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Abstract

Solar flares are extremely energetic phenomena in our solar system. Their impulsive and often drastic radiative
increases, particularly at short wavelengths, bring immediate impacts that motivate solar physics and space weather
research to understand solar flares to the point of being able to forecast them. As data and algorithms improve
dramatically, questions must be asked concerning how well the forecasting performs; crucially, we must ask how
to rigorously measure performance in order to critically gauge any improvements. Building upon earlier-developed
methodology of Paper I (Barnes et al. 2016), international representatives of regional warning centers and research
facilities assembled in 2017 at the Institute for Space-Earth Environmental Research, Nagoya University, Japan to,
for the first time, directly compare the performance of operational solar flare forecasting methods. Multiple
quantitative evaluation metrics are employed, with the focus and discussion on evaluation methodologies given the
restrictions of operational forecasting. Numerous methods performed consistently above the “no-skill” level,
although which method scored top marks is decisively a function of flare event definition and the metric used; there
was no single winner. Following in this paper series, we ask why the performances differ by examining
implementation details (Leka et al. 2019), and then we present a novel analysis method to evaluate temporal
patterns of forecasting errors in Paper IV (Park et al. 2019). With these works, this team presents a well-defined and
robust methodology for evaluating solar flare forecasting methods in both research and operational frameworks and
today’s performance benchmarks against which improvements and new methods may be compared.
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1. Introduction

Solar flares can be considered the initiating event for many
space weather phenomena and impacts. The impact of solar
flare radiation is almost immediate in the case of sudden
ionospheric disturbances, particularly with M- and X-class
flares, which disrupt radar and terrestrial communications
systems in the sunlit hemisphere. Solar flares are also
intimately associated with other pertinent space weather
phenomena, such as energetic particle storms and coronal
mass ejections whose impacts may be delayed relative to flare
impacts, but can incur broader effects. Predicting solar flare

likelihood has thus long been a defined and required
operational product, now with several facilities worldwide
providing operational forecasts to a variety of customers.
Predicting solar flares is also the ultimate test of under-

standing their cause or causes. They have long been associated
with certain morphological aspects of solar active regions, such
as complex structures, strong-gradient polarity inversion lines,
and indications of significant energy storage in the magnetic
field itself (see, e.g., Sawyer et al. 1986 and references herein;
Leka & Barnes 2003; Schrijver 2007). The only appropriate
energy source is the stored free magnetic energy in solar active
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region magnetic fields, and the only appropriate release
mechanism invokes magnetic reconnection and reconfiguration
to release that free magnetic energy. Indeed, as discussed below
and further in Leka et al. (2019, hereafter Paper III),
quantitative “modern” forecasts incorporate this physical
understanding as they often characterize coronal magnetic
energy storage by proxy, with the parametrizations of photo-
spheric magnetograms. In these contexts, however, pinpointing
a unique triggering mechanism has remained elusive. Alter-
natively, solar flares may inherently be stochastic in nature
(see, e.g., Wheatland 2000; Strugarek et al. 2014; Aschwanden
et al. 2016) thus essentially unpredictable in a deterministic
sense. The state of the research is presently at a point where it is
still unknown in which regime the physics operates. While
their heliospheric and societal impacts provide motivation for
predicting these energetic events, success or failure at
forecasting also provides a key indicator as to whether
stochastic physics is or is not involved.

In 2009, the first in a series of workshops was held to
compare and evaluate the newly emerging plethora of methods
aimed at distinguishing those solar active regions with an
imminent flare threat. Data from the Solar and Heliospheric
Observatory (SoHO; Domingo et al. 1995) and specifically the
Michelson Doppler Imager (MDI; Scherrer et al. 1995) were
provided to the methods for an analysis. The performance
results (see Barnes et al. 2016, hereafter Paper I) are of
secondary importance to the methodology that was established,
identifying the importance of common definitions and
standard metrics when determining what constitutes “good
performance.”

During Solar Cycle 24, the availability of significantly
improved data sources, such as the Helioseismic and Magnetic
Imager (HMI) on the Solar Dynamics Observatory (SDO
Pesnell et al. 2012; Scherrer et al. 2012; Schou et al. 2012;
Centeno et al. 2014; Hoeksema et al. 2014) has made possible a
growing variety of flare forecasting systems that are running in
an operational mode (some of which were in the development
phase in 2009). Consequently, an international collaboration
effort was initiated through the Center for International
Collaborative Research (CICR), at the Institute for Space-Earth
Environmental Research (ISEE), Nagoya University, Japan, to
bring together the operational forecasting teams from a variety
of institutions (government, private, and academic) to evaluate
the performance of different techniques. The goals of that
workshop and the subsequent analysis are to (1) establish
benchmarks and comparison methodologies for operational
flare-forecasting facilities and (2) begin to understand what
particular forecasting methodologies enable the best forecasting
performance.

The participating systems are listed in Section 2 with
additional relevant (unpublished) details elaborated upon in
Appendix A. Although additional research into improving
forecasts is being published frequently as of late (Bobra &
Couvidat 2015; Nishizuka et al. 2017; Florios et al. 2018), for
this research the comparisons were limited to those truly
running in an operational manner, which the group describes as
providing a forecast on a routine, consistent basis using only
data available prior to the issuance time. Many methods,
especially the long-standing governmental–institutional meth-
ods, rely on sunspot classification and historical flaring rates
(Sawyer et al. 1986; McIntosh 1990). A few are now
employing more sophisticated analyses of the host sunspot

groups and statistical classifiers or machine-learning algo-
rithms. Forecasts were not required to be fully automatic;
human intervention, i.e., a “forecaster in the loop” (FITL), was
explicitly allowed. Providing a forecast on a daily basis was
also not a requirement, although as an operational system, not
doing so was effectively penalized by the evaluation metrics, as
described in Section 2.2. No further restrictions were placed on
the data employed or interval used for training, except that it
could not overlap with the testing interval (see Section 2.1).
The impacts of long- versus short-training intervals (e.g.,
whether more than one solar cycle was used for training the
method) and other details are discussed further in Paper III.
The participants provided forecasts for an agreed-upon

interval with agreed-upon event definitions as described in
Section 2.1 (Leka & Park 2019). Representatives from most of
the participating groups attended (in person or remotely) a
three-day workshop during which the approaches and initial
results were discussed in depth. The results of those days, plus
further discussions and analyses that occurred in the subsequent
months, are now presented here and in Paper III and Park et al.
(2019, hereafter Paper IV).

2. Comparison Methodology

The participating facilities and methods (with their monikers
and published references, as available) are listed in Figure 1,
and specific details that are not available from published
literature (or modifications that have been made since the
relevant publications) are briefly described in Appendix A.
Some methods have multiple options for producing forecasts,
and those are also delineated both in Figure 1 and Appendix A.
In Paper III, we distinguish the methods according to broad
categorizations of their implementations, such as data sources,
training intervals, imposed limits, forecast approach (e.g.,
statistical, FITL), etc., and hence we leave that level of detail to
that paper.

