solution ob-
tained by the method to remain fixed at the boundary values
prescribed by the initial field, and introduces buffer regions at
the side and top boundaries where the solution field may de-
part from a force-free and divergence-free state. These buffer
regions are excluded from the analysis in Section 3.

Another feature of the optimization code used here is a
grid-refinement scheme. The scheme entails applying the op-
timization code on coarser grids, the solutions of which are
then used to initialize the optimization algorithm on succes-

sively more refined grids. Typically several refinement lev-
els are used. The series of increasingly more refined grids is
started by using a potential field to initialize the coarsest grid.
This scheme has been shown in earlier studies to improve the
quality of the resulting solutions to the NLFFF model, and
decreases the running time of the full calculation.

2.2.2. Magnetofrictional Method

Magnetofrictional codes evolve the magnetic induction
equation using a velocity field that advances the solution to
a more force-free state (e.g., Chodura & Schlueter 1981). The
magnetofrictional code used here is described in Valori et al.
(2007, 2010), and its application to solar data is presented in
Valori et al. (2012b). The magnetofrictional method uses the
full vector field over the entire lower boundary as boundary
condition, taking as input preprocessed vector magnetogram
data. Both the horizontal and vertical components of B may
be adjusted during the preprocessing stage to make the bound-
ary data more compatible with the force-free model, although
changes in the boundary data are constrained to be within cer-
tain limits (Fuhrmann et al. 2007, 2011).5

As the field is evolved forward in time, the boundary con-
ditions at the side and top boundaries are constructed by
the code at each iteration of the magnetofrictional relaxation
method using the neighboring volume values of the field at
the previous iteration (Valori et al. 2007). The construction
uses first order polynomial interpolation, and requires that the
solenoidal condition is met at the boundary points, and that
the Lorentz force falls to zero at ghost points just exterior to
the volume.

A grid-refinement strategy analogous to that used in the
optimization code is also used here. The domain having
the coarsest refinement is initialized using a potential mag-
netic field with values of Bz matching the initial prepro-
cessed lower boundary values, and subsequent, more refined
domains are initialized using the resulting fields from the less
refined solutions.

For this particular active region, the magnetofrictional ex-
trapolations of the full field of view at all tested resolutions
developed abnormally strong but stable large-scale currents
near the northern lateral boundary. Such behavior is unusual,
and remained even after tuning the parameters of the algo-
rithm. As a result, additional cropping of the magnetogram
at the northern side was performed before running the mag-
netofrictional models shown here. In all but the case using
bin 3 boundary data, the cropped magnetograms allowed the
preprocessing algorithm to produce more compatible (more
force-free) boundary conditions for the extrapolation code,
and the resulting extrapolated fields did not develop any un-
usual current at the northern lateral boundary. For the bin 3
case, even this additional cropping did not yield a consistent
preprocessed boundary condition, and consequently this case
is omitted from the analyses presented in Section 3.

5Both the magnetofrictional and optimization codes apply preprocessing algo-
rithms to the boundary data, however the preprocessing algorithms used with
these codes are distinct and unrelated.
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2.2.3. Grad-Rubin Method

Three different implementations of the Grad-Rubin method
are used. These are the CFIT code (Wheatland 2007); the
XTRAPOL code (as described in Amari et al. 2006 and with
the boundary conditions given in Amari & Aly 2010); and
the FEMQ code (Amari et al. 2006). A brief account of the
specific implementations and boundary conditions is given
here.

Grad-Rubin methods take as boundary conditions the nor-
mal component of the field in the boundary and the value of
the force-free parameter α over one polarity of the field in the
boundary. Since there are two choices of polarity there are
two solutions, which are in general different if the boundary
data are inconsistent with the force-free model. We present
both solutions for all Grad-Rubin codes in this paper, using P
and N to denote solutions with α chosen from positive- and
negative-polarity regions in the lower boundary, respectively.

CFIT code

Grad-Rubin methods involve updates to both B and J at each
iteration, involving the solution of linear hyperbolic and ellip-
tic partial differential equations, respectively. The CFIT code
performs the update to J by propagating lower boundary val-
ues of α along numerically traced field lines. The update to B
is achieved by solving the Poisson equation for the vector po-
tential for the field using a two-dimensional Fourier Trans-
form method, with transforms in the x and y directions. Solu-
tions from the code are correspondingly periodic in x and y.

With the CFIT code, the lower boundary conditions on the
field are the values of Bz from the vector magnetogram data.
Boundary conditions on α are chosen as follows. Values of α
calculated using Equation (5) are used at a given boundary
point provided the signal-to-noise ratio is at least 5%, based
on the uncertainties provided with the data, and provided the
boundary point does not exhibit a large localized spike in α.
Boundary points not meeting these criteria are assigned values
α = 0. This procedure is referred to as “censoring” of the
boundary data.

Additionally, during the Grad-Rubin iteration procedure,
points in the domain that are threaded by field lines that inter-
sect the top or side boundaries are assigned α = 0 to ensure
∇·J = 0 globally. As a result, boundary points in such open-
field regions are treated as having α = 0, however the regions
of open and closed field lines generally change as the calcula-
tion proceeds, and consequently boundary points that are thus
censored at one iteration may not be censored at another.

The iteration is initiated with a potential field in the vol-
ume with values of Bz matching the vector magnetogram at
the lower boundary values, obtained by a two-dimensional
Fourier transform solution. The CFIT code is parallelized us-
ing both the OpenMP (Chandra et al. 2001) and MPI (Gropp
et al. 1999) standards. Further details on the solution method
and the handling of boundary conditions are given in Wheat-
land (2007).

XTRAPOL code

The XTRAPOL code solves a mixed elliptic-hyperbolic
boundary-value problem for α and B, which is mathemat-
ically well posed (Boulmezaoud & Amari 2000). It uses a
finite-difference approach with a representation of B based
on a vector potential A (defined with a convenient gauge) on
a staggered mesh. This ensures that the divergence operator
remains exactly on the kernel of the curl operator (and thus
∇ · B = 0 to rounding errors), independently of the mesh
resolution. It solves iteratively the elliptic problem through
a positive definite linear system, and the hyperbolic problem
by transporting α along the characteristics (the magnetic field
lines), imposing α originating from only one or the other
polarity. The code uses the MPI library. The solution can
be provided for both balanced or non-balanced photospheric
magnetic flux, in which case field lines can intersect other
external boundaries. See Amari et al. (2006) for more details.

FEMQ code

The FEMQ code solves the same well posed boundary-value
problem as XTRAPOL. However FEMQ uses a finite-element
approach, and works directly with B using a least-squares
approach that minimizes the divergence of B. The hyperbolic
equations at each iteration can be solved either using the same
method as in XTRAPOL or by solving a non-positive-definite
linear system for α by an iterative method. More details can
be found in Amari et al. (2006).

3. Results

This section presents quantitative comparisons amongst
the extrapolated solution fields and characterizes the effects
of the spatial resolution of the boundary data on the solutions.
We analyze the energy and helicity of the solutions and dis-
cuss the departure of the lower boundary field values in the
resultant solutions from the vector magnetogram values. The
magnetic energy analysis includes a Helmholtz decomposi-
tion of the solution fields into solenoidal and non-solenoidal
components, following the procedure of Valori et al. (2013),
and a discussion of the effects of the non-solenoidal compo-
nent on the resulting energies. Because physical magnetic
fields are solenoidal (due to∇ ·B = 0), comparing the non-
solenoidal and solenoidal components provides a check on the
consistency of the solutions.

