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[1] Discriminant analysis is a statistical approach for assigning a measurement to one of several mutually

exclusive groups. Presented here is an application of the approach to solar flare forecasting, adapted to

provide the probability that a measurement belongs to either group, the groups in this case being solar

active regions which produced a flare within 24 hours and those that remained flare quiet. The technique is

demonstrated for a large database of vector magnetic field measurements obtained by the University of

Hawai’i Imaging Vector Magnetograph. For a large combination of variables characterizing the

photospheric magnetic field, the results are compared to a Bayesian approach for solar flare prediction, and

to the method employed by the U.S. Space Environment Center (SEC). Although quantitative comparison

is difficult as the present application provides active region (rather than whole-Sun) forecasts, and the

present database covers only part of one solar cycle, the performance of the method appears comparable to

the other approaches.
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1. Introduction
[2] It is generally accepted that the energy to produce a

solar flare is the stored magnetic energy of an active
region in which the solar magnetic field departs from a
simple potential configuration. A solar flare can result in
such a region if a trigger occurs to tap the stored magnetic
energy [e.g., Priest and Forbes, 2002].
[3] Many efforts to build a dependable objective fore-

casting method have relied upon white light images of
active region morphology. Because morphological charac-
teristics are typically governed by the evolution and state
of the local magnetic field, the morphological interpreta-
tions essentially act as a proxy for themagnetic field. Several
flare prediction methods currently employed are not com-
pletely objective and rely with varying degree on human
involvement. These methods often use an active region’s
McIntosh classification as a means of obtaining an initial
flare rate. The McIntosh classification scheme [McIntosh,
1990] uses a visual evaluation of an active region’s size and
character in white light to assign it to one of 60 classes,
with which are associated historical flare-production rates.

Thus an assignment provides a predicted rate of flaring in
and of itself. Refinements to this approach have been
developed; for example, Bornmann and Shaw [1994] applied
multiple linear regression to the historical McIntosh flare-
rate data in order to determine to what extent each of the
three McIntosh-class parameters contributes to the rate of
flaring. Gallagher et al. [2002] have implemented a system
(http://www.solarmonitor.org) in which historical flare
rates from the McIntosh classifications determine an ac-
tive region’s initial flare-production probability, and then
for new forecasts the probability is modified according to
Poisson statistics.
[4] An objective method of flare prediction which does

not rely on the McIntosh classification has been proposed
byWheatland [2004, 2005]. It accounts for an active region’s
previous flare activity combined with historical flare sta-
tistics [see Moon et al., 2001] to determine future flare
production. However, since flares are thought to be a
result of an MHD instability or magnetic reconnection,
observations of the magnetic fields may be expected to
yield more accurate forecasts than white light observa-
tions or flare persistence alone.
[5] One approach which has been applied to active

region photospheric vector magnetic field measurements
is discriminant analysis, a statistical technique for assign-
ing a new set of measurements to one of several mutually
exclusive populations [Kendall et al., 1983; Anderson, 1984].
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One of the strengths of discriminant analysis is the ability
to simultaneously consider multiple parameters.
[6] Leka and Barnes [2003a] demonstrated discriminant

analysis applied to a small sample of photospheric mag-
netic data as a means of distinguishing between flare-
producing and flare-quiet active regions on timescales of
order an hour. While individual magnetic parameters had
little ability to identify an active region primed for flare-
production, it was shown that certain multivariate dis-
criminant functions might be able to distinguish between
flaring and nonflaring active regions, although the small
sample size precluded definite conclusions.
[7] Leka and Barnes [2007] demonstrated discriminant

analysis applied to a much larger sample size of individual
vector magnetograms, with the flare event window de-
fined as 24 hours after the observation, consistent with the
National Oceanic and Atmospheric Administration Space
Environment Center’s (NOAA SEC) established forecasts.
Again, no single magnetic parameter could distinguish
flaring from flare-quiet active regions at a dramatically
improved rate above that which would arise from simply
predicting all regions to be flare-quiet. As with the original
small-sample study, some improvementwas demonstrated
with multivariate discriminant functions.
[8] However, the standard implementation of discrimi-

nant analysis as used in the work of Leka and Barnes [2007]
produces a binary categorization of a region as flaring/
flare-quiet. Here, the approach is extended to a probability
forecast. As such, the results using solely vector magnetic
field data as input can be compared to the results of both
the SEC and Wheatland [2005], by way of forecast reliabil-
ity plots and verification statistics described by Wheatland
[2005].