2.1. Event Definitions and Testing Interval

The participants agreed on a testing interval of 2016 January
1–2017 December 31 for evaluating forecasts. This is arguably
a very short testing interval; in the present situation, it was
chosen to balance both training and testing data for those
methods relying on data from SDO/HMI, since the near real
time (NRT) data from HMI are only available from late 2012.
The resulting activity levels are summarized in Table 1.
Evaluation was performed on full-disk forecasts only to avoid
the requirement of standardizing the different active region
identification methods in use (combining region-based fore-
casts to the full disk is described in Appendix B.1).
Event definition choices were dictated by the need for

common definitions across methods and the fact that these are
operational methods, hence most already produce forecasts that
match the NOAA/Space Weather Prediction Center (SWPC)-
established event definition and timings.
As such, the group agreed upon event thresholds as “lower-

limits plus exceedance” following the NOAA/SWPC defini-
tion, based on the NOAA Geostationary Observing Earth
Satellite (GOES) X-Ray Sensor (XRS) 1–8Å bands, C1.0+
and M1.0+, corresponding to lower limits of 1.0×10−6 and
1.0×10−5 Wm−2, respectively, with no upper limit (i.e.,
“exceedance” forecasts). All forecasts were put onto an
exceedance basis; calculating exceedance forecasts from
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category-limited forecasts (i.e., including an upper limit), as
were provided by some methods, is discussed in Appendix B.2.
No background or pre-flare subtraction was performed for the
evaluation data, which is consistent with none generally being
performed by any operational method during either the training
or event prediction (see also Wheatland 2005 for a discussion
on the impact of background subtraction). The event definitions
include 24 hr validity periods and effectively 0 hr latencies (the
time periods between forecast issuance and the start of the
validity period) for the initial comparisons (i.e., only one-day
forecasts, not longer-range forecasts). Longer effective laten-
cies may be implied due to data acquisition times, but these are
ignored here for delays <1 hr. Additionally, note that a number
of centers produce additional forecasts (with variations in
frequency of forecast, event thresholds, latencies, or validity
periods); for this comparison, we chose the event definitions to
assure the most overlap between methods. We refer now to
these two event definitions using the shorthand “C1.0+/0/
24” and “M1.0+/0/24,” noting that the nomenclature
includes all three aspects of the event definition (thresholds,
latency in hours, and validity period in hours).

The C1.0+/0/24 exceedance definition provided 188
event days, and the M1.0+/0/24 exceedance definition
provided 26 event days over the 731 days of the testing
interval (2016 was a leap year; see Table 1). Not all methods
produce C1.0+/0/24forecasts. While most methods pro-
duce a forecast for X1.0+ (1.0× 10−4 Wm−2 and larger), in
practice, the short testing interval produced too few of these
largest events to provide meaningful evaluations.
Most methods issue a forecast in the neighborhood of 00:00

UT. Within approximately one hour, any discrepancy from
midnight was ignored. Beyond that, the discrepancies in event
lists would become problematic. For methods which issue
forecasts significantly different from midnight (SIDC at
12:30 UT, NICT at 06:00 UT), custom event lists were
constructed based on that issuance time. Although these
custom lists do change the number of events slightly (C1.0
+/0/24 becomes 183 and 185 event days for NICT and SIDC,
respectively; M1.0+/0/24 becomes 27 event days for both),
they provide the most appropriate approach to enable cross-
comparisons. Almost all methods issue multiple forecasts
throughout the day; in the course of these comparisons, the
forecast issued closest to 00:00 UT was used and others were
ignored.

2.2. Standard Metrics and Evaluation Tools

Different performance metrics inform on different perfor-
mance aspects. This is discussed in Jolliffe & Stephenson
(2012) and other references specifically with regards to flare
forecasting in Bloomfield et al. (2012), Paper I, Kubo et al.
(2017), Steward et al. (2017), and Murray et al. (2018). Hence,

Figure 1. Participating Operational Forecasting Methods (Alphabetical by Label Used).

Table 1
24 hr Event Rates for 2016 January 1–2017 December 31

Class
# of

Quiet Days
# of

Event Days
Climatology (Event

Day Rate)

C1.0+ 543 188 0.257
M1.0+ 705 26 0.036
X1.0+ 728 3 0.004
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we present a number of metrics and evaluation tools, but for
brevity, we refer to any of the above references for the
definitions of specific metrics.19

Graphical representations of performance are used due to the
wealth of information available in a compact form. Reliability
plots (also known as attribute diagrams) plot bins of the
predicted probability against the observed number of instances
in that event frequency bin. A perfect reliability displays points
along the x=y line. A perfect forecast is one in which an event
is only and always predicted with a probability of 100%; such a
service will only have points in the first and last probability
bins. Also included in these plots are the climatological rate
(event rate) for the testing period (a y=constant line at the
event rate for that testing period) and the no-skill line, which is
defined as the bisector between the testing-interval climatology
and the “perfectly reliable” x=y line. Additionally, we
indicate the relative population of the full sample proportion
of forecasts within each bin.

Relative (receiver) operating characteristic (curve), or ROC,
diagrams are constructed by plotting the probability of
detection (POD) versus the probability of false detection
(POFD) as a threshold is varied by which a forecast outcome
becomes a “yes” forecast. This threshold is commonly referred
to as the probability threshold, Pth, as it is applied to forecast
probabilities, but is applied here even though some methods
may not strictly produce probabilities. ROC diagrams measure
resolution but not reliability. ROC diagrams include the x=y
line to indicate no skill; on an ROC plot, perfect forecasts trace
the path from (0, 0) to (0, 1) to (1, 1).

Supplementing the graphical evaluation tools are quantita-
tive metrics. Skill score metrics, in particular, compare
performance to that of a reference forecast. These are
normalized such that perfect forecasts result in a metric of
1.0, and no skill as compared to the reference results in 0.0. The
reference forecast may take various forms; the climatology of
the testing period or a random forecast is commonly used
(Jolliffe & Stephenson 2012), but it may be any other valid
forecast method.

The reliability plots can be summarized by the Brier skill
score (BSS), the mean-square-error skill score (MSESS) metric
for which the reference is specifically the no-skill climatolo-
gical forecast of the testing period (see Table 1). This metric
answers the question: how well did this method do compared to
the underlying climatology?

The ROC curves are summarized here by the ROCSS,
also known as the Gini coefficient, both of which are related
to the AUC but provide more discrimination (Jolliffe &
Stephenson 2012; Leka et al. 2018). The ROCSS and Gini
coefficient are normalized such that no skill provides a score of
0.0, and perfect forecasts provide a score of 1.0.