Performing a NLFFF extrapolation using the bin 1 data
remains a challenge for the codes and for computer hard-
ware. An extrapolated field B corresponding to these data
and represented by a single-precision, floating-point, three-
dimensional array possesses of order N 3 ≈10003 points and
requires ≈12 GB of computer memory. The codes as written
require multiple copies of this and similar three-dimensional
arrays to be stored simultaneously in computer memory. As
a result, memory use is an issue. A more constraining factor
is the scaling of the time to completion, taken to be at best
∝ N 4 for serial calculation on a grid with N 3 points (e.g.,
Wheatland 2007). A number of the methods employ parallel
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implementations to improve performance, but the total com-
putational time remains a problem for large grids. As a result
of these constraints, we do not present the results obtained for
the bin 1 data.

Results are presented for bin levels 2–16 for all five codes
(the optimization and magnetofrictional method codes, and
the CFIT, XTRAPOL and FEMQ Grad-Rubin codes), with
the exception of the magnetofrictional solution using the bin 3
boundary data. For the three Grad-Rubin codes, results are
presented for both the P and N cases. Altogether, there are
71 solution data cubes.6

For a given resolution level, the five codes employ domains
that are slightly different. To standardize the comparisons
across codes and resolutions, we will use a fixed analysis vol-
ume V , chosen to be the largest common physical volume for
all solutions across codes and resolutions. This analysis vol-
ume is 136×77×107 Mm3 and covers approximately the re-
gion from x = 14.3 Mm to x = 150.0 Mm, from y = 14.3 Mm
to y = 92.8 Mm, and from z = 0 Mm to z =107 Mm, where
the origin is located at the lower left-hand corner of the input
magnetograms.7 The footprint of the analysis volume V on
the photosphere is indicated by the dashed lines in the vector
magnetogram data shown in Figure 2.

Figure 5 presents visualizations of field lines within V for
the solutions for the different methods for the finest resolu-
tion level for which there are solution data. Qualitatively, it
is evident that there are some differences between the results
obtained with the different methods or codes at this resolu-
tion. Such variation across the solution methods is in com-
mon with our earlier studies (e.g., Schrijver et al. 2006; Met-
calf et al. 2008; Schrijver et al. 2008; De Rosa et al. 2009).
When examining the differences in solution data across the
range of resolution levels, as calculated by any of the codes,
the initial qualitative impression is that there are only minor
differences in (for example) the detailed field-line trajecto-
ries. The shape of the field-line bundles originating in differ-
ent locations across the lower boundary of the analysis region
appears similar for all resolutions, and the boundaries sepa-
rating field lines that leave the analysis volume versus those
that are contained within the domain appear similar. In the
sections that follow, we show that more significant variations
exist amongst the solutions, both across resolution levels and
across methods and codes, when quantitative comparisons are
performed.

6The solution volumes used for analysis are available for download from
http://dx.doi.org/10.7910/DVN/7ZGD9P.

7The indices of the analysis sub-volume V for each resolution, relative to
the boundary data, are as follows: bin 2: [48:504, 48:312, 0:360] (size
457×265×361); bin 3: [32:336, 32:208, 0:240] (size 305×177×241); bin 4:
[24:252, 24:156, 0:180] (size 229×133×181); bin 6: [16:167, 16:103, 0:119]
(size 152×88×120); bin 8: [12:126, 12:78, 0:90] (size 115×67×91);
bin 10: [10:100, 10:62, 0:71] (size 91×53×72); bin 12: [8:84, 8:52, 0:60]
(size 77×45×61); bin 14: [7:71, 7:44, 0:51] (size 65×38×52); bin 16:
[6:63, 6:39, 0:45] (size 58×34×46).

3.1. Magnetic field energy, helicity and extrapolation
metrics

In this section, the magnetic energies E, the relative mag-
netic helicities Hm of the extrapolated magnetic fields, and
additional extrapolation metrics are discussed. The variations
amongst the energies and helicities of the extrapolated fields
depend on many factors, including the effects of resolution,
the boundary conditions taken as input, and the handling of
boundary conditions by the various codes. An additional con-
sideration is that, for each resolution level, the same numeri-
cal grid is used for the calculation of these quantities, regard-
less of code and method, with interpolation onto this grid per-
formed when necessary (such as when analyzing results from
XTRAPOL, in which variables are offset with each other on
a staggered mesh). Centered, second-order finite differences
are used to calculate the needed derivatives, and this differ-
encing scheme may also be different than the one used by the
various codes (e.g., the magnetofrictional code uses fourth-
order differences).

3.1.1. Magnetic Energy

Figure 6 illustrates the magnetic energy E, the magnetic
energy of the corresponding reference potential field E0, the
free energy Ef = E−E0, and the ratio E/E0 = 1 +Ef/E0

as a function of spatial resolution for each of the extrapo-
lations within the common analysis volume V . The refer-
ence potential fields are computed numerically by solving
the Laplace equation for the potential with Neumann bound-
ary conditions based on the normal component of B on
all six boundaries of the analysis volume (which we denote
Bn|∂V ). Following Thomson’s theorem (e.g., Jackson 1999),
the potential field uniquely represents the field with the mini-
mum energy for any divergence-free field where Bn matches
Bn|∂V . As a consequence of each solution field having its
own Bn|∂V , there are separate reference potential fields for
each of the solution fields.

The energy metrics are listed in Table 2. Taken as a group,
the energies of the solution fields range from 1.08×1026 J to
1.50×1026 J, with a mean value of 1.25×1026 J and a standard
deviation of 10%. In terms of free energy Ef , the solutions
range from near-potential fields having free energy 2% above
E0 (both P and N models of XTRAPOL using the bin 16
boundary data) to a case where the free energy is 24% of the
associated potential field (optimization using the bin 2 bound-
ary data). In physical units, the free energy Ef is in the range
0.3–2.9×1025 J.

Figures 6(c) and (d) show that the solutions obtained with
the magnetofrictional and optimization methods have higher
free energies than those calculated using Grad-Rubin methods
(CFIT, XTRAPOL, and FEMQ), both in absolute (E−E0) as
well as in relative (E/E0) terms. When more highly resolved
boundary data are used, all methods return solutions that trend
toward higher energies, with the exception of the magnetofric-
tional method. Figure 6 illustrates that the free energies for
the magnetofrictional method range from 10% to 19%, with
higher resolution cases generally having less free energy. In
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TABLE 2
NLFFF EXTRAPOLATION METRICSa FOR AR 10978

Method/Code Bin E [1026 J] E/E0 Hm [1026 Wb2] 〈CW sin θ〉 〈|fi|〉 [×10–4] ξ

Optimization 16 1.41 1.12 0.66 0.13 19. 0.38
14 1.38 1.14 0.03 0.14 18. 0.37
12 1.43 1.18 –0.16 0.12 16. 0.39
10 1.39 1.15 –0.24 0.14 10. 0.33
8 1.46 1.18 0.47 0.11 6.1 0.23
6 1.43 1.18 –0.63 0.11 3.7 0.21
4 1.48 1.21 0.24 0.10 2.2 0.18
3 1.47 1.20 –0.92 0.13 1.7 0.19
2 1.50 1.24 0.04 0.10 1.1 0.16

Magnetofrictional 16 1.37 1.16 1.29 0.30 82. 0.51
14 1.22 1.15 3.79 0.30 71. 0.51
12 1.23 1.17 2.62 0.32 52. 0.53
10 1.26 1.19 3.65 0.25 46. 0.51
8 1.28 1.14 4.89 0.31 33. 0.34
6 1.11 1.09 3.17 0.29 18. 0.51
4 1.23 1.12 3.96 0.27 13. 0.26
2 1.08 1.10 1.80 0.29 13. 0.34

