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ABSTRACT

NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with
unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit.
The relative spacecraft–Sun velocity varies by ±3 km s−1 over a day, which introduces major orbital artifacts in the
Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and
temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in
the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately
uses 32 velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given
the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce
consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we
analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral
properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic
improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

Key words: instrumentation: polarimeters – methods: data analysis – Sun: granulation – Sun: helioseismology –

Sun: magnetic fields

1. INTRODUCTION

The Helioseismic Magnetic Imager (HMI) aboard NASA’s
Solar Dynamics Observatory (SDO) produces full-Sun vector
magnetic field observations at 1 resolution with a cadence of
approximately 12 minutes. These data represent an unprece-
dented opportunity to study time evolution of solar vector
magnetic fields on the spatial scales and timescales of active
region evolution. For the first time relatively pristine data are
available that are uncontaminated by the effects of Earth’s
atmospheric turbulence, which causes distortions that often
cannot be completely corrected by speckle reconstruction
imaging or adaptive optics. In principle, the HMI data can lead
to major advances in science understanding, because the energy
and helicity transported through the photosphere and into the
corona can be determined by measuring plasma velocities
(optical flow/image motions) from a sequence of photospheric
vector magnetograms (Schuck 2005, 2006, 2008) where
extrapolation methods are likely to fail (De Rosa et al. 2009;
Peter et al. 2015). While speckle reconstruction imaging and
adaptive optics can dramatically improve the local resolution of
the images, these techniques often do not preserve the relative
distances between solar structures from frame to frame, which
introduces large artificial biases in velocity estimates. In
contrast, SDO represents a stable platform with a known
pointing, located outside Earth’s atmosphere, thereby poten-
tially permitting highly accurate measurements of the velocities
between photospheric features from frame to frame.

SDO, however, is in a highly inclined geosynchronous orbit
chosen so as to maximize data throughput to the ground-based
receiving stations. Unfortunately, this orbit produces a large ±3
km s−1 variation in the relative velocity between the HMI
instrument and the Sun, which leads to major orbital artifacts in
the HMI data. Since the orbit is accurately known, it would seem
that removal of the artifacts should be straightforward, but even

after five years into the mission, the exact mechanisms that
contaminate the data remain a mystery and the rigorous removal
of the artifacts has not been accomplished. There is speculation
that the artifacts are caused by low spectral resolution combined
with the motion of the Fe I l = 6173.3430 Å line across the
HMI transmission filters as the satellite executes its geosynchro-
nous orbit. Given that SDO/HMI typically produces I, Q, U, and
V images sampled at six wavelengths, the 24 data points at each
pixel are already near critical sampling—marginally enough data
to determine eight observables via Milne–Eddington inversion.4

Over the period of an orbit the radial velocity of the satellite
varies by as much as ±3.2 km s−1, which corresponds to a shift
of  l lD Dv c2 1310 mÅ, which is almost twice the
nominal HMI filter separation of lD 69 mÅ. Such a large
shift in the line, combined with the low spectral sampling and
known parameter degeneracies, seems sure to create (or
exacerbate) vulnerabilities in the Milne–Eddington inversion
(see p. 275 in Borrero et al. 2011 and also Section 3.2 in Centeno
et al. 2014). Some of the other possible causes for the orbital
artifacts that have been suggested include errors in the
transmission profiles, distortion of the optics due to gravitational
effects, and asymmetries in the line profiles.5

Nonetheless, it is now well established that these artifacts
contaminate many observables computed from HMI data (e.g.,
Section 7.1 in Hoeksema et al. 2014; Figure 4 in Liu & Schuck
[2012] for AR 11072 shows oscillations in the shear helicity
flux, Figure 3 in Chintzoglou & Zhang [2013] exhibits clear
dips in the magnetic field near midnight on February 14–16,
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4 There are 11 possible observables that can be determined via a Milne–
Eddington inversion. However, for the “fd10” release of the HMI data used in
this paper, the filling factor is constrained to be a = 1, the damping parameter
of the Voigt profile is constrained to be a = 0.5, and the macroturbulence
parameter vmac is set to a constant (Centeno et al. 2014).
5 Asymmetries in the line profiles could be addressed with higher spectral
sampling.
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and the Poynting flux in Figure 2 of Vemareddy [2015] shows
a very clear 12 hr oscillation). The optimal solution would be to
understand the source of the contamination at the spectral level
and correct optical distortions through calibration prior to any
inversion process to estimate Doppler velocities and magnetic
fields. However, even if the source of the contamination is
definitively identified and corrected for future observations, it is
not guaranteed that these corrections could be implemented for
the data already archived. If the HMI data are to be used to
quantitatively investigate the variations in solar photospheric
plasma, or to reliably supply data-driven models, it is
absolutely essential that a rigorous procedure be developed to
mitigate nonphysical temporally varying artifacts from both the
archived and future data.

In this paper we present a new approach, COADRED
(Cleansing Orbital Artifacts—Demodulation by REnormalizing
Data), for correcting the downstream Doppler velocities
derived from the Milne–Eddington inversions. It should be
emphasized that all spatial and temporal scales are affected by
the artifacts, thereby severely limiting the usefulness of the data
for detailed quantitative spatiotemporal analysis at the cadence
of the data series such as for Poynting flux estimates
(Kazachenko et al. 2015). The goal of our procedure described
below is to provide a data set that is consistent, i.e., free of
orbital artifacts, but not necessarily calibration errors. Note that
we cannot claim to derive data that are absolutely correct,
because there are no absolute calibrations for the measure-
ments. Potentially intercalibration between vector magneto-
graphs could determine which measurements are correct.
However, even understanding the relative calibrations between
magnetographs is rife with complexities, because magneto-
grams often use different magnetically sensitive lines corre-
sponding to different heights in the solar atmosphere, with
different spatial resolutions, different spectral sampling, and
different time cadence (Wang et al. 1992; LaBonte et al. 1999;
Orozco Suárez et al. 2007; Leka et al. 2009; Leka 2011; Leka
& Barnes 2012; Liu et al. 2012; Hoeksema et al. 2014). Given
these many obstacles to determining absolute calibrations for
the purposes of “correcting” any of the observables from the
HMI pipeline data, we focus our attention instead on producing
consistent data by renormalizing the observables to the radial
rest velocity of the satellite with respect to the Sun: V 0R .
We emphasize that even the measurements observed at =V 0R
may not be “correct” in an absolute sense. Indeed, we will
show that significant biases remain in both large-scale flows
and a small-scale Fresnel pattern. However, this renormaliza-
tion does remove most of the contamination correlated with the
spacecraft radial velocity. The result is consistent Doppler
measurements that can now be used for spatiotemporal analysis
of the image dynamics.