Deterministic (or categorical) forecasts can be valuable when
preparing forecasts for a particular customer who may require a
specified acceptable rate of false alarms, for example, rather
than simply a probabilistic forecast. Four additional metrics
based on dichotomous (yes/no) forecasts are included: the
Appleman skill score (ApSS) uses the testing interval to
construct an “across the board” climatology reference forecast
(a single reference forecast according to the event day rate in
the testing interval), the equitable threat score (ETS) invokes a

random forecast, and the Hanssen & Kuiper skill score/Peirce
skill score/True skill statistic (here just PSS/TSS) is the
difference between the POD and the POFD (see definitions and
discussions in Woodcock 1976; Murphy 1996; Barnes &
Leka 2008; Bloomfield et al. 2012; Paper I; Kubo et al. 2017;
Murray et al. 2017). These metrics are all based on
permutations of the “truth table” entries that compare predicted
versus observed outcomes and are discussed at length in the
references cited above. Additional numeric metrics, such as the
proportion correct (PC, also called the rate correct or accuracy)
and the frequency bias (FB; Jolliffe & Stephenson 2012), do
not compare to reference forecasts per se and may or may not
have a similar normalization as required for a formal skill
score. The PC metric is common (but can be misleadingly high
even for unskilled forecasts in highly unbalanced samples) and
the FB indicates systematic over- or underforecasting, a
necessary complement to the TSS metric.
A deterministic forecast is produced by imposing a Pth for

assigning the probabilities or forecast outcomes to yes/no
forecasts. This threshold reflects a probability level for an event
at which a “real-world” action/no-action decision has to be
taken based on, for example, economic losses incurred from
one or another type of error. This threshold is then also used for
the dichotomous-based metrics (PC, ApSS, ETS, PSS/TSS,
and FB) by which that method is evaluated. The performance
of a method according to a dichotomous-based metric may vary
as a function of Pth; this is demonstrated in ROC curves where
the vertical distance of each point of the curve from the no-skill
x=y line reflects the PSS/TSS and thus the method’s
discrimination between events and non-events as Pth is varied
(see the discussion in Paper I). Generally speaking, the methods
here are either not explicitly optimized for a particular Pth

during their training or the training method implicitly
maximizes a particular metric that effectively optimizes the
system at Pth=0.5. All but one method produced probabilistic
forecasts; for the one that did not (NICT), outputs of 0.0 and
1.0 were assigned “no” and “yes” forecasts, respectively.
Hence, we adopt Pth=0.5 to compute dichotomous-based

metrics for all methods. A few methods provide custom
forecasts to customers with different Pth or routinely provide
their alerts above a particular Pth, and those were invited for
evaluation with a custom Pth (none were submitted). Unless
specified otherwise, selecting Pth=0.5 for categorical-based
metrics is an allowable choice for all methods. All probabilities
for all forecast methods accompany this publication (Leka &
Park 2019) and are thus available for readers to calculate
additional metrics, with ¹P 0.5th for example.
For all methods, missing forecasts were assigned a

probability of p=0.0 for that day. This is appropriate for
operational forecasts, where missed or skipped forecasts should
be penalized. Most operational methods have built in backup
sources of data, forecasts, or the ability to forecast prior
climatology in the event of, for example, data interruption (see
additional details in Paper III).
We do not present the popular “maximum TSS” (TSSmax)

for two reasons. First, an “optimal Pth” with which TSSmax is
calculated should be established based on information obtain-
able only from the training interval, rather than the testing
interval itself, as is common practice. No method supplied such
a customized Pth to use. Determining an optimal Pth from
which to achieve a maximum TSS score based on testing-
period information is not consistent with a purely operational

19 See also http://www.cawcr.gov.au/projects/verification/#What_makes_
a_forecast_good and https://www.nssl.noaa.gov/users/brooks/public_html/
feda/note/reliroc.html for broad discussions and numerous definitions.
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approach. The optimal Pth can have a correspondence to the
underlying event rate (Bloomfield et al. 2012; Paper I), which
varies according to the solar cycle and from one cycle to the
next as discussed below.20 Hence, there is limited “actionable
information” in determining the optimal Pth from a training
period for future forecasting. Second, the Pth for each method
used to achieve TSSmax will differ from each other and will
depend on the event definition, so interpreting these results is
challenging (see discussion in Paper I). That being said, one
can roughly estimate TSSmax for each method from the shape
of its ROC plot (i.e., the point of maximum vertical departure
from the no-skill x= y line).

2.3. Highlighted Metrics: Comparison against No-skill
Operational Forecasts

All metrics discussed thus far explicitly evaluate the
performance of forecasts against the outcome of the testing
interval. In true operational settings, however, an appropriate
reference forecast against which to judge performance is more
appropriately the best “unskilled” forecast available (Murray
et al. 2017; Sharpe & Murray 2017). In other words, for
operational forecasting, it is appropriate to separately and
specifically ask: to what extent is the method in question an
improvement beyond what would be otherwise available by
simply using an unskilled forecast? If a forecasting method
cannot perform better than this unskilled forecast, then it does
not add any skill or value beyond that unskilled forecast.

To construct a no-skill forecast for day t for the event
definition in question, we use an event rate determined over the
prior N days up to and including t−1. The resulting event rate
is then used as the reference forecast’s predicted probability for
that date t. We choose N=120 days as suggested by Sharpe &
Murray (2017). This unskilled reference forecast does vary, as
shown in Figure 2—in particular, decreasing from >0.5 to
<0.5 for C1.0+/0/24 within the testing interval. Its abrupt

variation on short timescales (e.g., around 2017 September; see
also Figure 5 of Sharpe & Murray 2017) likely reflects active
region recurrence patterns and space weather effects rather than
reflecting longer-range climatology (see discussion on clima-
tology variations in McCloskey et al. 2018, and the 360-day
prior climatology curves also shown here in Figure 2).
However, a 120-day prior climatology forecast (CLIM120)
avoids significant lag against the fairly rapid event-rate changes
that occur at the beginning and end of the solar magnetic cycles
evident in the 360-day prior climatology curves. Either
provides a valid unskilled forecast and a valid reference
forecast for associated metrics, with expected performance
differences and resulting scores—as would a no-skill forecast
using yet another value for N. The CLIM120 is included for
evaluation along with all other methods as a “sanity check” on
the performance of this reference forecast.
Two metrics are constructed using this unskilled forecast as

the reference. A metric “MSESS_clim” is analogous to the BSS
as based on the mean square error (MSE) of the forecast
probabilities. However, instead of the testing-period climatol-
ogy as defined for the BSS, the MSESS_clim uses the prior
120-day event rate (“120-day prior climatology”) as the
reference forecast. Analogously, we compute an ApSS for
which the across the board forecast for any given day is
dictated by this reference; the resulting accuracy is computed
and used as the reference forecast in the “ApSS_clim” score.