2. Data
[9] The vector magnetic field data used here were

obtained by the Mees Solar Observatory Imaging Vector
Magnetograph (IVM) [Mickey et al., 1996; LaBonte et al.,
1999]. This instrument was designed for rapid imaging
spectropolarimetric observations of entire active regions
with moderate (100) spatial resolution, and has been in
synoptic operation for over a decade. The initial sequence
of the instrument’s nominal observing mode includes a
‘‘survey’’ of each numbered NOAA active region present
on the solar disk. An accumulation of these maps over the
time period 2001 to 2004 yields a statistically significant
sample of observations with which to test flare forecasting
methods. A longer time period of IVM data was not
considered due to the possibility of systematic changes
resulting from instrument upgrades. For the present anal-
ysis, we removed data that suffered from obvious defects,
those that were close to the limb (centered beyond m =
cos(q) � 0.5) and those for which there were fewer than
64 pixels above the 2s noise level. All image-plane data
were resolved of the inherent 180� ambiguity in the
transverse component using the University of Hawai’i

approach [Canfield et al., 1993; Metcalf et al., 2006], to
determine the heliographic components of magnetic
field. Additional details can be found in the work of
Leka and Barnes [2007]. No further selection for size,
bipolar nature, complexity, or flaring history was im-
posed; the final tally is 1212 magnetograms of 496
different active regions on 430 days.
[10] An active region was classified as ‘‘flaring’’ if it

produced at least one Soft X-ray event with a peak
emission level in a specified range in the 24-hours post-
magnetogram, and ‘‘flare-quiet’’ otherwise. The flare
events were determined using the event logs for the
Geostationary Operational Environmental Satellite
(GOES) available through the National Geophysical Data
Center (http://www.ngdc.noaa.gov). The peak-level
thresholds were either C1.0 (1.0 � 10�6 W m�2 peak
X-Ray flux in the 1--8 Å GOES bandpass), M1.0 (1.0 �
10�5 W m�2 peak flux level) or X1.0 (1.0 � 10�4 W m�2

peak flux level). It is assumed that undersampling due to
background X-ray contamination levels is statistically
minimal. No region-associated Ha or radio-burst flares
were included if they did not also register as a GOES
event. There are no further distinctions herein concerning
the character of the flare. With these criteria, the database
contains 359 magnetograms of flaring regions (29.6% of
the total), with 111 of those having produced at least one
M-flare or greater (9.2%), and 20 having produced at least
one X-flare (1.7%); no flares of at least C class were
recorded for the remaining 853 magnetograms (70.4% of
the total).

2.1. Data Parameters
[11] The state of the photospheric magnetic field can be

quantitatively described in numerous ways. The focus was
on deriving parameters which were both analogous to the
morphological descriptions used by the McIntosh classi-
fication, and which also elucidate the energy stored in the
active region’s magnetic field. The variables, described in
detail in the work of Leka and Barnes [2003b], are each
evaluated over the field of view and essentially fall into
eight categories, describing the distribution of (1) the
magnetic field vector components, Bz and Bh, (2) the
inclination angle, g = tan�1(Bz/Bh), (3) the horizontal gra-
dients of the magnetic fields, jrrrrrrhBj, jrrrrrrhBzj, jrrrrrrhBhj, (4) the
vertical current density, Jz � @By/@x � @Bx/@y, (5) the force-
free parameter, a � Jz/Bz, (6) the vertical portion of the
current helicity density, hc � JzBz, (7) the shear angle from
potential, Y = cos�1 (Bp � Bo/BpBo), (8) the photospheric
excess magnetic energy density, re = (Bp � Bo)2/8p, where
Bp is the potential field whose vertical component matches
the observed Bz at the photosphere. Thus variables based
on the horizontal gradients of the magnetic field distribu-
tion will directly relate to the ‘‘compactness,’’ or third
measure in the McIntosh class, while those relating to
the force-free parameter and the current density describe
how far the active region deviates from a potential-field
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configuration, and have no direct analogy in the McIntosh
class.
[12] The goal of this analysis of vector magnetic field