CFIT (P / N ) 16 1.12 / 1.12 1.04 / 1.03 3.55 / 3.43 0.35 / 0.40 11. / 12. 0.08 / 0.09
14 1.09 / 1.08 1.06 / 1.04 4.14 / 3.38 0.32 / 0.38 9.9 / 11. 0.07 / 0.10
12 1.11 / 1.11 1.05 / 1.04 3.56 / 3.95 0.32 / 0.36 7.6 / 9.8 0.06 / 0.10
10 1.09 / 1.09 1.05 / 1.05 3.51 / 4.23 0.32 / 0.34 6.5 / 8.6 0.08 / 0.11
8 1.12 / 1.12 1.05 / 1.05 3.32 / 4.58 0.32 / 0.31 6.4 / 7.3 0.12 / 0.13
6 1.11 / 1.09 1.07 / 1.05 4.05 / 3.68 0.27 / 0.29 4.7 / 6.1 0.10 / 0.14
4 1.19 / 1.16 1.11 / 1.10 5.21 / 3.88 0.28 / 0.30 5.0 / 6.1 0.21 / 0.24
3 1.11 / 1.11 1.06 / 1.06 2.45 / 2.95 0.27 / 0.26 4.0 / 4.8 0.21 / 0.24
2 1.12 / 1.10 1.06 / 1.05 4.47 / 2.32 0.24 / 0.25 2.1 / 3.4 0.19 / 0.25

XTRAPOL (P / N ) 16 1.29 / 1.29 1.02 / 1.02 2.68 / 2.30 0.26 / 0.25 7.9 / 7.8 0.03 / 0.03
14 1.25 / 1.25 1.03 / 1.03 3.01 / 3.01 0.25 / 0.24 6.7 / 6.5 0.03 / 0.02
12 1.28 / 1.27 1.03 / 1.03 3.21 / 2.99 0.24 / 0.22 6.0 / 5.7 0.03 / 0.02
10 1.27 / 1.26 1.04 / 1.03 3.99 / 2.75 0.21 / 0.19 5.1 / 4.7 0.03 / 0.02
8 1.29 / 1.28 1.04 / 1.04 3.47 / 3.24 0.21 / 0.18 3.1 / 3.0 0.02 / 0.02
6 1.27 / 1.26 1.05 / 1.04 3.45 / 2.72 0.17 / 0.16 2.2 / 2.1 0.02 / 0.02
4 1.29 / 1.28 1.05 / 1.05 3.52 / 4.13 0.13 / 0.16 1.2 / 1.2 0.02 / 0.04
3 1.28 / 1.27 1.05 / 1.04 3.40 / 2.83 0.12 / 0.12 0.83 / 0.77 0.02 / 0.02
2 1.28 / 1.28 1.05 / 1.05 3.46 / 2.24 0.14 / 0.13 0.46 / 0.40 0.08 / 0.06

FEMQ (P / N ) 16 1.29 / 1.30 1.04 / 1.03 2.87 / 2.50 0.28 / 0.25 6.4 / 6.9 0.02 / 0.02
14 1.25 / 1.25 1.03 / 1.03 3.32 / 3.14 0.26 / 0.26 5.2 / 5.3 0.02 / 0.02
12 1.28 / 1.28 1.03 / 1.03 3.24 / 3.06 0.25 / 0.24 4.5 / 4.6 0.02 / 0.02
10 1.27 / 1.26 1.04 / 1.04 3.87 / 2.70 0.22 / 0.20 3.5 / 3.5 0.02 / 0.02
8 1.29 / 1.28 1.05 / 1.04 3.93 / 3.50 0.21 / 0.19 2.8 / 2.8 0.02 / 0.02
6 1.27 / 1.26 1.05 / 1.04 3.65 / 2.65 0.17 / 0.15 1.8 / 1.7 0.02 / 0.01
4 1.30 / 1.28 1.05 / 1.05 3.66 / 3.87 0.12 / 0.15 0.99 / 0.98 0.01 / 0.04
3 1.29 / 1.28 1.05 / 1.04 3.34 / 2.79 0.11 / 0.11 0.69 / 0.66 0.04 / 0.03
2 1.29 / 1.28 1.06 / 1.05 3.87 / 2.97 0.10 / 0.11 0.42 / 0.38 0.07 / 0.07

aAll metrics are defined in Section 3.1.
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(a) CFIT P (b) CFIT N (c) optimization

(d) XTRAPOL P (e) XTRAPOL N (f) magneto−
       frictional

(g) FEMQ P (h) FEMQ N (i) potential

Fig. 5.— Field lines for all solutions using the bin 2 boundary data. The panels show results using the (a) CFIT Grad-Rubin
(P solution), (b) CFIT Grad-Rubin (N solution), (c) optimization, (d) XTRAPOL Grad-Rubin (P solution), (e) XTRAPOL Grad-
Rubin (N solution), (f) magnetofrictional, (g) FEMQ Grad-Rubin (P solution), and (h) FEMQ Grad-Rubin (N solution) codes. For
comparison, field lines from a potential field matching the values of Bz provided to the modelers are shown in panel (i). Field lines
are plotted in black, green, and magenta: black field lines close within the volume, whilst the magenta and green field lines are open,
and originate in different polarities. The starting points for the field line trajectories form a regularly-spaced grid at z = 0.

contrast, the free energies from the optimization method in-
crease as the resolution increases from 12% to 24%. The
free energies in the Grad-Rubin codes are also seen to double
over the range of resolutions, becoming greater for the more
spatially resolved cases (as with the optimization method),
though this variation corresponds to changes of a few percent
of the total magnetic energy. Within the set of Grad-Rubin
solutions, the relative free energy values are slightly higher at
all resolutions for CFIT than for FEMQ and XTRAPOL. Free
energies for the P solutions are equal or marginally higher
than those from the N solutions. At each resolution value,
the spread in free energies for the Grad-Rubin codes appears
small, with the exception of the CFIT calculations using the
bin 4 boundary data (addressed further in the next subsection).

Two aspects of the calculation methods may explain the

spreads in total and free energies. First, the larger spread
in energies from the optimization and magnetofrictional so-
lutions may be attributed in part to their divergences, as eval-
uated numerically, being greater than the Grad-Rubin meth-
ods (which is expected on the basis of past results, see, e.g.,
Schrijver et al. 2006, 2008; De Rosa et al. 2009). These meth-
ods introduce a departure from∇·B = 0 upon initialization,
and then seek to minimize this error during iteration. In con-
trast, the Grad-Rubin implementations employ schemes that
are initialized with divergence-free fields, and aim to provide
divergence-free fields at all iterations. (We further address the
contribution from residual non-solenoidal field components to
the total energy in the next subsection.)

Second, the higher energies of the magnetofrictional and
optimization solutions may be due in part to the preprocess-
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Fig. 6.— (a) Total magnetic energy E, (b) energy of the associated potential field E0, (c) free energy Ef = E − E0, and (d) ratio
E/E0, as a function of spatial resolution for the set of NLFFF calculations. Please note that resolution increases to the left in each
plot (i.e., smaller pixel sizes and smaller bin factors correspond to more highly resolved boundary data).
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Fig. 7.— The decomposition of the total energy into solenoidal (Ẽ0,s and ẼJ,s) and non-solenoidal (Ẽ0,ns, ẼJ,ns, and |Ẽmix|) con-
tributions, for the different solutions. The individual panels show results for the (a) magnetofrictional, (b) optimization, (c) CFIT,
(d) XTRAPOL, and (e) FEMQ codes. The different contributions are shown as a function of resolution. The tilde over each term
indicates normalization to the corresponding total energy E. Table 4 in Appendix A lists the numerical values of all contributions
for each solution.

ing used with these methods. As was the case in Metcalf et al.
(2008) and Schrijver et al. (2008), preprocessing the bound-
ary data to be more compatible with the force-free assumption
can result in solution fields having greater free energies. All
Grad-Rubin implementations presented here remove spikes in
α (many of which likely result from poorly constrained values
of Bx and By), but do not otherwise preprocess the bound-
ary data. The degree to which the codes necessarily alter the
boundary data are discussed further in Section 3.2.