3. The Method Performances

Results are shown here for the metrics and evaluation
methodology described in the previous section. Note that if a
particular method is highlighted in the text as an example of a
particular trend, it will rarely be the only example, and such a
callout does not mean other methods are exempt from said
trend. Such callouts refer to M1.0+/0/24results unless
otherwise noted.
First, in Figure 3, the reliability diagrams (attribute

diagrams) are shown, comparing predicted probabilities to the
observed frequencies across 20 probability bins. The predicted

Figure 2. The 120-day prior climatology and 360-day prior climatology are plotted for the C1.0+/0/24 and M1.0+/0/24 event definitions, plus the same for an
X1.0+ threshold for completeness, from the start of the SDO mission (2010 May 1) through the testing interval, whose start is indicated by a vertical dashed line. The
climatological event rate of the testing interval is indicated by horizontal dashed lines over that time period. Each symbol (as indicated) represents the daily full-disk
event rate for the prior 120 days (up until but not including the date on which the point falls) as well as for the curves indicating the 360-day prior climatology. The
120-day prior climatology is used as the unskilled reference forecast in the MSESS_clim and ApSS_clim metrics in Figure 5.

20 Some methods (e.g., A-EFFORT) do establish optimal Pth levels during
training and apply them in order to issue alerts. They elected to not invoke
these Pth for the evaluations here.
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Figure 3. Reliability plots (attribute diagrams) for each method, indicating the performance of the probabilistic forecasts as named: the “x=y perfect reliability”
dotted line, the climatology level (horizontal dashed line), and the no-skill line (sloped dashed line) that lies between the two. Additionally shown (the red dotted line
and small square) is the fraction of the total sample for which a forecast exists for each bin. Each method has an assigned color/symbol combination (Figure 1), where
related methods (e.g., from the same institution) have the same symbols and are plotted with colors in the same family (“nearby” in hue). Results are shown for M1.0
+/0/24 (top) and C1.0+/0/24 (bottom); fewer methods predict the latter than the former. Results were not calculated for X1.0+ due to extremely small number of
events in the testing interval.
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probabilities are indicated on the x-axis by the average of the
probabilities in that bin. Points in each bin are accumulated and
thus accurately reflect the distribution whether from continuous
probabilities or discrete forecast probabilities. This figure also
displays the symbol and color schemes devised to both
compare methods and intercompare between related methods
(e.g., variations from the same institution, see Figure 1). Most
methods provided a form of M1.0+/0/24 forecasts (natively,
or computed as per Appendix B.2). A subset of methods also
produces forecasts for C1.0+/0/24, and those are displayed
as well. The decision regarding whether to produce forecasts
for these smaller flares rests on the facility or agency according
to resources, customer needs, and perceived threat; if publicly
available, these forecasts were included. Most methods do
provide a forecast for X1.0+; however, the number of events
was so small during the testing period as to be uninformative (see
Table 1). The error bars are determined by the number of points
and events in each bin (Wheatland 2005; Paper I); for a reliability
value, R, in a particular bin, s = - +R R N1 3R bin

1 2( (( ) ))
with Nbin being the number of points in that bin.

The reliability diagrams graphically display trends of
overforecasting (see, e.g., MCSTAT) or underforecasting
(see, e.g., MAG4W) the issued probabilities. Some methods
more systematically perform errors of one type (e.g., BOM),
while others display a mix according to the probability bin
(e.g., AMOS) but not an obvious dominance of one error or the
other. The reliability plots also highlight that some probabilistic
methods provide predictions covering the full range of
probabilities (e.g., MAG4VWF), while others do not provide
predictions at the highest probabilities (e.g., ASSA). The case
of NICT, as the sole fully deterministic forecast, appears
different due to the assignment of probabilities (see Kubo et al.
2017 for more on evaluation methods for fully deterministic
forecasting). This lack of high probability forecasting is more
pronounced for larger event magnitude thresholds (e.g., more
prevalent here for M1.0+/0/24 forecasts as compared to
C1.0+/0/24 forecasts), which is a trend noted in Paper I.
Most of the methods here are probabilistic with the exception
of the NICT facility, which produces deterministic forecasts.
Larger flares are less frequent, and probability-based forecasts
will train to reflect that fact, which reduces the presence of
high-probability forecast values.

The ROC curves for all methods are presented in Figure 4,
using the same color and symbol scheme. The x=y line
indicates no ability to discriminate between the two forecast
outcomes (forecast for or against an event in the present case).
The points on the ROC curve are computed for each distinct
probability presented by a method. Hence, methods that
provide forecasts in discrete probability bins present fewer
points than those that provide continuous-probability forecasts
(see, e.g., NICT versus DAFFS). We see a slight increase in the
ability of the models that provided forecasts for both event
definitions to discriminate for the M1.0+/0/24 results as
compared to C1.0+/0/24. This is a generally observed trend
(Murray et al. 2017; Leka et al. 2018).

Comparing the reliability versus the ROC plots for a
particular method highlights the different information presented
by each plot. As an example, the MAG4 results using line-of-
sight magnetograms (MAG4W and MAG4WF) versus those
using vector magnetograms (MAG4VW and MAG4VWF)
appear to show very similar ROC plots while displaying
systematically different behavior in the reliability plots (even

with different training particulars with regards to longitudinal
limitations). Also of interest are the comparative performances
of methods that are ostensibly based on the same basic
approaches such as Poisson statistics applied to historical
region flaring rates (e.g., MCSTAT versus ASSA) or those with
human forecasters involved (e.g., NOAA versus MOSWOC).
Figure 5 shows the variety of skill scores and quantitative

metrics described in Section 2.2, with approximate 1σ error
bars also indicated. There is no straightforward way to estimate
uncertainties on the metrics, given the operational approach
(e.g., data for a bootstrap evaluation are not generally
available). However, we estimate the uncertainties in two
ways. First, there are other studies that have employed
bootstrap or similar methods to calculate the uncertainties in
skill scores (e.g., Bobra & Couvidat 2015; Leka et al. 2018),
although the underlying event populations are somewhat
different. By adjusting for the smaller sample sizes here, one
can estimate a general level of uncertainty in the skill metrics of
≈0.06 for C1.0+/0/24, and ≈0.10 for M1.0+/0/24. To
supplement this estimate, the DAFFS facility (specifically, the
magnetic field parameter component) was rerun for the testing
interval (2016 January 1–2017 December 31) using a 100-draw
(with replacement) bootstrap analysis. Across numerous
metrics and variables available in DAFFS, we find the
uncertainties range over 0.04–0.09 for C1.0+/0/24 and over
0.05–0.17 for M1.0+/0/24, with the ranges due to whether
1- or 2-variables were tested and the particular metrics used.
These estimates are only guidance and do not necessarily
reflect the full uncertainty situation. These uncertainties are also
likely to be underestimates, because they only account for the
random error and no separate bias is calculated for the error
estimate itself. For example, when using the full-disk bootstrap,
individual days are drawn rather than full-disk passages of
individual active regions. Additionally, given the change in the
event rate between training and testing intervals, there is likely
to be a significant bias present for most methods.
The answer to the question of which methods perform “best”