data is to quantitatively and objectively produce a set of
parameters that will be useful in describing the flare-
readiness of an active region on the Sun. For an algorithm
such as this to be useful in real-world applications, it is
imperative that no human subjectivity or intervention be
required for evaluating, identifying, or classifying the
data. Thus the spatially distributed physical variables
outlined above must be reduced to single-number param-
eters. Following our previous work, a spatially distributed
variable x is parameterized by its first four moments:
mean, x, standard deviation, s(x), skew, &(x), and kur-
tosis, k(x) [Leka and Barnes, 2003b, 2003a, 2007], given
by:

mean x ¼
P

i wixiP
i wi

ð1Þ

standard deviation s ¼
P

i wi xi � xð Þ2P
i wi

" #1=2

ð2Þ

skew & ¼
P

i wi xi � xð Þ3=s3P
i wi

ð3Þ

kurtosis k ¼
P

i wi xi � xð Þ4=s4P
i wi

� 3 ð4Þ

where wi is a weighting factor that, unless otherwise
specified, is set to the area of the pixel. This is necessary
because the calculations are carried out on a regular grid
in image coordinates, so the physical area of the pixels
varies across the field of view.
[13] The mean and standard deviation are familiar to

most readers, giving the typical value of the distribution,
and the spread about that typical value. The skew
describes the asymmetry of the distribution, indicating
the presence of a one-sided tail. The kurtosis is normal-
ized to zero for a Gaussian distribution, and deviations
from zero indicate whether the distribution has long or
short tails in comparison to a Gaussian. The skew and
kurtosis are sensitive to small patches of extreme values.
Thus for example, a highly twisted d-class sunspot within
an otherwise potential region should appear as a signifi-
cant non-zero skew in the distribution of the force-free
parameter a. In some cases, the moments are supple-
mented by the total and/or net value of the variable. An
example is the total unsigned flux Ftot = S jBzj dA, which
affords a direct measure of the active region’s size, and
reflects the first and second components of the McIntosh
class. When considering the distribution of the magnetic

shear angle, we also consider the total area of strong shear,
and the length of strongly sheared neutral lines. The latter
differs slightly from the implementation as originally
proposed by Hagyard et al. [1990] and incorporated into
more recent studies [e.g., Falconer et al., 2006], as we do not
subjectively select the ‘‘primary’’ magnetic neutral line but
rather automatically evaluate the magnetic shear along all
neutral lines which also have strong horizontal magnetic
fields.

3. Discriminant Analysis and Probabilistic
Forecasts
[14] Discriminant analysis is a statistical tool for classi-

fying a measurement into one of several predetermined,
exclusive groups or populations based on the values of m
parameters [e.g., Kendall et al., 1983; Anderson, 1984]. For
the case of solar flare forecasting, the measured parame-
ters characterize an individual active region’s magnetic
field as alluded to above; the groups consist of those
regions which produced one or more flares in the 24 hours
subsequent to the observation, versus those regions which
produced no such flares. The discriminant function is
constructed to maximize the rate of correct predictions.
If the probability density function for each of the popula-
tions is known, then a given measurement is assigned to
the group with the highest probability at that point. Thus
the location of the classification boundary is given by
equal probabilities for flaring or being flare-quiet,
corresponding to a 50% flare probability forecast.
[15] In order to compare the performance of the dis-

criminant analysis flare prediction method to other flare
warning systems, flare probability forecasts must also be
produced. Using Bayes’s theorem, the probability that a
region belongs to the flaring population when it is ob-
served to have properties x is