1.1. The COADRED Procedure

COADRED consists of a three-stage process for obtaining
consistent Doppler measurements6 with vector field data from
the HMI pipeline.

1. The first step is to remove the projection of the satellite
velocity along the line of sight (LOS) from each pixel.
Since the satellite orbit is known with high accuracy, then
in principle, if the HMI measurements were accurate,

there would be no orbital effects remaining in the data. As
will be shown below, however, this is definitely not
the case.

2. We next remove the three well-known quasi-steady-state
signals from each image: the differential rotation, the
meridional flows, and the convective blueshift. Note that
the first two are actual physical flows but the latter is not.
As discussed in detail by Beckers & Nelson (1978), the
convective blueshift, commonly referred to as the limb
shift, is due to the observed strong correlation in
photospheric lines between intensity and wavelength
shift. For unresolved convective flows this correlation
introduces a systematic bias to any line shift determina-
tions, and this bias has a strong center-to-limb variation.
The three large-scale signals are removed by fitting each
image with a series of eigenfunctions representing the
differential rotation, the meridional flows, and the limb
shift “flows” and subtracting these from each image. Not
surprisingly, these biases vary with SDOʼs radial velocity
VR, and thus by removing them from each image, we
reduce the power in the orbital effects substantially. We
find that a low-order (∼8) series for each type of flow is
sufficient for fitting and removing the large-scale biases.
By determining the dependence of these coefficients on
radial velocity, they may be projected to the same
velocity, arbitrarily chosen to be the radial rest velocity of
the SDO ºV 0R , by interpolation.

3. After removal of these biases, we expect that the only
remaining physical effects in the residual images are the
small-scale convective dynamics, which should be
largely quasi-stationary. However, we show below that
these residual images still exhibit substantial orbital
artifacts. We conjecture that these artifacts are caused by
some type of interference between the instrument
response and convective structures moving across the
solar disk, which produces spectral artifacts by spatio-
temporal modulation of the convective amplitudes. If so,
then we expect there to be a strong correlation of SDOʼs
radial velocity with the limb shift effect in the instrument
response. To remove this artifact, we calculate the
magnitude of each residual image and then fit this with
an eighth-order series of limb shift eigenfunctions. This
yields the dependence of the coefficients on the satellite
radial velocity VR. As will be shown below, these
coefficients also exhibit a clear systematic dependence
with VR, which must be due to orbital artifacts. Similar to
the second step, we simply renormalize each pixel so that
each image appears to be observed at the same radial
velocity, again arbitrarily but consistently chosen to be

ºV 0R . This renormalization almost completely elim-
inates the remaining orbital signal. Corrected Doppler-
grams are then constructed by restoring the large-scale
flows, interpolated to =V 0R , to the renormalized
convection images to obtain HMI Dopplergrams that
exhibit essentially no orbital artifacts and that now can be
used for accurate science investigations. This procedure
does not remove the steady-state biases in the Doppler-
grams present at =V 0R such as the bias in the large-scale
meridional flows described in Section 3.2.4 or the small-
scale Fresnel pattern described in Section 4.

In the sections below we describe the data set that we used for
this analysis and describe exactly how the COADRED6 Specifically the hmi.ME_720s_fd10{vlos_mag} data.
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procedure was applied to this data set. The procedure ultimately
uses 32 velocity-dependent coefficients to adjust 10 million
pixels—a remarkably sparse correction model given the
complexity of the orbital artifacts. The data and the procedure
are described in sufficient detail that others can use our methods
or can modify them for application to other types of data sets.

2. DATA DESCRIPTION

Approximately 17 days of SDO/HMI data in 2010 are
considered in developing the COADRED procedure. During
this time period, the Sun was fairly quiet, but these days
encompass the disk passage of the small and nearly potential
active region AR 11072 discussed by Liu & Schuck (2012).
This time period was specifically chosen for two reasons. First,
it was a relatively quiet period, and therefore most pixels
represented the same physical process of solar convection. This
permitted the straightforward disentanglement of the orbital
effects and the physical solar effects. Second, there was
coverage by both HMI and MDI during this time.

The HMI has two independent cameras that produce several
data series, which undergo different analysis. Consequently,
these data sets may be used to intercompare observations of the
Sun. Three data series are produced by the vector field “side
camera” (Keyword CAMERA = 1). The hmi.M_720s{Magne-
togram} and hmi.V_720s{Dopplergram} series are produced by
an MDI-like algorithm (Couvidat et al. 2012) and the hmi.
ME_720s_fd10 series with segments {field, azimuth, inclination,
vlos_mag, etc.} (Hoeksema et al. 2014), which are produced by
the Very Fast Inversion of the Stokes Vector (VFISV; Borrero
et al. 2011; Centeno et al. 2014) Milne–Eddington code. Two
data series are produced by the Doppler camera (Keyword
CAMERA = 2) hmi.M_45s{Magnetogram} and hmi.V_45s
{Dopplergram} (Scherrer et al. 2012; Schou et al. 2012;
Hoeksema et al. 2014). The magnetogram and Dopplergram
series have corrections and calibrations that are not applied to the
spectral data provided to the Mile-Eddington inversions that are
part of the hmi.ME_720s_fd10 series (Hoeksema et al. 2014).
Furthermore, during 2010 there was a significant period of
overlap in the observing programs of HMI and MDI. The MDI
instrument produces two series that are comparable to
observables estimated by HMI, namely, mdi.fd_M_96m_lev182,
which is a LOS magnetogram, and mdi.fd_V, which is a LOS
Dopplergram. Thus, in principle, there are three independent
cameras and four different data sets for each LOS observable
available for intercomparison for AR 11084. This paper will
focus on the hmi.ME_720s_fd10{vlos_mag} data from the
vector field “side camera,” which measures 4096 x 4096

filtergrams at six wavelengths and four polarizations of the Fe I

617.3 nm line that are corrected for solar rotation, cosmic rays,
distortions, and other effects (Hoeksema et al. 2014). These
spectral data are used to construct the Stokes parameters (I, Q, U,
V), which are in turn inverted based on the Milne–Eddington
approximations using VFISV to produce about 8 physical
parameters (see footnote 4), including the magnetic components
relative to the LOS xB , hB , zB and the magnetized plasma
velocity along the LOS vLOS. Since the data are spectrally sparse
and the Milne–Eddington model is a simplified description of the
line-forming physics, the inversion of these spectra is highly
sensitive to the relative velocity between the instrument and the
line-forming region on the Sun.