depends on event definition and the metric under consideration.
The rank order of performance changes between metrics and
between event definitions. This is demonstrated poignantly by
MCSTAT/MCEVOL, which score near bottom rank for ApSS
but near top rank for TSS/PSS for the M1.0+/0/24 tests.
Some metrics can differentiate performance better than

others in these applications. The PC metric for M1.0+/0/24
is uninformative for trying to differentiate between methods
due to the large percentage of correct negatives; however, it
provides some information for the C1.0+/0/24analysis.
Because the climatology rate does not vary across the 0.5
threshold for M1.0+/0/24, the two Appleman scores (ApSS
and ApSS_clim) are identical in this case. In the case of the
C1.0+/0/24 event definition, the climatology rate does vary
across the 0.5 threshold, and the results for the two scores are
slightly different.
That being said, the majority of methods perform similarly to

each other—that is, their scores are consistent with each other
across metrics. This is particularly the case for the M1.0+/0/
24 tests given the estimated uncertainties, although there are
arguably performance differences beyond the uncertainties for
the C1.0+/0/24 test.
Comparing the reliability plots (based on probabilities) to the

FB (which is a dichotomous-based metric employing a single
Pth= 0.5), it appears that the vast majority of methods tend
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Figure 4. ROC plots with the x=y no-skill line, following the color/symbol scheme of Figure 3.
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toward underforecasting for larger-flare M1.0+/0/24 tests by
varying degrees (FB<1.0), with a less pronounced deviation
from FB=1.0 for most methods that underwent the C1.0
+/0/24 tests. As mentioned above, the FB score checks the
TSS, in that for low event rates that are typical for solar flares,
an overforecasting system can attain a high TSS while an
underforecasting system is less likely to, so comparing TSS
scores should only be performed in the context of an
accompanying FB score. As such, for example, confidence in
the TSS scores for MCSTAT for the M1.0+/0/24 test should
be tempered somewhat, while the NICT TSS result is more
robust.

Different implementations of otherwise the same method can
be differentiated and the hoped-for improvements confirmed
(or not). The implementations using vector magnetic field data
do perform better (albeit only slightly by most metrics)
than implementations using Blos data within the same
general method (e.g., MAG4W* versus MAG4V*, DAFFS
versus DAFFS-G). By most metrics, MCEVOL’s addition of
an evolutionary component to MCSTAT does improve

performance, although notably not in the Gini (as visible by
the shape of the ROC curve). However, the inclusion of prior
flaring history makes almost no difference in performance
across the MAG* method (e.g., MAG4W versus MAG4WF,
MAG4VW versus MAG4VWF).
None of the operational methods are exceptionally good (i.e.,

close to 1.0 on any metric, except Gini and PC), although
the majority consistently score above no skill for the
metrics considered here. Three methods demonstrate arguably
poor performance, specifically for the metrics that refer to
climatology; these three also show FB>1.0 (overforecasting).
The case of NJIT is fairly well understood and discussed
below, while the others will be discussed further in Paper III.

4. Discussion

In this study, we demonstrate two things: first, a methodol-
ogy to provide meaningful head-to-head comparisons, and
second, the present state of operational flare forecasting. With
this first direct comparison of forecast methods, benchmarks of

Figure 5. Results from the direct comparison of flare forecasting methods for a variety of performance metrics. (Left to right): the proportion correct, the TSS/PSS, the
ApSS (testing period), the ApSS with the 120-day prior climatology reference forecast, the ETS, the BSS, a MSESS with the 120-day prior climatology as a reference
forecast, and the Gini coefficient. A lower limit of −1.0 was imposed for the plotting. The final metric is the FB, whose displayed range is indicated on the right-hand
axis; a+2.0 limit was placed on this plot. Metrics based on truth tables are calculated using Pth=0.5; the BSS, MSESS score (clim), and Gini coefficient are
independent of Pth. The symbols follow the scheme in Figures 3 and 4 and are offset slightly in the x-dir for clarity in the same order as they appear in Figures 1, 3, and
4). Results are shown for M1.0+/0/24 (top) and C1.0+/0/24(bottom); fewer methods predict the latter than the former. Results were not calculated for X1.0+
due to the extremely small number of events in the testing interval.
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performance by a variety of measures are now provided against
which future developments can be tested—an important
element of measuring progress in space weather prediction
capability.

Regarding the methodology, all forecasting facilities are
placed on a level evaluation platform with respect to the full
event definition (including thresholds, validity periods, and
latencies). Those whose forecasting time differed significantly
were afforded custom event lists for evaluation, and those
producing both upper- and lower-threshold-limited forecasts
were converted to exceedance forecasts to match other
methods. Full-disk forecasts ensured that differences in
defining solar active regions would not impede the compar-
isons. The time period chosen was not ideal—it was too short
with an arguably very small event list—but in the face of new
data sources and a very quiet solar cycle, it was an acceptable
and necessary compromise. Most important was how the time
period was chosen: a period that was common to all methods
that also afforded those methods relying on SDO/HMI data an
adequate training interval.

The second component of the methodology is the choice of
evaluation metrics, and this is arguably a challenge in the
context of a direct comparison because it is crucial to ensure
that the metrics are all fair (or equally unfair) to all methods.
For the presentation here, we select a representative array of
dichotomous-based and probability-based metrics, with accom-
panying graphical evaluation tools, to try and provide as
complete a picture as possible. As discussed in Paper I and
elsewhere, applying dichotomous-based metrics to probabil-
istic-based forecasts requires thresholds to be set that may or
may not be ideal for a particular method, resulting in unfair
penalties. In operational practice, it is challenging to choose the
threshold that would ensure optimum performance (by measure
of various dichotomous-based metrics) at the time of forecast
issuance. As discussed in Bloomfield et al. (2012) and Paper I,
an optimum threshold for TSS/PSS is usually close to the
climatological event rate, which itself is found only after long-
term averages are taken in the testing period. Such information
is not available at the time of forecast issuance and may not be
optimal for a different metric. For the evaluations here, we
encouraged groups to submit deterministic forecasts or to
submit probabilistic forecasts and specify thresholds to produce
customized deterministic forecasts for particular customers or
needs (such as an acceptable error rate of one type or another).
None chose to provide other thresholds and thus Pth=0.5 was
applied to all. As such, we examine how well the methods
perform in a deterministic sense if action is only taken when an
event is forecast with a probability of 50% or higher.