3.1.2. Energy Decomposition

Accurate numerical solutions to the force-free model
should be solenoidal, to within numerical errors. However,
the methods of solution to the equations, and the inconsis-
tency of the boundary data with the model, can lead to sig-
nificant departures from solenoidality. Valori et al. (2013)
provide a method for quantifying how much a non-zero diver-
gence in a NLFFF solution affects the accuracy of the estimate
for the magnetic field energy. The Valori et al. (2013) method
is an application of Thomson’s theorem. The magnetic field

is decomposed into a potential and a current carrying part,
and each of these is split into solenoidal and non-solenoidal
components via Helmholtz decomposition. The energies of
the components are then compared. In this section, we sum-
marize the decomposition as applied to each of the NLFFF
calculations, leaving the details to Appendix A.

The magnetic energy within V may be written

E =
1

2µ0

∫
V
B2 dV

= E0,s + EJ,s + E0,ns + EJ,ns + Emix , (6)

where E0,s and EJ,s are the energies of the potential and
current-carrying solenoidal components, E0,ns and EJ,ns are
those of the non-solenoidal components, and Emix is a non-
solenoidal mixed term (see Equations (7) and (8) in Valori
et al. 2013 for the expressions for the energies in terms of
the field components). The energies in Equation (6) are posi-
tive by definition, with the exception of Emix. For a perfectly
divergence-free field, E0,s = E0 and EJ,s = Ef = E − E0,
while E0,ns = EJ,ns = Emix = 0. In practice, a NLFFF calcu-
lated numerically will not be perfectly solenoidal, and E0,ns,14



EJ,ns, and Emix will instead be finite. Comparing the non-
solenoidal components with the free energy can be used to
gauge the reliability and uncertainty of the free energy deter-
mination.

The values of each term in Equation (6) for each method
and spatial resolution are plotted in Figure 7. For the Grad-
Rubin methods, the results are plotted for both the N and
P solutions using identical (and often overlapping) sym-
bolism. Figure 7 shows that the energies contained in the
non-solenoidal components are generally lower than the
solenoidal portions. The primary exceptions to this trend are
with the optimization solutions, where the magnitudes of the
mixed terms |Emix| for all resolution levels are of the same or-
der as the free energy EJ,s. The energy of the non-solenoidal
component of the potential field E0,ns is smaller by at least a
factor of 103 in all cases, and in almost all cases decreases for
higher resolutions. E0,ns is generally smaller than EJ,ns and
|Emix|, which indicates that the potential component of each
field is generally closer to a solenoidal state than the current-
carrying component of the field. Of EJ,ns and |Emix|, the latter
is usually larger. The elevated values for EJ,ns and |Emix| for
the CFIT solutions using the bin 4 boundary data contribute
to the outlying points (i.e., points that appear to not follow the
apparent trend) in the total energy plots shown Figure 6.

3.1.3. Relative Magnetic Helicity

For each calculation, the relative magnetic helicity Hm in
the analysis volume V is computed using the method in Val-
ori et al. (2012a). The resulting values for all solutions are
listed in Table 2 and plotted in Figure 8. We find a wide range
of values for Hm, with no clear trend that depends on spatial
resolution but significant dependence upon the extrapolation
method employed. Values of Hm across all methods and res-
olutions are predominantly positive, except for a few of the
optimization method solutions.

The solutions calculated using the three Grad-Rubin
implementations possess values of Hm that lie between
2×1026 Wb2 and about 5×1026 Wb2. The variations with
resolution within one implementation are found to be of a
similar order as the variations between the implementations.
The XTRAPOL and FEMQ codes return the most consistent
results between different resolutions, and between P and N
solutions, with a mean relative helicity (over all XTRAPOL
and FEMQ solutions) of (3.2±0.5)×1026 Wb2. The CFIT
code solutions exhibit slightly greater variation with spatial
resolution; the average helicity over all CFIT solutions is
(3.7±0.7)×1026 Wb2.

The values of Hm from the magnetofrictional solutions
trend higher and then lower as the resolution changes, with
a mean of (3.1±1.2)×1026 Wb2, in somewhat general agree-
ment with the values of Hm found from the Grad-Rubin so-
lutions. The optimization method solutions have the lowest
Hm values — including several that are negative — with
a mean and standard deviation of (−0.1±0.5)×1026 Wb2.
The larger fractional variation in Hm values obtained by the
magnetofrictional and optimization methods compared with
the Grad-Rubin codes may be partly explained by the larger

Fig. 8.— The relative magnetic helicity Hm as a function of
resolution, for the different solutions.
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non-solenoidal errors in these solutions, as outlined in Sec-
tion 3.1.2. Additionally, preprocessing has been applied in-
dependently to the magnetograms at different resolutions for
these methods, which may lead to greater variety in the values
of Hm for the extrapolated fields.

3.1.4. Additional Extrapolation Metrics

The last three columns of Table 2 list domain-averaged
metrics that have been used in earlier studies. These are
〈CW sin θ〉, the mean sine of the angle θ between J and
B at each point, weighted by J ; the fractional flux ratio
〈|fi|〉, where |fi| = |(∇ · B)i|/(6|B|i/∆x) and where ∆x
is the grid spacing; and ξ, the average of the magnitude of
the Lorentz force to the sum of the magnitudes of its con-
stituent pressure and tension components (see Equation (10)
in Malanushenko et al. 2014).

The 〈CW sin θ〉 and ξ metrics are measures of how force-
free a solution field is, both of which vanish for perfectly
force-free fields. The Grad-Rubin solutions show similar (al-
beit opposite) trends for both metrics, with 〈CW sin θ〉 de-
creasing as more highly resolved boundary data are used and
ξ mostly showing the reverse behavior. No significant dif-
ference is apparent between the P and N solutions. For the
magnetofrictional method, neither 〈CW sin θ〉 nor ξ exhibit
well defined trends, though there is a tendency for both met-
rics to indicate more force-free solutions as the resolution of
the boundary data is increased. The solutions calculated by
the optimization method do show a clear trend for ξ, with the
more highly resolved fields having lower values of ξ, however
any trend for the 〈CW sin θ〉 metric is less clear, though the
general tendency is for more force-free solutions when higher
resolution boundary data are used. The 〈|fi|〉metric is a mea-
sure of how divergence-free a solution field is, vanishing for
divergence-free fields. For all methods, this metric decreases
as more highly resolved boundary data are used.

3.2. Changes to the Boundary Data

All of the solution methods introduce significant changes
to the vector magnetogram boundary conditions, either ini-
tially, and/or during solution of the NLFFF equations. The
magnitude of the changes are based on the uncertainties asso-
ciated with the remapped vector magnetogram data, and thus
tend to be more significant in weak-field regions than in re-
gions of stronger field. Here, we characterize these changes
by directly comparing the values of B on the lower boundary
of the resultant NLFFF solutions to the values of B supplied
by the vector magnetogram boundary data.

For each solution we define the change ∆ in the vector
field at z = 0 as

∆ = B −BVM, (7)

comparing the solution B with the disambiguated vector
magnetogram value BVM. The normalized change ∆̃ ac-
counts for the uncertainties σi in each component i, such that

∆̃ = B̃ − B̃
VM
, (8)

where B̃i = Bi/σi and B̃VM
i = BVM

i /σi, for each compo-
nent i = {x, y, z}. We consider separately the magnitudes of
the vertical components of the changes (∆z and ∆̃z), and the
magnitudes of the horizontal components of the changes, de-
fined by ∆h = |(∆x,∆y)| and ∆̃h = |(∆̃x, ∆̃y)|/

√
2, with

the factor of
√

2 introduced so that the expected value for nor-
malized changes in the horizontal field, taking into account its
uncertainties, is unity.