2.1. Camera #1 Orientation

The pointing of HMI is known to very high accuracy owing
to the Venus transit data of 2012 June 5–6 (Couvidat 2014;
Emilio et al. 2015). In particular, The CROTA2 keyword is
often taken to be the orientation of the Sun’s north pole in solar
images. However, this interpretation depends specifically on
how CROTA2 is determined. For HMI, the CROTA2
keywords are known to better than 0°.002 (Couvidat 2014)
relative to the transit of Venus. We caution the reader that this
is not an absolute determination relative to the Sun’s north pole
relative to either magnetic phenomena or solar flows.
Furthermore, the P-angle and B0-angle estimates in the HMI
pipeline keywords do not include the corrections to the
Carrington elements determined by Beck & Giles (2005) using
time–distance helioseismology on data from SOHO/MDI.
Beck & Giles (2005) found that Carrington’s estimates of i, the
angle between the plane of the ecliptic and the solar equator,
and Ω, the angle between the cross point of the solar equator
with the ecliptic and the vernal equinox, were off by as much as
D =  i 0.095 0 .002 and DW = -  0.17 0 .1, with the error
in i affecting the error in P-angle and CROTA2 more than the
error in Ω. This may introduce a temporal error in CROTA2 of
as much as 0 .1 depending on the heliocentric ecliptic longitude
of the SDO. Furthermore, Beck & Giles (2005) concluded that
the cross-equatorial flow they measured could correspond to a
systematic bias in P-angle of another  0 .1 under the
assumption that the Sun does not maintain long-term cross-
equatorial flows. These results suggest that generally there may
be a time-dependent error in the inferred direction of solar
north of as much as ;0°.2–0°.3 when using the standard
Carrington elements (this is not an HMI specific statement).
Knowing these systematics is important for interpreting
meridional flows, as we shall see in Section 3.2.

Figure 1. Relative roll angle between HMI Camera #1 and MDI based on the hmi.M_720s series.
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Figure 1 shows the relative angle between HMI Camera#1 and
MDI based on the normalized cross-correlation of the mdi.
fd_M_96m_lev182 and the hmi.M_720s series during 2010 June.
The MDI series keywords CRVAL1 and CRVAL2 were adjusted
by 1.9 and −0.5, respectively, to maximize the cross-correlation
coefficient C 0.9 for the results presented here. The MDI image
was convolved with a Gaussian filter, s = 1MDI pixel, and the
HMI image was convolved with s = ´ =4 0.875 3.5HMI
pixels, chosen to maximize the cross-correlation. Convolving both
data sets with a Gaussian reduces shot noise. The CROTA2 value
for the HMI image was then adjusted by CROTA2

d-CROTA2 CROTA2 over a range of - 1 to 1° where
positive dCROTA2 corresponds to a counterclockwise (clock-
wise) rotation of HMI (MDI) to bring them into alignment. The
Carrington/Stonyhurst coordinates (see Appendix B) were used to
determine the same locations on each image, and the blurred HMI
image was resampled to MDI observations. The offset between the
two cameras lies between 0 .18 and 0 .23. The variation could be
due to a drift in CRPIX or roll in MDI. At present, there is no
predictive or definitive attitude data for SOHO during this time
period.7 However, these values are in rough agreement with
Liu et al. (2012), who found d - =CROTA2 0.22 0.10
  0 .12 0 .05 in a comparison between the same two data series

using a slightly different procedure and similar to the estimate
dCROTA2 0.21 for the offset between MDI and the

Carrington elements determined from Doppler images (Hathaway
& Rightmire 2010). These results imply that a CROTA2 value of
180 for HMI camera#1 corresponds closely to solar north
pointing downward in the images to within a few tenths of a
degree. This close alignment between HMI and MDI suggests that
the large cross-equatorial flow implied by the S1

0 coefficient
determined in Section 3.2.3 is caused by instrument bias, not a
misalignment in the camera orientation during this time period.

2.2. Co-registration

Owing to the orbit of SDO, the diameter (radius) of the Sun in
HMI images varies by roughly ( ) 1 0. 5 , corresponding to roughly
2 pixels on the timescale of a day, and on the timescale of 17 days
the diameter (radius) of the Sun varies by roughly ( ) 2 1 ,
corresponding to roughly 4 (2) pixels. For spatiotemporal analysis,
the optimal solution would be to track the active region across
the Sun at the average speed of the active region. However,
nonuniformities in the HMI instrument response then convolve
noise in space and time. The co-registration choice for the
remainder of this investigation is to (1) shift each image so
that the center of the Sun corresponds to the center of the
image ( )= =CRPIX1 2048.5, CRPIX2 2048.5 , (2) rotate each
image to the same orientation ( )=CROTA2 0 , and (3)
remap each image to the same observation point

=DSUN_OBS 152017949201m (distance to the Sun), so that
the solar radius remains constant in pixel units. Using this co-
registration convention, each pixel corresponds to the same
nominal location on the solar disk.

3. DOPPLER DATA PROCESSING

The following sections describe the procedure by which the
HMI data are processed in order to remove the orbital artifacts.
In the subsequent analysis the variable U is used to represent
components of a velocity on the surface of the Sun, and the

variable VSDO is used the spacecraft velocity, but generally  is
used to represent a theoretical model of the LOS Doppler
velocity and vLOS is used to represent various stages of data
processing -vLOS 0, -vLOS 1, -vLOS 2, and -vLOS 3, with -vLOS 0
representing the raw observed Doppler velocity from the HMI
pipeline. The coordinate systems used are described in the
Appendices based on the notation in Thompson (2006). In
particular, Appendix B describes the projection of the
Stonyhurst unit vector ( ) F Q r, , onto the LOS.

3.1. Stage 1: Subtraction of the LOS Projection
of Satellite Velocity

The first stage in the analysis is the removal of the LOS
projection of the satellite velocity (Sat-V) from each pixel. The
heliocentric Cartesian LOS direction ( ) x y z, , in helioprojec-
tive coordinates ( )q yr, is (see Appendix A)

ˆ ( )
( )

 h q y q y q y q= - +r r r rx y z, sin sin sin cos cos .

1
LOS

Positive values of Doppler shift correspond to (redshifts)
motion away from the satellite.8 In principle, the LOS plasma
motion on the Sun can be determined by subtracting the
projection of the satellite motion onto the LOS from the
measured Doppler velocity at each pixel i,

ˆ · ˆ · ( )h h= - º -- - V Uv v . 2i i SDOLOS 1, LOS 0, LOS LOS surface

The velocity vector for SDO in the heliocentric Cartesian
directions is

( ) ( )=V V V V a, , 3SDO W N R

( ) ( )= bOBS_VW, OBS_VN, OBS_VR , 3

in the heliographic Cartesian coordinate system, and thus

ˆ ·

( )

h q y
q y q

=
- +

r

r r

V OBS_VW sin sin

OBS_VN sin cos OBS_VR cos .