We make note of metrics that are appropriate specifically for
evaluating operational systems, since they specifically query
what value the system brings above an available unskilled
forecast. The ApSS and BSS, by definition, employ reference
forecasts based on the climatology of the testing period but, as
discussed, this information is not actionable for improved
future performance. We promote evaluations against an
unskilled forecast. Here we provide analogous MSESS and
an ApSS that employ a 120-day prior climatology as the
reference unskilled forecast (as described in Sharpe &
Murray 2017), although others may obviously be used. For
the testing period herein, the results did not differ substantially
from the original version of the metrics. However, the question

asked differs in a distinct way, and these metrics are
highlighted as part of this work’s focus on methodology.
There was not universal agreement in this group regarding

evaluation philosophy, specifically with regards to utilizing
dichotomous metrics for probabilistic forecasts. The discussion
centers on performance variation as a function of the assigned
Pth in the context of an operational system. While a system may
be trained to optimize a particular metric and Pth, there is no
guarantee the performance will be the same with that Pth during
the testing interval; evaluating a method using a new optimal
Pth from the testing interval misrepresents the performance
when the information needed to assign an optimal Pth is
unknown at the time of the forecast. One approach for
evaluating probabilistic forecasts is to only employ graphical
methods, such as the reliability plots and ROC curves, but to
also apply metrics, such as the BSS and ROCSS (Gini score),
for which no Pth is required; this approach is fair (except to the
inherently deterministic method(s)) but dismisses some metrics
that the community find informative and popular. A second
approach is to present all dichotomous metrics in a manner
similar to ROC curves, displaying their outcomes as Pth is
varied and reporting the maximum attained score (with its
associated Pth); but this approach can imply performance better
than is attainable in an operational setting and is unlikely to
provide guidance for improvement. Hence, the group recog-
nizes that the primary reason for setting a particular Pth to
apply to probabilistic forecasts is to define a threshold upon
which action should be considered according to a particular
customer’s cost/benefit analysis and resilience against fore-
casting errors. The full forecast data and evaluation tools used
in the present analysis accompany this publication (footnote
20) so that additional metrics—using, for example, a different
Pth—may be calculated by the interested reader.
Regarding the results, generally speaking, no method works

extraordinarily well; but we demonstrate that a fair number of
methods consistently perform better than various no-skill
measures, meaning that they do show definitive skill across
more than one metric. No method scores above 0.5 (i.e.,
halfway between “no skill” and “perfect”) across all evaluation
metrics, and for a number of metrics no method provides
results above 0.5. The specific ordering of performance varies
according to the metric and event definition: there is no single
“best” method, especially given the estimated uncertainties
in the metrics. Among methods that provide different versions,
the versions generally behave similarly in some of the
gross characteristics (e.g., shapes and sampling for the ROC
curves) with subtle offsets reflecting the refinements made
between each.
Three particular impacts on forecast method success are

worth noting. First, the underlying event rate obviously varies
within the solar cycle (Figure 2) and possibly across solar
cycles (McCloskey et al. 2018). This will impact the
forecasting methods, although the degree of impact will vary
depending on training methodology. One example would be
that if a method is trained to have high reliability during a time
of high solar activity, it may then systematically overforecast
during times of declining or lower solar activity. Alternatively,
a method may not in fact be particularly reliable during
training, but when faced with a particular epoch of the solar
cycle (e.g., such as the declining phase with more isolated
sunspot groups) it may perform better.
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Second, there are always flares, which occur that are not
assigned to any particular active region or occur behind the
visible limb and may be assigned to a region post facto. During
the testing period, there were 41 unassigned C1.0–C9.9
flares and 3 unassigned M1.0–M9.9 flares; in some cases,
such unassigned flares were the sole cause of an event day (this
is discussed further in Paper IV). Unassigned regions have
consequences for training operational systems as well as for
evaluating and testing them. The vast majority of methods train
on individual regions, and in doing so, they will then
underforecast systematically for full-disk forecasts. All
region-based forecasting methods will miss days where events
are produced by no assigned or detected region.

Third, we can highlight here a distinct case of the impact
arising from the lack of a full transition to operational
functionality. The NJIT method arguably employs one of the
more sophisticated analyses of magnetic field data and shows a
distinct skill in the TSS and Gini metrics. However, it arguably
performs the worst according to other metrics. Of all the
methods, the NJIT system most reflects the research stage of
flare forecasting. It was implemented without calibration across
a change in instrumentation between training and testing
intervals, which, in this case (given the analysis method), could
easily cause the systematic overforecasting as evidenced by the
metrics. This is an issue faced by many methods in light of
aging or changing data sources and the assumed advantage of
longer training sets (see Paper III for an additional discussion
on that point). Additionally, no provisions were made for
issuing forecasts in the event of missing or delayed data, and
this severely impacted the metrics in a negative manner.
Research methods often report encouraging results, but these
must be interpreted in the appropriate context. In parallel,
the challenge and effort required to bring research into a
fully operational mode to the point that it is ready to
undergo evaluation in an operational context must not be
underestimated.

From this presentation, it is not possible to further determine
why performances differ. Established methods on which
national warning centers rely (e.g., NICT versus NOAA)
display very different characteristics in the reliability and ROC
plots but track fairly well among the evaluation metrics. Newer
methods show both improvements and degradation against
established ones (e.g., MCEVOL and DAFFS versus MOS-
WOC and SIDC). However, these differences are fairly subtle
(that is, within uncertainties) when examined across all
evaluation metrics.

We delve further into the “why” question of performance
differences in Paper III by examining the impact of six distinct
categories of implementation differences, finding performance
advantages to including prior flare information and a human
forecaster and performance disadvantages to restricting fore-
cast-relevant data to disk-center observations. We use a novel
analysis method to evaluate temporal patterns of forecasting
errors of both types (i.e., misses and false alarms) in Paper IV,
finding weak support for a hypothesis that including temporal
information, such as active region evolution improves a
method’s ability to successfully forecast, e.g., a region’s
first flare.

The obvious conclusions from this work are actually broad
challenges: new forecasting methods, whether empirical or
physics based, need to be evaluated against these established
benchmarks with the goals of improved characteristics in

reliability and ROC plots and metrics (specifically TSS, ApSS,
ETS and BrierSS), all consistently measuring above 0.5 across
the full range of event definitions.
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Appendix A
Operational Forecasting Methods: Additional Details

Here, we list the methods involved in the comparisons.
Pertinent details are provided beyond the descriptions provided
in the references listed in Figure 1; all times here are quoted in
UT. For additional details, we also suggest referring to
Paper III, where performance is compared according to specific
distinctions.

A.1. A-EFFORT (Academy of Athens, Greece)

A-EFFORT is a space situational awareness (SSA) service of
the European Space Agency (ESA), available at http://a-effort.
academyofathens.gr/prod/ (with registration). Forecasts are
issued at about 00:00 UT and refresh every three hours. Four
exceedance thresholds are used: M1.0+, M5.0+, X1.0+,
and X5.0+, with a fixed forecast window of 24 hr and 0 hr
latency.
There is a single parameter computed from magnetic field

data—namely the effective connected magnetic field strength
(Beff; Georgoulis & Rust 2007) whose values are translated
into probabilities using elements of a Bayesian analysis and
Laplace’s rule of succession. Beff is calculated directly up to
central meridian distances of ±50°; from this limit to ±70°, a
magnetic flux-based proxy of Beff is calculated to avoid the
impact of severe projection effects.
Each of the four forecasts is computed for each of the active

regions present within a solar meridional zone of ±70°, which
is identified using a custom active region identification
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algorithm (see LaBonte et al. 2007); full-disk probabilities are
computed as per Equation (1).