Pf xð Þ ¼
qf ff xð Þ

qf ff xð Þ þ qqfq xð Þ : ð5Þ

In this expression, fj(x) is the probability density function
for population j, meaning that the probability of a
measurement belonging to population j falling between
xa and xb is given by

P xa < x < xbð Þ ¼
Z xb

xa

fj xð Þdx ð6Þ

where j = f refers to the flaring population, while j = q
refers to the flare-quiet population, while qj is the prior
probability of belonging to population j, which is the
probability that any region, whose properties are un-
known, will belong to population j.
[16] This expression is valid for any well behaved prob-

ability density function f. An application of equation (5) is
shown in Figure 1 for two populations with Gaussian
probability density functions. Typically, the true popula-
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tion probability density will not be known, and so must be
estimated from the samples. For the results presented
here, we shall assume the probability densities are Gauss-
ian distributions, and that the flaring and flare-quiet
populations have equal covariance matrices. Figure 2
shows an example for two variables discussed by Leka
and Barnes [2007], under the above assumptions. In the
work of Leka and Barnes [2007], the effect of relaxing these
assumptions was investigated, and it was shown that even
using nonparametric estimates for the probability density
function generally results in relatively small changes to
the discriminant function and corresponding error rate.
Thus, the results seem to be fairly robust to deviations
from a Gaussian. In any case, making a better estimate of
the probability density function is only likely to improve
the performance of the discriminant.
[17] The multivariate Gaussian probability distribution

of m-dimensions is given by

fj xð Þ ¼ jSj�1=2

2pð Þm=2
exp � 1

2
x� m jð Þ

� �0
S�1 x� m jð Þ

� �� �
ð7Þ

where m(j) is the vector of mean parameter values, S is
the population covariance matrix (assumed equal for the
two populations), and x is the vector of parameter values
for the new active region to be classified. The population
mean is estimated from the sample mean, m(j) =

�x jð Þ ¼
Pnj

i¼1 x
jð Þ

i =nj, and the population covariance
matrix is estimated from the sample covariance
matrices

C ¼
nf � 1
	 


C fð Þ þ nq � 1
	 


C qð Þ

nf þ nq � 2
; ð8Þ

where

C jð Þ ¼ 1

nj � 1

Xm
k¼1

x
jð Þ

k � �x jð Þ
� �

x
jð Þ

k � �x jð Þ
� �

: ð9Þ

Assuming that the a priori probability of membership in
a population is proportional to the sample size gives qj = nj/
(nf + nq). Substituting these expressions into equation (5)
gives the forecast probability at any point in parameter
space.

Figure 1. Illustration of how a probability forecast is
determined for two populations with Gaussian dis-
tributions and an unequal a priori probability of
membership. The 50% probability forecast, equivalent
to the discriminant boundary, occurs where the two
curves intersect, but in general, the probability forecast
is determined by the relative probability of belonging
to each population. For the example shown, the
probability that a measurement at x = 0.3 belongs to
the flare-quiet population is 0.201, and to the flaring
population is 0.081, so the flaring probability is Pf (x =
0.3) = 0.081/(0.081 + 0.201) = 29%.