4

SDOLOS

HereVR corresponds to the HMI keyword “OBS_VR,” which is
the velocity of the observer in the solar-radial direction
(positive is away from Sun). Additionally, VW corresponds to
the HMI keyword “OBS_VW,” which is the velocity of the
observer solar-westward (positive in the rough direction of
Earth’s orbit), and VN corresponds to “OBS_VN,” which is the
velocity of the observer solar-northward (positive in the
direction of solar north).
If the Doppler velocities are measured accurately, the -vLOS 1

would show no correlation with satellite motion. The black line
in Figure 2 shows the residual spatially averaged rms Doppler
velocity

( )= áD ñ - áD ñv vResidual , 5x x tLOS
2

LOS
2

,

during 17 days in 2010 after the projection of the satellite velocity
has been subtracted from each pixel via Equation (2). The
subscripts “x” and “t” indicate spatial and temporal averaging,
respectively. A large, daily oscillation remains, indicating
systematic errors in the LOS Doppler measurements from the
vector field inversions. Similar oscillations are known to occur in
the B from the vector field inversions (see Hoeksema et al. 2014)

7 http://sohowww.nascom.nasa.gov/data/ancillary/#attitude 8 http://jsoc.stanford.edu/doc/data/hmi/sharp/old/sharp.MB.htm
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and in the hmi.V_720s{Dopplergram} series from the same
camera and in the 45 s cadence data from the hmi.V_45s series
observed by camera 2 (private communication with Phil Scherrer).
This strong fixed oscillation convolves with and contaminates all
spatial and temporal scales, which greatly diminishes the
usefulness of the data for science studies.

3.2. Stage 2: Large-scale Biases

The second stage in the COADRED procedure is the
decomposition of each Doppler image into large-scale flows:
differential rotation flows MF, meridional flows MF, and the
convective blueshift (limb shift) component LS. This deter-
mines an effective “bias” for each image according to

( ) ( ) ( ) ( )   = F Q + ¢ + ¢ F QB B, , , , , 6bias Rot 0 LS MF 0

where Φ and Θ are the Stonyhurst coordinates (Thomp-
son 2006), B0 is the so-called Solar-B angle, and ñ is the
heliocentric angle between the observer and the observed point
(see Appendix C). The form of Equations (4) and (2) suggests
that artifacts introduced by the observer’s radial velocity will
project onto the limb shift functions (cylindrical symmetry),
artifacts introduced by the observer’s westward velocity will
project onto the differential rotation profile, and artifacts
introduced by the observer’s northward velocity will project
onto the meridional flow profile. Because the geosynchronous
orbit of SDO causes significant changes in the radial velocity
VR over the period of a day, we conjecture that the projection of
the radial velocity onto the limb shift functions is the most
significant source of orbital artifacts in Dopplergrams. Conse-
quently, step 3 of the procedure consists of a model for
removing this effect, but first we must determine and subtract
the known biases from each image. The following three
sections describe the standard mathematical formulation for
capturing the differential rotation, meridional flow, and limb
shift “velocity.” We then discuss, in detail, our application of
this formalism to the HMI data.

3.2.1. Rotational Velocity

Following Hathaway (1988), the solar differential rotational
velocity is decomposed by

( ) ( ) ( ) ( )åQ = + QF
=

U T ℓ ℓ P1 sin , 7
ℓ

ℓ

ℓ ℓ
0

1

0 1
max

where

( ) ( ) ( )( )!
( )!

( ) ( )º -
+ -

+
P x

ℓ ℓ m

ℓ m
P x1

2 1

2
, 8ℓ

m m
ℓ
m

and where Pℓ
m are the associated Legendre functions9

( ) ( ) ( )!
( )( )!

( )ò d=
+

+ --
dx P x P x

ℓ m

ℓ ℓ m

2

2 1
. 9k

m
ℓ
m

k ℓ
1

1

,

Note that Equation (8) leads to the definition of the spherical
harmonics,

( ) ( ) ( ) ( )!
( )!

( )

( )

( )

q f
p

q

q
p

= -
+ -

+

º

f

f

Y
ℓ ℓ m

ℓ m
P e

P
e

, 1
2 1

4
cos

cos
2

.

10

ℓ
m m

ℓ
m i m

ℓ
m

i m

Using Equation (1), the projection of this solar differential
rotation velocity onto the LOS velocity is then

( ) ˆ · · ( ) ( ) h FF Q = - QFB U a, , 11Rot 0 LOS
T 0

where for q »r 0 (see Appendix B)

ˆ · · ( )h F » - FB bcos sin . 11LOS
T

0

The coefficients Tℓ
0 are related to the usual A, B, C coefficients in

( )

( ) ( ) ( )



å

w Q = + Q + Q =
Q

´ + Q
=

A B C
R

T ℓ ℓ P

sin sin
1

cos

1 sin 12
ℓ

ℓ

ℓ ℓ

2 4

1

0 1
max

by

( ) ( )= - +A T T T a
1

16
8 6 12 14 15 22 , 131

0
3
0

5
0

( ) ( )= -B T T b
15

8
2 14 7 22 , 133

0
5
0

( )=C T c
315

8

11

2
. 135

0

where  = R 695, 946 15 km is the radius of the Sun for
HMI (Emilio et al. 2015).

3.2.2. Limb Shift Velocity

Following Snodgrass (1984) and Hathaway (1992, 1996),
the convective blueshift, caused by correlations between
velocity and intensity in unresolved convective elements

Figure 2. Residual spatially averaged rms Doppler velocity during 17 days in
2010. Black: after the projection of the satellite velocity has been removed from
each pixel. Red: after solar rotation VRot, meridional flows VMF, and limb shift
VLS have been removed. See Sections 3.1, 3.2.4, and 3.4 for a description of the
black, red, and blue curves, respectively.

9 As in Mathematica® and Interactive Data Language (IDL)®.
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(Beckers & Nelson 1978), is decomposed as

( ) ( ) ( ) ( )  å¢ = + -
=

-L ℓ a2 1 1 cos , 14
ℓ

N

ℓ ℓLS
0

1 2
LS

where ñ is the heliocentric angle between the observer and the
observed point as defined in Appendix C, and

( ) ( ) ( ) = -x P x b2 2 1 14ℓ ℓ
0

are shifted Legendre polynomials orthonormal on ( )0, 1 . A prime
is used in Equation (14a) to indicate that this is an adjusted limb
shift function, for reasons that will become apparent below.