A.2. AMOS (Korean Meteorological Administration and Kyung
Hee University)

The Automatic McIntosh-based Occurrence probability of
Solar activity (AMOS) model provides daily occurrence
probabilities separately for C-, M-, and X-class flares for
each NOAA active region and the full disk using McIntosh
sunspot group classes and the daily change in the area for the
sunspot groups. The details are well described in Lee et al.
(2012).

A.3. ASAP (University Bradford, UK)

As described in Colak & Qahwaji (2008, 2009), ASAP also
participated in the All Clear workshop in 2009 (Paper I).

A.4. ASSA (Korean Space Weather Center)

The Automatic Solar Synoptic Analyzer (ASSA) system at
the Korean Space Weather Center identifies and predicts for a
variety of solar activity, including sunspot groups and
associated flaring. Flare forecast results are issued hourly at
00:00, with a McIntosh-class-based forecast extending for 24 hr
(used here, initiated in late 2013) and a new parameter-based
forecast using six major parameters extending for 12 hr. The
McIntosh-class-based forecast uses an independent ASSA
algorithm (not NOAA determinations) to identify sunspot
groups and determines their McIntosh class by estimating their
morphological characteristics and produces an independent
flaring probability according to the ASSA sunspot–flare archive
(not based on otherwise published rates). The ASSA sunspot–
flare archive was produced based on statistical matching
between ASSA’s sunspot group catalog and NOAA’s GOES
soft X-ray events catalog during 1996–2013. A parameter-
based method was initiated in late 2016 and provides flare
forecasts based on multicomponent linear regression using
parameters, such as the number of sunspots in a sunspot group,
the total area of sunspots in a group, and the group’s
longitudinal extent. Unfortunately, forecasts from this second
method were not submitted. ASSA forecasts rely on SDO/HMI
continuum and line-of-sight magnetogram images with no
correction for limb-ward effects. Additional details may be
found in the user manual (Lee et al. 2013).

A.5. BOM (Flarecast, Bureau of Meteorology, Australia)

The details of the probabilistic model are well described in
Steward et al. (2011, 2017). Flarecast II (not yet published but
results are submitted here) uses the SDO HMI magnetogram
imagery analysis capability developed for the original Flarecast
model (Steward et al. 2017), plus prior flaring history, and adds
a machine-learning technique (logistic regression) to generate a
probabilistic forecast. Variables that describe HMI Blos

magnetograms are selected to minimize Aikake’s Information
Criteria (AIC), and logistic regression is used to estimate the
coefficients of the model and are then used to generate M+,
X+, region and full-disk, probabilistic, and categorical
deterministic forecasts output for flaring activity over the next
24 hr. In the operational mode, the predictions are updated at
00:00, 06:00, 12:00, and 18:00 UT.

A.6. DAFFS and DAFFS-G (Discriminant Analysis Flare
Forecasting System, NorthWest Research Associates

(NWRA), USA)

DAFFS is well described in Leka et al. (2018), but it should
be noted that it is a fairly “young,” recently released system.
Note that, being the only method to primarily rely on a
quantitative analysis of vector magnetic field data from a non-
operational data source (SDO/HMI), this method suffered from
data problems arising from the data-acquisition mode change
that incurred a temporary data misalignment21 (MAG4V*

methods use SDO/HMI data in a more limited fashion, see
below). The impacted data spanned 2016 April–2017 Septem-
ber and was most damaging for data away from disk center.
(The “definitive” data have subsequently been reprocessed; the
NRT data will not be.) We noted that it most dramatically
impacted some parameters in top-performing combinations but
not others. For the results here, we modified DAFFS to run
using parameter combinations that performed essentially
identically (within the metric error bars) in the training phase
but were not as susceptible to the HMI vector data problem:
specifically, for the C1.0+/0/24 event definition, the
parameter combination was changed to E , loge nwra[ ( )] and
the M1.0+/0/24 event definition parameter pair was
changed from what is described in Leka et al. (2018)
to FL , log24 nwra[ ( )].
The DAFFS-G (a tool runs simultaneously and is based

primarily on GONG Blos data and persistence (NOAA NRT
event reports). DAFFS-G is a very “young” release and has
not yet been fully optimized for performance. For the
forecasts submitted here, the parameter combinations were
 FB ,z

pot
tot
pot[ ( ) ] for C1.0+/0/24, and the parameters for

M1.0+/0/24 were s  FB ,h
pot

tot
pot[ ( ( )) ], where the “pot”

moniker refers to the potential field calculated from the Blos

data (Leka et al. 2017).

A.7. MAG4* (NASA/Marshall Space Flight Center, USA)

MAG4 is described in Falconer et al. (2011, 2014). This
study included four versions:

1. MAG4W: free-energy proxy only using line-of-sight
magnetogram.

2. MAG4WF: free-energy proxy and previous flare history
using line-of-sight magnetograms.

3. MAG4VW: free-energy proxy only using deprojected
HMI vector magnetogram.

4. MAG4VWF free-energy proxy and previous flare history
using deprojected HMI vector magnetograms.

MAG4W[F] uses the HMI NRT Blos data with no further
correction. The MAG4VW and MAG4VWF, like DAFFS, use
SDO/HMI vector magnetic field data that are, however, only
up to 30° from disk center, which were minimally impacted by
the data misalignment. In MAG4*F, previous flare information
is used, although a region is assumed to be non-flaring if that
information is not available.

21 See http://hmi.stanford.edu/hminuggets/?p=1596 and the SolarNews note
of 2017 September 1 at https://www.nso.edu/solarnews/20170901/.
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A.8. MCSTAT and MCEVOL (MaxMillenium Flare Prediction
System, Ireland)

The MCSTAT approach is well described in Gallagher et al.
(2002) and Bloomfield et al. (2012), while the MCEVOL
approach is well described in McCloskey et al. (2018).

A.9. MOSWOC (Met Office, UK)

The details are well described by Murray et al. (2017). Note
that the forecast closest to 00:00 UT was used but is not
necessarily the official forecast for that day from MOSWOC, as
updates are applied through the (local) night.

A.10. NICT (National Institute of Information and
Communications Technology, Japan)

The details of this long-running system are well described in
Kubo et al. (2017). The NICT–human approach provides four
categorical deterministic forecasts of maximum flare sizes that
are unique to the methods: quiet (max: A/B-class), eruptive
(max: C-class), active (max: M-class), or major flare (max: X-
class). These were converted to probabilities of [0.0, 1.0] for
the probabilistic-based analysis and converted to exceedance
forecasts.