Table 3 lists root-mean-square (rms) values for the magni-
tudes of the vertical and horizontal components of the changes
in the boundary conditions defined by Equations (7) and (8)
for all solutions, for boundary points within the footprint of
the analysis volume V . In calculating the rms values for the
normalized changes, boundary points with assigned uncer-
tainties less than 1 G have the uncertainty replaced by a value
of 1 G. This step prevents the small uncertainties biasing the
rms values.

The table shows that all methods introduce changes in the
horizontal field boundary values substantially larger than the
uncertainties assigned to the vector magnetogram data. In ab-
solute units, the magnitude ∆rms

h of the changes in the hor-
izontal field are largely similar (several hundred Gauss) for
the different methods. The magnetofrictional method intro-
duces the smallest changes, with rms values of order 230 G
to 240 G, and the other methods introduce changes which are
larger by about 50%. In a normalized sense, any resolution
dependence on ∆̃rms

h appears weak. The Grad-Rubin methods
show no substantial difference in the values of ∆̃rms

h for the P
and N solutions.

In addition, the optimization and magnetofrictional meth-
ods introduce changes in the vertical field, as is evident from
Table 3. As with the horizontal field changes, these also ex-
ceed the uncertainties. In absolute units, ∆rms

z for the op-
timization method decreases from about 160 G when using
more coarsely resolved boundary data to about 30 G when
more finely resolved data are used. Similarly, there is a clear
trend in the normalized change ∆̃rms

z , which is found to de-
crease from a factor of 7.89 when the coarsest boundary data
are used to 1.17 for the data with the highest resolution. The
magnetofrictional method consistently makes adjustments be-
tween 80 G and 85 G for all resolution levels. As with the op-
timization method, the normalized changes ∆̃rms

z for the mag-
netofrictional method trend smaller as more highly resolved
data are used, ranging from 4.77 for the bin 16 data to 3.43
for the bin 2 data. By design, the Grad-Rubin methods (CFIT,
XTRAPOL, and FEMQ) preserve the values of the vertical
field on the boundary and thus there are no changes to the
vertical components.

For the magnetofrictional method, the changes in the
boundary values are introduced by the preprocessing applied
to the boundary data, prior to the NLFFF calculation. The
changes are comparable to the maximum values allowed by
the preprocessing (see Section 2.2.2). The specific method of
preprocessing used constrains the point-wise changes in the
boundary values to ±100 G (for Bz), and ±150 G (for Bx

and By). The maximum/minimum values correspond to rms
values ∆z = 100 G and ∆h ≈ 280 G. For the optimization
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TABLE 3
CHANGES TO VECTOR MAGNETOGRAM BOUNDARY CONDITIONS

Method/Code Bin ∆rms
z [G] ∆rms

h [G] ∆̃rms
z ∆̃rms

h

Optimization 16 161. 307. 7.89 22.2
14 117. 281. 5.96 21.3
12 134. 319. 6.81 23.8
10 103. 286. 4.93 21.6
8 117. 322. 5.32 23.7
6 117. 289. 5.32 21.3
4 80.9 337. 3.38 24.1
3 72.4 301. 2.88 20.5
2 33.4 365. 1.17 22.1

Magnetofrictional 16 80.0 225. 4.77 14.7
14 81.2 228. 4.76 15.1
12 80.6 226. 4.54 14.8
10 82.2 229. 4.47 14.6
8 82.4 231. 4.41 14.1
6 82.9 234. 4.22 14.0
4 83.9 237. 3.96 13.4
2 84.9 239. 3.43 11.7

CFIT ( P / N ) 16 · · · 348. / 351. · · · 21.2 / 21.4
14 · · · 342. / 349. · · · 21.6 / 22.1
12 · · · 354. / 361. · · · 22.3 / 22.8
10 · · · 370. / 369. · · · 21.7 / 22.3
8 · · · 381. / 380. · · · 22.2 / 22.8
6 · · · 384. / 379. · · · 22.3 / 22.7
4 · · · 395. / 387. · · · 22.2 / 22.1
3 · · · 401. / 401. · · · 22.4 / 22.2
2 · · · 408. / 409. · · · 20.8 / 20.7

XTRAPOL ( P / N ) 16 · · · 304. / 300. · · · 21.4 / 22.1
14 · · · 306. / 309. · · · 21.9 / 22.9
12 · · · 308. / 315. · · · 22.3 / 23.5
10 · · · 317. / 318. · · · 22.2 / 23.0
8 · · · 323. / 334. · · · 22.3 / 23.2
6 · · · 332. / 342. · · · 22.3 / 23.5
4 · · · 349. / 361. · · · 22.7 / 24.0
3 · · · 362. / 370. · · · 22.2 / 23.4
2 · · · 382. / 387. · · · 20.9 / 21.6

FEMQ ( P / N ) 16 · · · 322. / 325. · · · 22.0 / 22.6
14 · · · 327. / 333. · · · 22.5 / 23.3
12 · · · 328. / 339. · · · 30.4 / 24.0
10 · · · 335. / 341. · · · 22.8 / 23.7
8 · · · 339. / 354. · · · 22.7 / 23.9
6 · · · 352. / 362. · · · 22.9 / 24.2
4 · · · 366. / 378. · · · 23.2 / 24.5
3 · · · 375. / 382. · · · 22.7 / 23.7
2 · · · 386. / 392. · · · 21.0 / 22.0
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Fig. 9.— Changes in the vertical component Bz of the lower boundary field within the region used for the analysis in Section 3.
Panel (a) shows the magnetogram values of Bz in the bin 2 boundary data, for reference. In panels (b)–(e), the changes ∆̃z

normalized by the provided uncertainties in Bz are displayed for two bin levels for both the magnetofrictional method in panels (b)
and (c) and for the optimization method in panels (d) and (e). In panels (b) and (d), the contours correspond to the magnetogram
values of Bz shown in panel (a).

method, changes are introduced by its version of the prepro-
cessing, which does not impose fixed point-wise constraints,
and also during the calculation, as described in Section 2.2.1.

Although the Grad-Rubin methods preserve the values of
the vertical field in the boundary, they do introduce changes
in the horizontal field in the initial calculation of boundary
values of the force-free parameter α. Changes are also in-
troduced during solution of the boundary value problem (see
Section 2.2.3). The boundary values of the horizontal field are
ignored a priori over one polarity of the vertical field.

Figures 9 and 10 show the spatial distribution of the nor-
malized changes ∆̃z and ∆̃h across the lower boundary. In
Figure 9, the changes in the vertical component Bz of the
vector magnetogram boundary data introduced by the mag-
netofrictional and optimization methods are shown for both
the bin 2 and bin 8 calculations. The figure indicates that

the magnetofrictional method changesBz by similar amounts
(on a normalized basis) for both resolutions, with the more
highly resolved boundary changed slightly less. The sign of
∆̃z correlates with the polarity, and indicates that the mag-
netofrictional code systematically reduces the magnitude of
Bz across the full field of view. The optimization method, in
contrast, is seen to change the more highly resolved (bin 2)
case significantly less than the lower-resolution (bin 8) case,
on a normalized basis, without any apparent dependence on
polarity.

Figure 10 illustrates the changes introduced in the mag-
nitude of the horizontal component Bh of the vector mag-
netogram data, for all methods when using the bin 2 bound-
ary data. This figure shows that ∆̃h is about the same for all
methods, with the exception for the magnetofrictional method
where it is lower by about 25% due to the limits imposed dur-
ing the preprocessing step. The normalized changes in Bh
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Fig. 10.— Changes in the magnitude Bh of the horizontal components of the lower boundary field, for all bin 2 calculations.
Panels (a) and (b) show the normalized changes for the optimization and magnetofrictional methods. The remaining panels show
both the P and N solutions for all three Grad-Rubin codes, with panels (c) and (d) for CFIT, panels (e) and (f) for XTRAPOL, and
panels (g) and (h) for FEMQ. All changes are normalized by the provided uncertainties in the horizontal components of B. Contours
of Bz are overplotted for reference.
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are more prominent in the lower portion of the field of view
where both the values of Bh are the weakest and the uncer-
tainties are the highest. For the Grad-Rubin methods, while
there are some differences between the P and N solutions in
the locations of the more prominent changes to Bh, there is a
good general correspondence between the different methods,
for a given polarity. This is expected on the basis of the Grad-
Rubin method: if the different solutions (for a given polarity)
have a similar connectivity, then field lines carrying strong
currents will reconnect to the boundary in the opposite polar-
ity at similar locations, and introduce the largest changes in
the horizontal field at these specific locations.