3.2.3. Meridional Velocity

Again, following Hathaway (1992, 1996), the meridional
flows are decomposed as

( ) ( ) ( ) ( )åQ = + QQ
=

U S ℓ ℓ P1 sin , 15
ℓ

ℓ

ℓ ℓ
0

1

0 1
max

where positive coefficients correspond to northward velocities.
In principle, the projection of the meridional flows is given by

( ) ˆ · · ( ) ( ) h QF Q = - QQB U a, , , 16MF 0 LOS
T 0

where for q »r 0 (see Appendix B)

ˆ · · ( )h Q » Q - F QB B bsin cos cos cos sin . 16LOS
T

0 0

However, Hathaway (1988) noticed that the meridional flow
given by Equation (15) has a projection onto the limb shift
eigenfunctions. The limb shift eigenfunctions are described in
heliocentric spherical eigenfunctions (see Appendix C), whereas
the meridonal flows are described in LOS projected spherical
eigenfunctions, where every =ℓ m, 0 will project onto the limb
shift eigenfunctions. Thus, to orthogonalize the description of the
large-scale flows, this projection must be subtracted from the
meridional flow eigenfunctions as it has already been accounted
for in the limb shift eigenfunctions. Thus, the actual meridional
flow description used to fit each image at stage 1 is given by

( ) ( )

[ ˆ · · ( ) ( )] ( ) 

 å

h Q

¢ F Q = - +

Q -
=

B S ℓ ℓ

P G B

, , 1

sin , , 17

ℓ

ℓ

ℓ

ℓ ℓ

MF 0
1

0

LOS
T 1

MF, 0

max

where

( ) ˆ · · ( )

( )

 ò h
p

y Q= Q
p

G B d P,
1

2
sin

18

ℓ ℓMF, 0
0

2

LOS
T 1

represents the spatial part of the meridional eigenfunction that
is independent of position angle ψ. Indeed, Equation (18) is
proportional to the meridional eigenfunction averaged over the
position angle ψ. The integral in Equation (18) requires some
effort to evaluate. The results were stated first by Hathaway
(1988) without proof. A general proof in closed form is
presented in Appendix D. The eigenfunctions describing  ¢LS

are nearly orthogonal to  ¢MF.
10 Once the coefficients Lℓ and Sℓ

0

are determined, the meridional flow may be reconstructed with
Equation (15) and the limb shift function may be reconstructed
with

( ) [ ( ) ( )

( ) ( )] ( )

 



 å= + -

+ +
=

-B L ℓ

S ℓ ℓ G B

, 2 1 1 cos

1 , . 19

ℓ

N

ℓ ℓ

ℓ ℓ

LS 0
0

1 2

0
MF, 0

LS

Note that

( ) ( )
( ) ( ) ( )




 

 

+ F Q
= ¢ + ¢ F Q

B B

B B

, , ,

, , , . 20
LS 0 MF 0

LS 0 MF 0

3.2.4. Determination of the Bias

To determine the bias, each image is fit using the
eigenfunctions described in Sections 3.2.1–3.2.3. Hathaway
(1988, 1992, 1996) noted that strong magnetic fields can alter
the convection pattern. He used an iterative procedure that first
determines an estimate of the spectral coefficients and then
replaces the Doppler estimates in pixels corresponding to
strong magnetic fields with estimates consistent with these
coefficients. The procedure repeats until there are no further
significant changes in the spectral coefficients.
The present analysis diverges significantly from that

previous work. The image at each stage of analysis is reformed
into column vectors ¼- -V V, ,LOS 1 LOS 3 representing all of the
ND pixels located on the solar disk and ¼- -v v, ,LOS 1 LOS 3
representing just the NW weak-field pixels corresponding to an
absolute LOS magnetic field less than or equal to 10 G and
minimal support ( )<CONF_DISAMBIG 60 as determined by
“confidence” in the pixel assigned the disambiguation module
of the vector pipeline (for a complete description of the
CONF_DISAMBIG values see Appendix A.5 on p. 3523 in
Hoeksema et al. 2014).11 For the 17 days under consideration
NW represents about 84% of the solar disk. In the same manner,
two matrices of eigenfunctions are constructed, E and e,
representing the = + +M N N NR LS MF eigenfunctions used to
determine the large-scale Doppler patterns, where E, which is

´N MD , represents all of the ND pixels located on the solar
disk and e, which is ´N MW , represents just the NW weak-
field pixels. The goal is to determine a set of spectral
coefficients b from the NW stage 1 Doppler estimates in
column vector -vLOS 1. Obviously, with N 10W

7 and M 24
there is no solution to the overdetermined system

e
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1

1
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0

1

1
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LOS 1,

R
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MF

W

10 They are not exactly orthogonal because the observations on the disk are
discrete, and for simplicity we have orthogonalized these functions using
continuous representations. See discussion in Section 3.4 and Figure 3.

11 Strong-field pixels correspond to absolute LOS magnetic field greater than
10 G or significant support ( )CONF_DISAMBIG 60 .
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where -v iLOS 1, are the = ¼i N1, , W stage 1 weak-field pixels
determined from Equation (2) because no general inverse of the
eigenvectors e exists. Instead, we attempt to find the solution
that is best in an L2 norm sense, where *b minimizes

e e‖ ‖ ‖ ‖ ( )* - -- -b v b v 22LOS 1 2 LOS 1 2

among all possible spectral coefficients b. This optimal solution
is determined directly from the least-squares solution

e e e( ) ( )* = -
-b v , 23T 1 T

LOS 1

where e e e( )-T 1 T is known as the pseudo-inverse (Moore 1920;
Bjerhammar 1951; Penrose 1955). Note that this approach
explicitly ignores the strong-field pixels in determining the
spectral coefficients circumventing the iterations necessary in
Hathaway (1996).