A.11. NJIT (New Jersey Institute of Technology, USA)

The basic methodology is described in Park et al. (2010).
The NJIT method is operational in the sense it produces
forecasts automatically but has not been developed further
since 2010. It provides probabilistic forecasts of at least one
C-, M-, and X-class flare occurrence only for a given NOAA-
numbered active region within ±60° of the disk center; these
were converted to exceedance forecasts. The method was
trained on 300 primarily flare-productive active regions using
SOHO/MDI line-of-sight active region magnetic field data in
solar cycle 23. However, the forecasts now use HMI line-of-
sight data without any crosscalibration between the two data
sources.

A.12. NOAA (Space Weather Prediction Center, US National
Oceanic and Atmospheric Administration, USA)

The forecasts by NOAA/SWPC have long been considered
a standard (Crown 2012) and have set the benchmarks against
which methods are measured using the NOAA/SWPC event
definitions (see commentary on this in Leka & Barnes 2017).
SWPC forecasters begin with a climatological approach. They
classify the active regions and assign probabilities according to
the historical flaring rates of different sunspot region classes
(McIntosh 1990). (Note: SWPC’s assignment of active region
class is also considered “the standard.”) From this, a forecaster
may modify a region’s probability according to region
evolution, flaring trends, and forecaster experience and
expertise. These region probability forecasts are combined for
a full-disk forecast, which itself may be modified based on
flaring history of recently rotated-off regions or indications of a
highly active region about to return. Forecasters may also
incorporate other model data when available. Initial forecasts
issued at 22:00 (the Geophysical Activity Report and Forecast
or RSGA) are valid beginning at 00:00 the next day. These are
incorporated into the three-day forecast issued at 00:30, with a
minimal but not zero probability of a forecast update in the
intervening 2.5 hr. Forecasts can, but are not likely to, be

updated again before the next three-day forecast is issued at
12:30. The data used in this comparison arise from the three-
day forecasts but include the C1.0+/0/24 forecasts that are
not generally published.

A.13. SIDC (Solar Influence Data Analysis Centre of the Royal
Observatory of Belgium)

The forecaster on duty at the SIDC produces (nominal issue
time 12:30UT) a probabilistic forecast each day for the
occurrence of X-ray flares over the next 24 hr. Probabilities
are provided for flare classes C-, M- and X- separately. A full
disk as well as an active region specific forecast are provided.
The forecasters use various data sources, the main one being
the flaring probability from active regions with the same
McIntosh classification. Such probability is then modulated
using for example: the specific flare histories for the regions to
be forecasted, SDO/HMI magnetogram movies, SDO/Atmo-
spheric Imaging Assembly (AIA) movies, and Solar TErres-
trial RElations Observatory (STEREO)/Extreme Ultra-Violet
Imager (EUVI) movies, e.g., to assess the flaring activity of
active regions rotating onto or off the solar disk. Details on
flare forecasting at Royal Observatory Belgium (ROB)/SIDC
and its validation procedures are provided in Berghmans et al.
(2005) and Devos et al. (2014).

Appendix B
Steps to Produce Full-disk Exceedance Forecasts

B.1. Full-disk Forecasts from Region-based Forecasts

The forecasts considered here are full-disk forecasts, mean-
ing essentially that they treat the Sun as a star. In practice, only
one method did not produce full-disk forecasts, meaning that
they only provided forecasts for active regions individually. In
that case, the region probabilities were combined according to

= - P -P P1.0 1.0 , 1FD AR AR( ) ( )

where PAR is the probability of an event for each active region,
and the product is performed over all active regions for which
such a probability is provided. This equation is effectively how
all region-forecasting methods produce their baseline full-disk
forecasts.

B.2. Class-specific versus Exceedance Forecasts

The results from methods producing class-specific forecasts
(e.g., M1.0–M9.9) were converted to exceedance forecasts
(e.g., M1.0+ with no upper limit) using conditional prob-
abilities over that method’s training interval by the following
methodology. Suppose one has the probabilities of occurrence
of at least one C-, M-, and X- class flares, respectively, for a
given forecast time window, τ, denoted by P(C) for C1.0–
C9.9, P(M) for M1.0–M9.9, and P(�X1)=P(X) for X1.0
+. Then, the lower-bound only probabilities of P(�C) and
P(�M) can be determined by combining the probabilities of
P(C), P(M), and P(�X1) with their associated conditional
probabilities.
The probability of occurrence of at least one flare at the level

greater than or equal to M1.0 during τ, (i.e., P(�M1)) can be
derived as follows:

= + -
= + - ´

P P P P
P P P P

M1 M X M and X
M X M X M , 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ∣ ) ( )
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where P(M and X) is the probability that both M- and X-class
flares will occur at least once during τ, and P(X|M) is the
conditional probability of at least one X-class flare occurring
given at least one M-class flare occurred during τ.

Similarly, P(�C1) can be determined as follows:

= + + - -
- +

= + + - ´ -
´ - ´ +
´ ´



3

P P P P P P
P P

P P P P P P
P P P P
P P

C1 C M X C and M C and X
M and X C and M and X

C M X C M C C
X C M X M C
M C X C and M ,

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ∣ ) ( )
( ∣ ) ( ) ( ∣ ) ( )
( ∣ ) ( ∣ )

where P(X|C and M) is the conditional probability of at least
one X-class flare occurring given both C- and M-class flares
occurred at least once during τ.

The conditional probabilities are calculated using the
NOAA/SWPC historical flare event list data and τ as the
prescribed validity interval (e.g., 24 hr) starting from 00:00 UT
of a given date. In this case, for example, P(X|M) can be
determined as follows:

1. During the training interval for a given forecast method,
we find the dates D(M) on which at least one M-class flare
occurred.

2. From the dates D(M), we determine the subset D(X|M) of
dates on which at least one flare at the level greater than
or equal to X1.0 occurred.

3. The conditional probability P(X|M) is then the total
number of elements in D(X|M) divided by the total
number of D(M).

The other conditional probabilities can be calculated in the
same way as P(X|M) explained above. Figure 6 shows the
conditional probabilities for different time intervals used for
their calculations. Note that the end date of all of the time
intervals is fixed at 23:59 UT on 2017 December 31. The
conditional probabilities do not significantly change as a
function of the time interval. Because our goal is to calculate
P(�C1) and P(�M1) from the probabilities of P(C), P(M), and
P(�X1) that a given forecast method provides, the proper time
interval to use for calculating the conditional probabilities is the
training interval for that specific forecast method.

Forecasts for flare-class specific probabilities are converted
to exceedance forecasts for the following methods: AMOS,
ASAP, ASSA, MOSWOC, NICT, and NJIT.
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