4. Discussion and Conclusions

Nonlinear force-free fields (NLFFFs) are increasingly used
to model the magnetic structure in the Sun’s corona. An ear-
lier series of studies (e.g., Schrijver et al. 2006; Metcalf et al.
2008; Schrijver et al. 2008; De Rosa et al. 2009; Wheatland
& Gilchrist 2013) showed that the NLFFF solution methods
regularly achieved success on fields with known solutions and
with appropriate boundary conditions, but still encountered
difficulties in their application of the model to solar data. In
this paper we re-examine one aspect identified in De Rosa
et al. (2009) believed to affect the reliability of NLFFF mod-
eling: the influence of the spatial resolution of the boundary
vector magnetogram data on the NLFFF solutions.

The boundary data used for this experiment are a sequence
of vector magnetograms with different spatial resolutions con-
structed from a single normal-map scan in December 2007 of
AR 10978 by the Hinode/SOT-SP. The vector magnetograms
are produced by rebinning the observed polarization spec-
tra by factors ranging from 2 to 16, performing a Milne-
Eddington inversion on these rebinned spectra, and then re-
solving the 180◦ ambiguity in each case. This processing re-
sults in vector magnetograms having a spatial resolution rang-
ing from 0.′′59 to 4.′′67, a range of approximately one half to
one sixteenth of the native Hinode/SOT-SP normal-map res-
olution. The procedure of rebinning the polarization spec-
tra (rather than the inverted vector magnetogram data) is in-
tended to mimic observations by spectrographs with different
intrinsic resolutions. AR 10978 was a relatively small and
isolated region at the time of the observation, and as a result
was selected for this experiment because of the presumption
that much of the current-carrying field lines lie in the volume
above the Hinode field of view. The region exhibited some
magnetic complexity and was flare productive.

Five different codes implementing solution of the NLFFF
model with three different methods (the optimization, the
magnetofrictional, and Grad-Rubin methods) are applied to
the set of vector magnetogram data produced from the re-
binned polarization spectra. Solutions are calculated using
these data, spanning the set of spatial resolutions and (for the
Grad-Rubin methods) for the two choices of polarity in the
boundary conditions (P andN ) on the force-free parameterα.
Although the Hinode/SOT-SP polarization spectra were also
processed at the intrinsic instrumental resolution (i.e., with-
out any rebinning), these data proved problematic for codes

and computer hardware due to the size (in pixels) of the mod-
eling domain and the corresponding time to completion, and
thus we report only on the results for the boundary data at bin
levels 2 to 16. In total, 71 different solution data cubes are
examined.

Considered as a group, the physical quantities of interest
of the NLFFF solutions span a wide range. As calculated
within the common volume V chosen for analysis, estimated
total energies E range from 1.08–1.50×1026 J, estimated free
energies Ef range from 2% to 24% of the potential field en-
ergies, and estimated relative magnetic helicities Hm range
from –0.92×1026 Wb2 to 5.2×1026 Wb2. The broad ranges in
these estimates of physical quantities are affected by several
factors. The three most significant factors are as follows:

1. The input vector magnetogram data exhibit differences
across the resolution levels, as shown in Section 2.1.
As a result, some variation in the subsequent NLFFF
extrapolations, the lower bounds of which are con-
strained by the vector data, is expected. The most gen-
eral trend in the results is that as the spatial resolu-
tion of the boundary data increases, the NLFFF met-
rics improve. In particular, using more highly resolved
boundary data usually results in NLFFF solutions that
are both more force- and divergence-free, as found by
calculating the metrics 〈CW sin θ〉, 〈|fi|〉, and ξ, as
well as by performing the Helmholtz decomposition
discussed in Section 3.1. Additionally, improvement in
the NLFFF metrics is correlated with larger Ef in most
instances. Measurements of Hm, on the other hand,
do not show any discernible trends with spatial resolu-
tion. Although values of Hm from most methods agree
to within a factor of two (excepting the optimization
method, for which values of Hm are clustered around
zero), the lack of any trend with resolution suggests that
Hm is difficult to determine from NLFFF solutions.

2. Vector magnetogram data determined from photo-
spheric spectral lines are not force-free, and thus are
not immediately applicable to NLFFF modeling. As
a result, the NLFFF extrapolation codes necessarily
change the provided vector boundary data to be more
compatible with the NLFFF model, resulting in bound-
ary data that are in a more force-free state, much as
what is expected at the base of the corona. The mea-
surement uncertainties provided with the data are used
to guide how these changes at the boundary occur, and
changes to the field (particularly the horizontal compo-
nents) are substantial when compared with the speci-
fied uncertainties, even when higher spatial resolution
boundary data are used (though the specified uncertain-
ties may be underestimates of the true uncertainties), as
discussed in Section 3.2. Different extrapolation codes
implement the changes in different ways, resulting in
solutions from the different codes, while qualitatively
similar in appearance (e.g., as in the field-line render-
ings of Fig. 5), that have quantitatively different char-
acteristics (e.g., the energy estimates shown in Fig. 6).

20



3. Variations from method to method in the cases pre-
sented here may be as large as the effects of spatial
resolution. For example, the optimization and mag-
netofrictional methods typically contain about 2 to 5
times more free energy than the group of Grad-Rubin
methods. These variations result from a combination
of effects, including not only the different treatments of
the vector magnetogram data (point 2 above), but also
the different conditions imposed on the lateral and top
boundaries, how unbalanced flux and currents are han-
dled, the size of the field of view relative to the flux and
current systems important for NLFFF modeling, and
the presence or absence of solenoidal errors. Variations
amongst methods seen in earlier NLFFF extrapolation
studies (e.g., Schrijver et al. 2006; Metcalf et al. 2008;
Schrijver et al. 2008; De Rosa et al. 2009) were simi-
larly wide-ranging.

We conclude that most NLFFF solutions appear more con-
sistent with both the force- and divergence-free conditions
when more highly resolved vector magnetogram data are
used. Higher resolution boundary data are associated with
NLFFF solutions having larger amounts of free energy. How-
ever, the use of more highly resolved boundary data does not
by itself guarantee a more internally consistent solution. From
a pragmatic perspective, given the spreads in E, Ef , and Hm

from the series of NLFFF models shown here and past experi-
ence with constructing NLFFF solutions, we recommend that
users perform the following checks before a NLFFF model is
employed in a scientific setting:

1. Check metrics such as 〈CW sin θ〉, 〈|fi|〉, and ξ and as-
sess the degree to which a field is force- and divergence-
free. In addition, performing a Helmholtz decomposi-
tion on a NLFFF model seems to be a useful way to de-
termine the degree to which the total and free energies
in the model arise from residual errors in the divergence
of B. These errors may be significant and may call into
question the accuracies of the free energy estimates, as
shown in Section 3.1.2.

2. Additionally, either verify that there is good agreement
between the modeled field lines and the resulting EUV
and X-ray loop trajectories before using any estimates
of physical quantities from NLFFF solutions can be re-
lied upon, or use the observed coronal loops to place
additional constraints during the NLFFF solution pro-
cess.

The research presented in this article benefited from re-
sources (meeting space and travel support) provided by the
International Space Science Institute (ISSI) in Bern, Switzer-
land during meetings of International Team 238, “Nonlinear
Force-Free Modeling of the Solar Corona: Towards a New
Generation of Methods”, held in 2013 and 2014. We grate-
fully acknowledge the support provided by ISSI.