The temporally varying bias image for each full-disk
Dopplergram of ND pixels can then be reconstructed from

E ( )*=B b . 24

The large-scale bias-free stage 2 Dopplergrams are then
determined from

E ( )*= -- -V V b . 25LOS 2 LOS 1

Figure 3 shows the correlations between the M = 24
coefficients used to fit the large-scale Doppler patterns. The
eigenfunctions are nearly block orthogonalized, e.g., there are
correlations between the meridional eigenfunctions, but these
eigenfunctions are nearly completely decoupled from the limb
shift eigenfunctions, validating the corrections encompassed by
Equations (17)–(20). Correlations within the block are expected
as spherical harmonics themselves are not orthogonal on the
observed solar hemisphere and they are further confused by the
projection of the velocity component onto the LOS (Mochi-
zuki 1992), the eigenfunctions are orthogonalized using a
continuous representation rather than discrete sampling theo-
rem, and some data locations are neglected because of
significant magnetic fields. Note that the differential rotation
eigenfunctions are for all practical purposes orthogonal to both

the limb shift and merdional eigenfunctions by virtue of the
former’s antisymmetry across F = 0 and the latter’s symmetry
across the same, even after the LOS projection is take into
account.
Figures 4–6 show rotational, limb shift, and meridional

spectral coefficients during 17 days in 2010 as determined from
Equation (23). The black data are “high-quality” data, and the
red data are “low-quality” data ( )¹Keyword: QUALITY 0 .
We emphasize that since the satellite velocity has been
removed from each pixel prior to fitting the Doppler data,
there should be no correlation with the satellite velocity.
However, clear, almost periodic oscillations are present with a
primary period near 24 hr observed in the lowest spectral
coefficients in all three figures. In Figure 4, the lowest
coefficient exhibits a peak-to-peak amplitude 110 nrads
s−1or D = Dv T R2 105 m1

0 s−1. Again, this indicates
a significant error in the measurements, particularly near the
limb, where solar rotation is the strongest in the LOS
component. The blue line corresponds to the low-frequency
trend, with a cutoff period of 48 hr determined from a
nonparametric B-spline filter (Woltring 1986; Schuck 2010).
The details of how this trend is determined are discussed in
Section 3.4. The red curve in Figure 2 shows the residual
spatially averaged rms Doppler velocity for the stage 2
Dopplergrams -VLOS 2. Removing the time-varying bias con-
siderably improves the temporal stability of the Dopplergrams.
One of the most striking features of these results is the

significant bias in the S1
0 meridional coefficient exhibited in

Figure 6. One explanation for this result is an average cross-
equatorial flow of-95 m s−1. A cross-equatorial flow of this
magnitude would be easily detected by other techniques, so this
explanation is ruled out. Another possible explanation for this
bias is an error in position angle ( )dy = - S Atan 1

1
0 in solar

north, where A is determined from Equation (13a). A bias of
-95 m s−1 corresponds to error in position angle of about
2 .6. This explanation also seems incorrect given the agreement

between the alignment of HMI and MDI magnetogram data
exhibited in Figure 1. Therefore, our conclusion at present is
that this bias in the S1

0 coefficient represents a spatial
nonuniformity in the response of HMI.

3.3. Stage 3: Gain Adjustment

The red curve in Figure 3 demonstrates that even after the
known velocities are removed from the HMI data, there still
remains a strong daily periodicity in the residual images,
indicating contamination by orbital effects. Therefore, stage 3
of our COADRED procedure consists of a pixel-by-pixel,
image-by-image adjustment of the gain. Given the strong,
nearly periodic oscillations in the limb shift functions, we
hypothesize that the gain of each pixel follows a similar
pattern; consequently, we use the limb shift formalism to
correct for this gain. Following the procedure in Section 3.2.4,
two  ´N ND G and  ´N NW G matrices are constructed from the limb
shift eigenfunctions, E E( )= + + +N N N N1: , 1: 1LS D R R LS

and e e( )= + + +N N N N1: , 1: 1LS W R R LS , corresponding
to the =N NG LS limb shift eigenfunctions used to fit the bias,
where ELS represents all of the ND pixels located on the solar
disk and eLS represents just the NW weak-field pixels. These
eigenfunctions are then fit to the absolute value of the stage 2

Figure 3. Correlations between the coefficients for the fit to the large-scale
flows on 2010 July 04 at 17:00:00.
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bias-subtracted Dopplergrams
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which has the optimal least-squares solution

e e e( ) ∣ ∣ ( )* = -
-g v . 27LS

T
LS

1
LS
T

LOS 2

The gain for each image can then be reconstructed from

E ( )*=G g . 28LS

Figure 7 shows the gain coefficients during 17 days in 2010 as
determined from Equation (27).

3.4. Treatment of the Coefficients and Image Reconstruction

Plotting the data in Figures 4–7 as a function of VR reveals
their systematic nonlinear dependence on radial satellite
velocity, as shown in Figures 8–11. The nonlinear response
is the source of the almost periodic temporal dependence in the
coefficients. The black data points in these figures are fit by
weighted least squares with orthogonalized polynomials.12 The
weights for each data point are determined from the variance in
the coefficients from the fits. The optimal polynomial order is
determined using the Bayesian Information Criteria
(Schwarz 1978; Ye et al. 2008)

( ) s +N N NBIC log log , 29k kD ML
2

D

where ND is the number of data, Nk is the number of model
parameters, and sML

2 is the maximum likelihood estimate of the
variance. The optimal number of coefficients kopt corresponds

Figure 4. Rotational spectral coefficients during 17 days in 2010. The black data are “high-quality” data, and the red data are low-quality data
( )¹Keyword: QUALITY 0 . The blue line corresponds to the low-frequency trend determined after orbital artifacts are removed. See text for a complete discussion.

12 The red “low-quality” data are ignored.
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to the model with the minimum BICk value.13 We emphasize
that the “model” involves two separate fitting processes: (1) the
orthogonalized polynomial fit to the parameterized data in VR

space and (2) the temporal fit using a nonparametric B-spline
filter to remove any systematic temporal drift in the parameters
that would bias the orthogonalized polynomial fit. The B-spline
filter has some attractive properties for this problem as data
frames are occasionally missing and a B-spline filter can be
interpreted as an optimal cascaded Butterworth filter general-
ized for unevenly sampled data (Craven & Wahba 1979). The
number of degrees of freedom removed from the data by the
smoothing procedure can be determined from the trace of the
influence matrix of the B-spline filter (Wahba 1980; Wol-
tring 1986). The maximum likelihood estimate of the error
variance is computed from the residuals by subtracting both of
these fits from the stage 1 data, and therefore Nk in Equation
(29) must reflect both of these fitting processes, i.e., the order

of the orthogonalized polynomial and the trace of the influence
matrix of the B-spline filter. The smoothing parameter of the
B-spline filter is fixed with a cutoff of 48 hr, and some iteration
is necessary to minimize the BIC and find the optimal
coefficients for each polynomial order k.
Using the low-frequency response and the orthogonalized

polynomial fit corresponding to the blue and green curves in
Figures 4–7, a model for the predicted bias and gain
coefficients may be determined for any radial velocity VR and
time t in the data set

( ) ( ) ( ) ( )b b b= +V t t V a, , 30R LF OP R

( ) ( ) ( ) ( )     g g g= +V t t V b, . 30R LF

blue

OP R

green

The stage 3 Dopplergrams are reconstructed by subtracting off
the observed bias, dividing by the observed gain, and then
multiplying by the predicted gain.