Figure 2. An example of probability forecasts for two
variables characterizing the photospheric magnetic
field: the total unsigned flux, and the standard
deviation of the neutral line shear angle. Flare quiet
regions are shown as crosses; flaring regions are shown
as diamonds, with the color determined by the largest
flare: green for C-flares, yellow for M-flares, and red
for X-flares. The mean of each sample is shown as a
blue circle, and selected contours of probability
forecasts for C-flares are shown as blue lines and
annotated with the probability of flaring, under the
assumptions described in the text. Many of the regions
fall close to the 10% forecast probability contour, which
is in accord with the median flare forecast of f = 0.14
(see Table 1). The points with Ftot � 1023 Mx are region
NOAA AR 10486.
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[18] A probability forecast is the focus here for reasons
of comparing our results with other methods, as described
in detail below. However, this formulation provides a
degree of flexibility which might be useful in future
applications, in the following sense. The monetary costs
of inaccurate forecasts can impact different industries in
quite different ways. The precautions taken by users of
space-based systems in light of impact from a solar flare
can be costly; system shutdowns and data interruptions
may or may not be balanced by the costs of extra shielding
and redundancy. An accounting for a customer’s unique
inequality in the costs of a ‘‘false-alarm’’ instead of a
‘‘miss’’ can be incorporated by way of including a ratio
of these two in equation (5): essentially, the cost enters like
a prior probability. More specific discussions on the ap-
plication of this flexibility are beyond the scope of this
paper as the forecast must be tailored to specific customer
requirements.

3.1. Error Rates and Verification Statistics
[19] To evaluate the performance of the probabilistic

forecast, the same verification statistics presented by
Wheatland [2005] are employed. These include considering
the average forecast probability for all observed active
regions, h fi, and the average of all observations, hxi
(where x is either one or zero depending on whether
the region flared or was flare-quiet). Other statistics
include the average forecast probability over the flaring
regions, h fjx=1i, andover the flare-quiet regions, h fjx=0i.
These averages are supplemented by the mean absolute
error,

MAE f ; x
	 


¼ hjf � xji; ð10Þ

and the mean square error,

MSE f ; x
	 


¼ h f � x
	 
2i: ð11Þ

Finally, the climatological skill score [e.g., Murphy and
Epstein, 1989], defined by,

SS f ; x
	 


¼ 1�MSE f ; x
	 


=MSE hxi; xð Þ

¼ 1�MSE f ; x
	 


=s2
x;

ð12Þ

is calculated. The skill score indicates the improvement
of the forecasts over a constant forecast given by the
average observed rate, hxi. Positive scores indicate
better performance, with a maximum score of 1.0 for
perfect forecasting, while negative scores indicate
worse performance.

4. Results and Comparison of Forecast Accuracy
to Other Methods
[20] In order to gain insight into what properties of the

photospheric magnetic field are most closely related to

flaring, several approaches were considered in the work of
Leka and Barnes [2003a, 2007] to determine first the mini-
mum number of variables needed to achieve the majority
of the discriminatory power, and second, given that num-
ber, which variable combinations offered the best insight.
The emphasis in those studies was on determining the
physical basis for the differences between active regions in
flare productivity. In the present investigation, the focus is
on empirical flare prediction. Thus throughout we simply
use all 74 variables considered by Leka and Barnes [2007].
This approach is likely to produce the best forecasts, even
though many of the variables included may contribute
almost nothing to its performance.
[21] In comparing a Bayesian approach to solar flare

prediction with the method employed by the SEC,
Wheatland [2005] made use of forecast reliability plots, as
presented on the SEC’s Web page (www.sec.noaa.gov/
forecast_verification/mFlare.html), and also verification
statistics as described in section 3.1. It is important to note
that our approach differs from both the other methods in
that it makes forecasts for individual active regions rather
than for the whole Sun; additionally, our database only
covers a subset of days in the years 2001--2004 as com-
pared to the much longer periods covered by the data
used by both the SEC and Wheatland [2005]; finally, our
results are for events greater than or equal to a given peak
emission, whereas the other methods consider events
within a range of peak emission. These differences result
in a very different mean flaring rate for a given peak
emission, nonetheless, we present similar forecast reliabil-
ity plots in Figure 3 for the C-flare threshold, Figure 4 for
the M-flare threshold, and Figure 5 for the X-flare thresh-
old. The results for the last of these categories can be
compared most directly to the other methods, but it is also
the one with by far the smallest sample size, and thus the
least statistically significant.
[22] The approach here can also be used to forecast for