M.L.D. would like to acknowledge support from NASA
contract NNM07AA01C to Lockheed Martin. M.S.W. ac-
knowledges support from a Faculty of Science Mid-Career

Researcher scheme at the University of Sydney. K.D.L. and
G.B. were supported by NASA contract NNH12CC03C. T.A.
and A.C. thank the Institute I.D.R.I.S. of the Centre National
de la Recherche Scientifique for providing computational fa-
cilities, as well as the Centre National d’Etudes Spatiales
(CNES) for its support. S.A.G. acknowledges receipt of an
Australian Postgraduate Research Award. J.K.T. acknowl-
edges support from Austrian Science Fund (FWF) P25383-
N27. G.V. acknowledges the support of the Leverhulme Trust
Research Project Grant 2014-051, and funding from the Eu-
ropean Commissions Seventh Framework Programme under
the grant agreements number 284461 (eHEROES project).

Hinode is a Japanese mission developed and launched by
ISAS/JAXA, collaborating with NAOJ as a domestic part-
ner, and NASA (USA) and STFC (UK) as international part-
ners. Scientific operation of the Hinode mission is conducted
by the Hinode science team organized at ISAS/JAXA. This
team mainly consists of scientists from institutes in the partner
countries. Support for the post-launch operation is provided
by JAXA and NAOJ (Japan), STFC (UK), NASA (USA),
ESA, and NSC (Norway).

Facilities: Hinode

21



A. Energy Decomposition Details

This appendix provides more details related to the Helmholtz decomposition of the magnetic energies discussed in Section 3.1.2.
Values of all components in the decomposition of the magnetic energy E, as defined in Equation (6), for all of the NLFFF solutions
are listed in Table 4. The tilde over an energy indicates normalization with respect to the total energy, so that, e.g., Ẽ0,s = E0,s/E.

There is a clear distinction in results obtained with the magnetofrictional and optimization methods, which seek to minimize
departures from solenoidality during computation, and the Grad-Rubin implementations, which explicitly solve for a solenoidal
(divergence-free) field. In the following discussion, we compare the non-solenoidal contributions to the total energy to the ẼJ,s

component, because ẼJ,s is equivalent to the free energy Ef in a perfectly solenoidal field and it is Ef that holds significant physical
interest.

The Grad-Rubin code solutions have non-solenoidal contributions which are, in most cases, at least one order of magnitude
smaller than ẼJ,s. The Grad-Rubin codes also show little difference in results between the P and N solutions. For the CFIT
solutions, the calculations using the bin 4 boundary data exhibit the largest non-solenoidal contributions among the CFIT results for
different resolutions, with values of ẼJ,ns and |Ẽmix| that lie above the trend established by the CFIT solutions for the other resolution
levels. Excepting this case, the non-solenoidal errors decrease with increasing resolution from 21% (for bin 16 boundary data) to 1%
(for bin 2 data) of the free energy ẼJ,s. The solutions obtained with the XTRAPOL code have dominant non-solenoidal contributions
from |Ẽmix| that decrease with increasing resolution from 33% (for bin 16 data) to 1% (for bin 2 data) of ẼJ,s. The solutions obtained
with the FEMQ code lie, on average, between the CFIT and the XTRAPOL results, except for the cases using the bin 4 and bin 6
boundary data. The FEMQ solution for bin 6 boundary data has non-solenoidal contributions of EJ,ns/EJ,s = 3 × 10−4, which are
the smallest amongst all methods and bin levels. These contributions are also smaller than the non-solenoidal contribution from their
corresponding potential fields.

The magnetofrictional solutions exhibit non-solenoidal contributions which are a significant fraction of the free energy in about
half of the cases. For example, the case using the bin 10 boundary data shows a non-solenoidal contribution of about one third of
ẼJ,s. The non-solenoidal contributions decrease with increasing resolution down to 6% of the free energy for the case where bin 2
data are used. The magnetofrictional solutions are affected by non-solenoidal contributions with energies a significant fraction of
the nominal free energy, and, on average, one order of magnitude larger than for the Grad-Rubin codes. The optimization method
solutions exhibit the largest non-solenoidal contributions, and the |Ẽmix| term is larger than the nominal free energy ẼJ,s at most bin
levels. The mixed term generally increases in size with resolution, from a factor of 1.16 (for bin 16 data) to a factor of 1.52 (for bin 2
data) of the nominal free energy ẼJ,s.

The solenoidal properties of the evolutionary methods are found to improve when the relaxation parameters are adjusted. For
instance, by changing the parameterwd in Equation (4) of Wiegelmann et al. (2012) from 1.0 to 1.5, thereby weighting the divergence
term more strongly during the minimization process, the solutions obtained by the optimization method are reduced by about an order
of magnitude, as illustrated in Figure 11. These solutions, however, are less force-free and have less free energy than the solutions
analyzed in Section 3. For these divergence-optimized solutions, the metrics 〈CW sin θ〉 and E/E0 range from 0.46 to 0.52 and
from 1.02 to 1.08, respectively (cf. Table 2).

In summary, the Grad-Rubin codes produce solutions with relatively small non-solenoidal contributions, which can be of order
1% of ẼJ,s at the highest resolution. The magnetofrictional and optimization methods exhibit significantly larger non-solenoidal
contributions in energy. Because Equation (8) in Valori et al. (2013) suggests that non-solenoidal contributions are correlated with
the magnitude of the current-carrying part of the field, and because the magnetofrictional and optimization method solutions have the
largest free energies, it is perhaps not surprising that they are characterized by the largest non-solenoidal errors. Irrespective of this
effect, further reduction of the non-solenoidal errors seems likely to increase the reliability of free energy estimates from solutions
obtained with the optimization and magnetofrictional methods.

Finally, we note that the non-solenoidal mixed term Emix is negative in a number of the NLFFF solutions and may partially cancel
EJ,ns in Equation (6). Large, negative contributions from Emix can in principle lead to non-physical solutions, with negative free
energy. This may occur for methods that do not explicitly impose ∇ · B = 0, and especially if non-preprocessed magnetograms
are used. This was the case for some of the solutions obtained with the magnetofrictional and optimization methods presented in
Schrijver et al. (2008) (cf. Table 1 in that paper). In Valori et al. (2013) it is shown, for one particular case, how the large negative
values of Emix and non-physical solutions arise (mostly) because of the inconsistency of the vector magnetogram data with the
force-free equations.
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Fig. 11.— The solenoidal decomposition for the optimization solution where reducing divergence errors is weighted more strongly
than reducing the Lorentz force.
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TABLE 4
NLFFF MAGNETIC ENERGY DECOMPOSITION

Method/Code Bin Ẽ0,s (×10–1) ẼJ,s (×10–2) Ẽ0,ns (×10–4) ẼJ,ns (×10–3) Ẽmix (×10–2)

Optimization 16 8.90 4.93 4.73 2.94 5.75
14 8.78 5.88 4.15 3.94 5.88
12 8.48 5.38 3.37 6.03 9.21
10 8.71 5.78 3.01 4.69 6.63
8 8.50 6.06 1.98 4.76 8.49
6 8.47 7.61 1.30 5.16 7.13
4 8.29 6.69 0.76 6.66 9.75
3 8.34 8.16 0.50 6.94 7.70
2 8.08 7.25 0.30 9.07 11.0

Magnetofrictional 16 8.65 11.5 8.17 16.3 0.22
14 8.68 12.0 6.42 17.9 –0.65
12 8.55 11.6 6.53 21.9 0.68
10 8.37 12.1 4.64 17.8 2.33
8 8.79 10.5 3.25 36.5 –2.12
6 9.16 9.3 2.53 20.9 –3.02
4 8.89 11.0 1.32 26.8 –2.58
2 9.11 8.6 0.43 5.1 –0.26