E E E[ ( )] [ ] [ ]
( )

* *g= -- -V g V bt
c

0, ,
30

LOS 3 LS LS LOS 1

Figure 5. Limb shift spectral coefficients during 17 days in 2010. Same format as Figure 4.

13 The application of BIC does not require that the true model is in the set of
models (polynomials) under consideration (Cavanaugh 1999).
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where % and e represent Hadamard (element-wise) division
and multiplication of vectors, respectively. The blue curve in
Figure 2 shows the residual spatially averaged rms Doppler
velocity for the stage 3 Dopplergrams -VLOS 3. Removing the
time-varying bias and spatially and temporally adjusting the
gain greatly improves the temporal stability of the Doppler-
grams. The difference in variability between the black curve
(stage 1) and blue curve (stage 3) is roughly 31 dB in power.

Consistent Dopplergrams may then be constructed, adding
back the predicted bias at a consistent radial velocity ºV 0R ,

E ( ) ( )b= +-V V t0, . 30dLOS LOS 3

These Dopplergrams are the final result of our COADRED
procedure. It is important to note that Equation (30d) does not
correct the images in an absolute sense; however, it does
remove the inconsistencies caused by the orbital artifacts.

The reduction in rms velocity shown in Figure 2 is striking.
This result indicates that the COADRED procedure is highly
effective at removing orbital effects, at least on large scales.
The key questions, however, are whether it is robust in that it

removes artifacts from all scales and whether it is accurate in
that the procedure introduces no new artifacts to the data. In
order to answer these questions, we perform below a detailed
spectral analysis of the images after each COADRED stage.
This analysis shows that the procedure does clean the data from
orbital artifacts at all spatial scales and that it does not
contaminate the data with new artifacts.

4. ANALYSIS OF STAGES 1–3

SDO produces a significant amount of data, 1 TB day–1.
Even for the reduced data series considered here, there are
20 × 1010 pixels to analyze over the 17-day period. Further
complicating the analysis, data frames are lost in any long data
series from SDO, and consequently the sample rates are
nonuniform. These data require techniques that scale well with

N 10D
7, the number of pixels in each image, and N 10t

3,
the number of images and methods that are either insensitive to
the sample rates or explicitly designed to analyze nonuniformly
sampled data. For this data set we implement the Karhunen–
Loéve (KL) transform (Loéve 1955; Lumley 1967, pp.

Figure 6. Meridional spectral coefficients during 17 days in 2010. Same format as Figure 4.
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166–178; Sirovich 1987; Holmes et al. 1996), briefly described
in Appendix E, combined with the CLEAN algorithm for
computing power spectral density of unevenly sampled time
series (Högbom 1974; Roberts et al. 1987). The KL transform
decomposes the dynamics into a set of ´N NtD orthogonal
spatial modes F and ´N Nt t uncorrelated temporal
coefficients a with N Nt D.

14 The advantage of the KL
transform is that the temporal dynamics of the entire image
sequence is represented by a relatively small matrix a in
contrast to attempting to interpret spectral properties of

´N NtD pixels in the image sequence. The disadvantages
of the technique are that the spatial information associated with
the dynamics is decoupled from the temporal dynamics and the
spatial modes are purely empirical—there is not always a
simple physical interpretation for the spatial structure of the
modes. Using the CLEAN algorithm on the coefficient matrix
a completely characterizes the spectral properties of the data as
the spatial eigenfunctions F are orthogonal.

The images for each stage are first co-aligned (see
Section 2.2), registered, and packed into a data cube or image
sequence denoted ¢I , which is  ´N NtD . The solar disk for
images in the sequence is now represented by a packed vector
of length ND. The temporal median is vector determined for
each stage via

( ) ( )á ñ = ¢I I amedian , 31Nt

where the median image vector á ñI is understood to be the
temporal median of each pixel in Nt images. This median,
which contains both time-averaged physical effects and time-
averaged artifacts, is then subtracted from each image
( )= = ¼i N j N1, , 1, , tD ,

( ) ( ) ( ) ( )= ¢ - á ñI I I b. 31ij ij i

Figure 12 shows the median co-aligned Doppler image
(unpacked image vector á ñI ) and histogram after various stages
of processing: the top is stage 1, the middle is stage 2, and the
bottom is stage 3. The stage 1 image is dominated by the time-
averaged differential rotation, limb shift, and meridional flow

Figure 7. Gain coefficients during 17 days in 2010. Same format as Figure 4.

14 †FF and †aa are both diagonal matrices, which implies that the dynamics
of each individial mode may be considered independently.
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patterns. The middle and bottom panels exhibit the clear
Fresnel artifact reported by Couvidat et al. (2012) super-
imposed on the horizontal streaks caused by the time-averaged
physical behavior of the convective structures. The Fresnel
pattern is not an orbital artifact, and it should be reduced or
eliminated in HMI data after 2012 October by changes in
calibration (personal communication with Todd Hoeksema).

The KL transform is used to decompose the image sequence
I into an  ´N Nt t matrix of orthogonal coefficients a and an
 ´N NtD matrix of orthogonal spatial modes F,

( )†aF=I . 32

The eigenvalue spectra can be interpreted as “variance
explained” or a contribution to the total variance by each of
the modes. In general, the KL modes have the following
temporal and spatial properties: D #T 1 and D #L 1 ,
i.e., higher mode numbers (#ʼs) correspond to faster timescales

and smaller spatial scales. The left panel of Figure 13 shows the
eigenvalue spectra after the various stages of analysis: 1
(black), 2 (red), and 3 (blue). Stage 1, which contains both
orbital artifacts in bias and gain, is consequently significantly
different from stages 2 and 3, particularly for the three lowest
modes and perhaps as high as mode#5. While the stage 2 (red)
and stage 3 (blue) curves appear very similar to each other, this
is due to the log–log scale used to display spectra combined
with the large fraction of power contained in the time-varying
bias—particularly modes #1 and #2 of stage 1 (black).
Additionally, because the KL transform empirically determines
the spatial eigenmodes from each image set, the spatial
eigenmodes change for each stage, and therefore the left panel
does not allow for a straightforward comparison of eigenvalues
for each mode between stages. To elucidate this, the right panel
of Figure 13 shows the eigenvalue spectra of the difference
images computed between stage 2 and stage 1 (black), between

Figure 8. Rotational spectral coefficients during 17 days in 2010 as a function
of satellite radial velocity VR. The black data are “high-quality” data, and the
red data are low-quality data ( )¹Keyword: QUALITY 0 . The green line
corresponds to the “best” fit of orthogonalized polynomials as determined by
the BIC.