several categories of flares simultaneously if multiple
populations are considered. For single variables at a time,
we have considered the case of three populations, consist-
ing of nonevents, M-X flares and X-flares, to match the
forecasts of Wheatland [2005]. Unlike the two population
case discussed by Leka and Barnes [2007], the assumption
of Gaussian distributions with equal covariance matrices
leads to significantly different results than using a non-
parametric density estimator. Since the nonparametric
approach requires even larger sample sizes than the
parametric approach, it can only reasonably be done with
a single variable at a time for our data set, and even this is
subject to issues of small sample sizes, since at least the X-
flare sample may be considered small. We have therefore
chosen not to include potentially misleading results using
more than two populations here.
[23] A reliability plot is constructed by first dividing the

forecasts into probability bins. For the smaller data set
available here, the bin width is set to 0.10; for the results of
the SEC and Wheatland [2005] methods, the bin width is
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0.05, so only a subjective comparison can be made; given
the other differences listed above, this is not a great
limitation. For a bin containing S total forecasts, of which
R were observed to have at least one event, then the
observed probability is p = (R + 1)/(S + 2), with an
associated uncertainty dp = [p(1 � p)/(S + 3)]1/2 [Wheatland,
2005]. The reliability plot shows the observed probability
as a function of the forecast probability bin. With this
definition, a perfect forecasting scheme would result in the
diagonal line shown in Figure 3. For the C-flare threshold,
the forecasts perform quite well qualitatively, with a slight
tendency to underpredict (points lying above the line) for
most probability bins except for the largest probability
bins, where there is some overpredicting (points lying
below the line). For larger flares (M-flares and larger:
Figure 4, X-flares and larger: Figure 5), most of the points
fall in the smallest probability bin, while all the other bins
have large uncertainties due to the small number of
points. Thus it is difficult to determine if there is any
tendency to under/overpredict, but the trend appears
similar to C-flares, with underprediction at low forecast
probabilities turning to overprediction at large forecast
probabilities. In comparison, for both the SEC and the
Wheatland [2005] approaches, there is a tendency for over-
predicting at most probabilities.
[24] For a more objective measure of the performance of

the discriminant analysis forecasts, consider the verifica-
tion statistics given in Tables 1, 2, and 3, and the compar-

Figure 4. Reliability plot for vector magnetic field
forecasts with an M1.0 threshold, in the same format as
Figure 3. There is a tendency to overpredict for large
forecast probabilities, but most of the points are in the
smallest probability bin.

Figure 5. Reliability plot for vector magnetic field
forecasts with an X1.0 threshold, in the same format as
Figure 3. The vast majority of the points are in the
smallest probability bin, making it difficult to deter-
mine if there is any tendency to either overprediction
or underprediction.

Figure 3. Reliability plot for the vector magnetic field
probabilistic forecasts with a threshold of C1.0, in the
same format as the SEC. For a perfect forecast, all
points lie along the line; points lying above the line
indicate an underprediction, points lying below the
line indicate an overprediction. Error bars reflect the
number of data points in each bin. There is a tendency
to underpredict for small forecast probabilities.

S09002 BARNES ET AL.: FORECASTING SOLAR FLARES

6 of 9

S09002



ison of a selection of the statistics to the other forecasting
methods given in Table 4. Before comparing the results of
the different methods, note that in the present case, the
flare event rate is much lower than for the other data. For
example, for M-flares, the present data has hxi = 0.092
compared with hxi = 0.262 for the SEC’s tabulated data.
This is likely a result of considering individual active
regions rather than the whole sun. In terms of flare
event rate, the C-flare data with hxi = 0.296 in the
present case are similar to the M-flare data in the other
data, hence we include both in our comparisons.
[25] To understand how the various methods behave,