CFIT (P / N ) 16 9.60 / 9.67 4.77 / 4.15 15.5 / 15.5 1.19 / 1.18 –1.02 / –1.07
14 9.47 / 9.66 5.97 / 4.12 11.0 / 11.1 0.91 / 0.90 –0.88 / –0.90
12 9.54 / 9.57 5.07 / 4.72 9.77 / 9.84 0.76 / 0.74 –0.61 / –0.64
10 9.49 / 9.51 5.52 / 5.26 7.56 / 7.59 0.56 / 0.58 –0.53 / –0.51
8 9.48 / 9.51 5.48 / 5.16 5.28 / 5.26 0.38 / 0.39 –0.39 / –0.36
6 9.37 / 9.51 6.44 / 5.07 3.62 / 3.68 0.27 / 0.27 –0.25 / –0.24
4 9.04 / 9.09 7.56 / 6.33 1.84 / 1.88 1.45 / 1.93 1.84 / 2.55
3 9.46 / 9.45 5.50 / 5.53 1.20 / 1.20 0.09 / 0.09 –0.09 / –0.09
2 9.40 / 9.51 6.02 / 4.95 0.56 / 0.58 0.04 / 0.05 –0.05 / –0.05

XTRAPOL (P / N ) 16 9.78 / 9.76 3.07 / 3.31 9.47 / 9.14 4.15 / 3.80 –1.01 / –1.05
14 9.75 / 9.72 3.29 / 3.60 6.92 / 6.71 3.34 / 3.13 –0.890 / –0.936
12 9.68 / 9.73 3.67 / 3.21 6.01 / 5.83 2.51 / 2.28 –0.603 / –0.615
10 9.59 / 9.66 4.60 / 3.88 4.76 / 4.69 2.02 / 1.89 –0.560 / –0.575
8 9.58 / 9.63 4.59 / 4.07 3.45 / 3.39 1.37 / 1.28 –0.393 / –0.389
6 9.55 / 9.64 4.72 / 3.84 2.42 / 2.40 0.95 / 0.90 –0.281 / –0.275
4 9.48 / 9.54 5.28 / 4.77 1.34 / 1.32 0.50 / 0.48 –0.146 / –0.149
3 9.50 / 9.59 5.06 / 4.22 0.83 / 0.82 0.33 / 0.31 –0.101 / –0.106
2 9.50 / 9.56 5.08 / 4.48 0.40 / 0.39 0.19 / 0.19 –0.048 / –0.050

FEMQ (P / N ) 16 9.66 / 9.67 3.35 / 3.25 9.01 / 8.68 7.97 / 7.49 –0.117 / –0.120
14 9.73 / 9.68 3.08 / 3.53 6.92 / 6.71 4.39 / 4.15 –0.454 / –0.461
12 9.67 / 9.67 3.45 / 3.41 5.91 / 5.71 3.92 / 3.67 –0.205 / –0.197
10 9.59 / 9.63 4.24 / 3.79 4.75 / 4.66 3.20 / 3.05 –0.183 / –0.199
8 9.55 / 9.63 4.68 / 3.94 3.45 / 3.39 1.76 / 1.63 –0.272 / –0.275
6 9.53 / 9.62 4.64 / 3.75 2.44 / 2.41 2.07 / 2.04 0.001 / –0.001
4 9.48 / 9.57 5.18 / 4.32 1.33 / 1.32 9.48 / 9.26 0.003 / 0.001
3 9.49 / 9.58 5.11 / 4.28 0.83 / 0.82 3.91 / 3.72 –0.064 / –0.066
2 9.45 / 9.54 5.51 / 4.57 0.40 / 0.39 4.45 / 4.38 0.023 / 0.024

24



REFERENCES

Aly, J. J. 1984, ApJ, 283, 349

—. 1989, Sol. Phys., 120, 19

Amari, T., & Aly, J.-J. 2010, A&A, 522, A52

Amari, T., Boulmezaoud, T. Z., & Aly, J. J. 2006, A&A, 446,
691

Boulmezaoud, T. Z., & Amari, T. 2000, Z. angew. Math.
Phys., 51, 942

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald,
J., & Menon, R. 2001, Parallel Programming in OpenMP
(San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.)

Chodura, R., & Schlueter, A. 1981, Journal of Computational
Physics, 41, 68

Crouch, A. D. 2013, Sol. Phys., 282, 107

De Rosa, M. L., Schrijver, C. J., Barnes, G., Leka, K. D.,
Lites, B. W., Aschwanden, M. J., Amari, T., Canou, A.,
McTiernan, J. M., Régnier, S., Thalmann, J. K., Valori,
G., Wheatland, M. S., Wiegelmann, T., Cheung, M. C. M.,
Conlon, P. A., Fuhrmann, M., Inhester, B., & Tadesse, T.
2009, ApJ, 696, 1780

del Toro Iniesta, J. C. 2003, Introduction to Spectropolarime-
try (Cambridge, UK: Cambridge University Press)

Fuhrmann, M., Seehafer, N., & Valori, G. 2007, A&A, 476,
349

Fuhrmann, M., Seehafer, N., Valori, G., & Wiegelmann, T.
2011, A&A, 526, A70

Georgoulis, M. K. 2012, Sol. Phys., 276, 423

Grad, H., & Rubin, H. 1958, in Peaceful Uses of Atomic En-
ergy: Proc. Second UN International Atomic Energy Con-
ference, Vol. 31 (Geneva: UN), 190

Gropp, W., Lusk, E., & Skjellum, A. 1999, Using MPI:
Portable Parallel Programming with the Message Passing
Interface, 2nd edn. (Cambridge, MA: MIT Press)

Henney, C. J., Keller, C. U., & Harvey, J. W. 2006, in Astro-
nomical Society of the Pacific Conference Series, Vol. 358,
Astronomical Society of the Pacific Conference Series, ed.
R. Casini & B. W. Lites, 92

Henney, C. J., Keller, C. U., Harvey, J. W., Georgoulis, M. K.,
Hadder, N. L., Norton, A. A., Raouafi, N.-E., & Toussaint,
R. M. 2009, in Astronomical Society of the Pacific Con-
ference Series, Vol. 405, Solar Polarization 5: In Honor
of Jan Stenflo, ed. S. V. Berdyugina, K. N. Nagendra, &
R. Ramelli, 47

Hoeksema, J. T., Liu, Y., Hayashi, K., Sun, X., Schou, J.,
Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka,
K. D., Barnes, G., & Turmon, M. 2014, Sol. Phys., 289,
3483

Jackson, J. D. 1999, Classical Electrodynamics, 3rd edn.
(New York, NY: Wiley)

Leka, K. D., & Barnes, G. 2012, Sol. Phys., 277, 89

Leka, K. D., Barnes, G., Crouch, A. D., Metcalf, T. R., Gary,
G. A., Jing, J., & Liu, Y. 2009, Sol. Phys., 260, 83

Leka, K. D., Barnes, G., Gary, G. A., Crouch, A. D., & Liu,
Y. 2012, Sol. Phys., 276, 441

Lites, B. W., Akin, D. L., Card, G., Cruz, T., Duncan, D. W.,
Edwards, C. G., Elmore, D. F., Hoffmann, C., Katsukawa,
Y., Katz, N., Kubo, M., Ichimoto, K., Shimizu, T., Shine,
R. A., Streander, K. V., Suematsu, A., Tarbell, T. D., Title,
A. M., & Tsuneta, S. 2013, Sol. Phys., 283, 579

Malanushenko, A., Schrijver, C. J., DeRosa, M. L., & Wheat-
land, M. S. 2014, ApJ, 783, 102

McClymont, A. N., Jiao, L., & Mikić. 1997, Sol. Phys., 174,
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