consider first the average forecast probabilities on event
and nonevent days. For both the SEC and Wheatland
[2005] methods applied to M-X events, h fjx = 1i > 0.5,
while the present method for the C-flare threshold has a
comparable score, meaning it provided a similar average
forecast for flare-event data (see Table 4). However, the
present method for M-flare threshold has h fjx = 1i = 0.422,
indicating that it typically produced lower forecast
probabilities for flare-event data. For both the SEC
and Wheatland [2005] methods, h fjx = 0i > 0.2, while the

present method for both thresholds is lower, indicating
that it typically produces lower forecasts for data for which
no event occurs. The better low probability forecasts
combined with the worse high probability forecasts in
the present method for M-flares compared to the SEC
and Wheatland [2005] methods for M-X flares lead to
extremely similar skill scores (0.252 � SS ( f, x) � 0.262);
the comparable high probability forecasts with the C-flare
threshold combined with the improved low probability
forecasts gives a significantly improved skill score for the
present method (SS ( f, x) = 0.346). It should be noted that
all the methods perform better for lower flare thresholds,
where the event rate is higher, but we include the C-flare
threshold for our results because its event rate is compa-
rable to the event rate for M-X events in the other
methods.
[26] For the X-flare threshold, the present method typ-

ically had much higher forecast probabilities for the flare-
event data, h fjx = 1i = 0.450 compared to the other
approaches, which had h fjx = 1i < 0.250. In addition,
the present method had lower forecast probabilities for
the flare-quiet data, resulting in a larger skill score than
either of the other approaches (SS(f, x) = 0.123 for the

Table 1. Verification Statistics (C1.0 Threshold)

Statistic Value

Total AR-days 1212
Total AR-events 359

h fi 0.279

hxi 0.296

Median f 0.140
sf 0.291
sx 0.457

h fjx = 1i 0.544

h fjx = 0i 0.167

SD fjx = 1 0.313
SD fjx = 0 0.193
MAE( f, x) = hj f � xji 0.253

MSE( f, x) = h( f � x)2i 0.136
SS( f, x) 0.346

Table 2. Verification Statistics (M1.0 Threshold)

Statistic Value

Total AR-days 1212
Total AR-events 111

h fi 0.076

hxi 0.092

Median f 0.006
sf 0.206
sx 0.289

h fjx = 1i 0.422

h fjx = 0i 0.041

SD fjx = 1 0.391
SD fjx = 0 0.134
MAE ( f, x) = hj f � xji 0.090

MSE ( f, x) = h( f � x)2i 0.062
SS ( f, x) 0.252

Table 3. Verification Statistics (X1.0 Threshold)

Statistic Value

Total AR-days 1212
Total AR-events 20

h fi 0.013

hxi 0.017

Median f 1.1 � 10�8

sf 0.111
sx 0.127

h fjx = 1i 0.450

h fjx = 0i 0.006

SD fjx = 1 0.500
SD fjx = 0 0.073
MAE( f, x) = hj f � xji 0.015

MSE ( f, x) = h( f � x)2i 0.014
SS( f, x) 0.123

Table 4. Comparison of Verification Statistics for M Versus
M-X Flares

Present
Method Wheatland SEC

M X M-X X M-X X

hfi 0.076 0.013 0.294 0.040 0.298 0.064

hxi 0.092 0.017 0.262 0.035 0.262 0.035

hfjx = 1i 0.422 0.450 0.510 0.122 0.551 0.244

hfjx = 0i 0.041 0.006 0.217 0.037 0.208 0.057

MAE ( f, x) 0.090 0.015 0.289 0.066 0.271 0.081
MSE ( f, x) 0.062 0.014 0.143 0.031 0.139 0.032
SS ( f, x) 0.252 0.123 0.258 0.078 0.262 �0.006
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present method compared with SS(f, x) < 0.08 for the
other approaches).
[27] When comparing the verification statistics, it is

important to note that there is a great deal of variability
in forecast success. For example, over the course of ap-
proximately one solar cycle (1995--2006), the annual SEC
skill scores for M-X flares ranged from a low of �0.157 to a
high of 0.322, while for X flares the lowest annual skill
score was �0.567 while the highest was 0.242. Thus, even
though the present method has a skill score of 0.123 for
forecasting X-flares, it is not at all clear that this represents
a real improvement over the skill scores of 0.078 for
Wheatland [2005] or �0.006 for the SEC over the time
interval 1987--2003.

5. Discussion
[28] A probabilistic forecasting method has been dem-

onstrated for a variety of parameters characterizing the
photospheric vector magnetic field. Although it has been
shown using discriminant analysis that the majority of
predictive power can be contained in just a few variables
[Leka and Barnes, 2007], the approach here focuses on
extracting the greatest success rate rather than under-
standing the underlying physics. Thus probability fore-
casts were constructed with all of the photospheric
variables considered in our on-going series. Three cases
are considered here, with the threshold of whether to
consider a data point as ‘‘flaring’’ or ‘‘flare-quiet’’ set at
either the GOES C1.0, M1.0, or X1.0 levels.
[29] We employ the simple assumption that the proba-

bility density function of each variable is Gaussian, and the
parameters characterizing the Gaussian are determined
from the samples. The flaring probability for any value of
the variables is determined based on the estimated prob-
ability of belonging to the flaring population. It was shown
by Leka and Barnes [2007] that even using nonparametric
techniques to estimate the probability density does not
greatly improve the performance of the discriminant func-
tion, so the results of making the assumption of Gaussian
distributions are likely to be quite robust when considering
only two populations.
[30] The all-variable probability forecast results pre-

sented here were compared in detail to two other fore-
casting methods, one based on event statistics and flare
persistence [Wheatland, 2004, 2005] and the other the
method used for the SEC’s flare forecasts, based essen-
tially on the flare rates according to the classification of
white light images [McIntosh, 1990]. With appropriate
caveats due to the differences between the methods in
what is forecast (active region versus whole disk, flare
threshold levels) the performance of the present method is
comparable.
[31] In particular, for the M-flare threshold, the skill

score for the present method is 0.252, comparable to the
performances of the SEC and Wheatland [2005] methods
for M-X flares (see Table 4). For X-flares, none of the
methods perform particularly well, the present method’s

skill score of 0.123 is higher than either of the other
approaches, although this is likely to be a statistically
insignificant result. The positive values of the skill scores
indicate that all the approaches indeed add information
above a uniform forecast probability. The present method
still tends to overpredict for at least the large forecast
probability bins, similar to the performance of the other
methods (see Figures 3 and 4).
[32] There are ways in which incremental improvements

can be made in the present method: in particular, larger
sample sizes would help in several ways. First, a larger
sample would better constrain the performance of the
analysis. Second, with a larger sample, it is possible to
relax the assumption of Gaussian distributions and apply
nonparametric approaches for small numbers of variables
considered simultaneously; the sample size needed for a
nonparametric representation grows very rapidly with the
number of variables considered [see Table 4.2 of Silverman,
1986] so it will be extremely difficult to consider large
numbers of variables simultaneously. The present analysis
also includes only the declining phase of one solar cycle,
and it may well be the case that there are variations over
the solar cycle that have not been captured. Furthermore,
we have been consistent in considering only the parame-
ters described in our previous studies; it may be that
including other characteristics of the photospheric mag-
netic field, such as its fractal dimension or the power
spectrum of spatial scales present [Abramenko, 2005;
McAteer et al., 2005], or parameters characterizing the
coronal magnetic topology inferred from the photospheric
field [Barnes and Leka, 2006] may significantly improve the
results. Finally, including a measure of flare persistence,
such as forms the basis for theWheatland [2005] method, in
combination with the magnetic field characterization may
bring together the most pertinent information for empir-
ical flare forecasting [Wheatland, 2007]. Nonetheless, it is
clear that an automated forecasting approach based on
photospheric vector magnetic field measurements can
perform comparably to existing flare forecast approaches.
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