Figure 9. Limb shift spectral coefficients during 17 days in 2010 as a function
of satellite radial velocity VR. Same format as Figure 8.
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stage 3 and stage 2 (red), and between stage 3 and stage 1
(blue). The eigenvalue spectra of the difference images isolate
the effect of each adjustment on the Doppler images. The black
dashed curve demonstrates that the bias adjustment between
stages 2 and 1 is roughly contained in the first 25 (largest-scale)
modes. This is consistent with the subtraction of the 32 smooth
eigenfunctions used in Section (3.2.4) to represent the bias for
each image. In contrast, the gain adjustment between stages 3
and 1, denoted by the red dashed curve, is fairly flat across the
modes, with a slow rolloff in the eigenvalues out beyond mode
#1000 and a faster rolloff between modes #1500–2045. In
this case, the gain adjustment is represented by only eight
smooth eigenfunctions; this adjustment corrects the amplitude
of all spatial scales in every image as a function of satellite
velocity VR—implying that all spatial and temporal scales,
through the dependence on VR, are contaminated with orbital
artifacts. Indeed, 90% of the total variance between stages 3
and 2 is explained by high spatial modes #26–2045. Finally,

the blue dashed curve demonstrates the combined effect of the
bias subtraction and gain adjustment with a transition between
the two effects occurring between modes #10 and #30. Below
it is shown that while the gain adjustment only modifies the
overall eigenvalue spectra slightly in comparison to the bias
subtraction, it dramatically improves the temporal and spectral
characteristics of the Doppler image sequence. Figures 14–16
show the spatial eigenfunctions and temporal behavior of the
coefficients of modes #1 and #2 for stages 1–3. Note the east-
to-west asymmetric distribution of spatial power and the nearly
periodic behavior of the coefficients caused by the time-varying
bias and gain in Figure 14 for stage 1 in Figure 14. After bias
removal in stage 2 and gain adjustment in stage 3, modes #1
and #2 reveal the horizontal streaks associated with the long-
time behavior of convective structures—supergranules.
Figure 17 shows the power in the coefficients of the KL

transforms ( )a2 as a function of time for the stage 1 (left

Figure 10. Meridional spectral coefficients during 17 days in 2010 as a
function of satellite radial velocity VR. Same format as Figure 8.

Figure 11. Gain coefficients during 17 days in 2010 as a function of satellite
radial velocity VR. Same format as Figure 8.
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Figure 12. Median co-aligned Doppler image and histogram after various stages of processing: the top is stage 1, the middle is stage 2, and the bottom is stage 3. The
stage 1 image is dominated by the time-averaged differential rotation, limb shift, and meridional flow patterns. The middle and bottom panels exhibit a clear Fresnel
artifact superimposed on the horizontal steaks caused by the time-averaged behavior of the convective structures.

Figure 13. Left: KL eigenvalue spectra after the various stages of analysis: 1 (black), 2 (red), and 3 (blue). Right: KL eigenvalue spectra of the difference images
between stages 2 and 1 (black), 3 and 2 (red), and 3 and 1 (blue).
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column), stage 2 (middle column), and stage 3 (right column)
data. The top, middle, and bottom panels correspond to a
magnified view of modes #1500–2045, #1–200, and #1–10

for each stage. The behavior of the modes from #100 to 1500
is more easily addressed with the spectra shown in Figure 17.
The stage 1 data (left column) exhibit clear daily periodicities

Figure 14. Top: spatial KL modes #1 and #2 for stage 1. Bottom: time history of the coefficients for modes #1 (solid) and #2 (dashed). Note the east-to-west
asymmetric distribution of spatial power and the nearly periodic behavior of the coefficients.

Figure 15. Top: spatial KL modes #1 and #2 for stage 2. Bottom: time history of the coefficients for modes #1 (solid) and #2 (dashed).
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in modes #1 and #2, as expected from Figure 14, and an
overall daily modulation of the power particularly evident
below mode #100 and more subtle from modes #100–200 in
the middle panel and again quite obvious above mode #1700

in the top panel and more subtle from modes#1500–1700. The
stage 2 data (middle column), after the large-scale flows have
been removed, is improved at the lowest few modes in the
bottom panel, reinforcing the concept that the lowest KL modes

Figure 16. Top: spatial KL modes #1 and #2 for stage 3. Bottom: time history of the coefficients for modes #1 (solid) and #2 (dashed).

Figure 17. Power in the coefficients of the KL transforms ( )a2 for stage 1 (left column), stage 2 (middle column), and stage 3 (right column) data. The top, middle,
and bottom panels correspond to a magnified view of modes #1500–2045, #1–200, and #1–10 for each stage.
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correspond to the slowest timescales and the largest spatial
scales. The stage 3 data (right column), after gain adjustment,
are dramatically more uniform than the stage 1 and stage 2 data
in the top and middle panels. Despite the improvement, there
remain some temporal artifacts in the power of the highest
mode numbers for the stage 3 data.

The CLEAN algorithm (Högbom 1974; Roberts et al. 1987)
is used to estimate the power spectral density of the KL modes
for each stage. The CLEAN algorithm performs a nonlinear
deconvolution of the unevenly temporally sampled coefficients
a in the frequency domain to attempt to minimize the spectral
artifacts introduced by the sampling function. Figure 18 shows
the power spectral density in the coefficients of the KL
transforms ( )a2 for stage 1 (left column), stage 2 (middle
column), and stage 3 (right column) data estimated using the
CLEAN algorithm with a gain of 0.05 and about 1400
iterations. The top row shows the entire spectral range for all of
the modes. The middle row is a magnified view of the 10
lowest modes from 0 to 5 cycles day−1 for each stage,
corresponding to the small box in the lower left corner of the
panels in the top row. The bottom row corresponds to a
magnified view of the modes #650–1000 from 20 to 30
cycles day−1 for each stage, corresponding to the box in the
lower middle of each panel in the top row.

The general features of the top panel are a low-frequency
0–5 cycle day−1 signature from modes #0–100 with a narrow
dispersion relationship  #f above that. The low-frequency
signature is produced by large-scale features moving across the
solar disk, whereas the narrow dispersion relation is caused by
small-scale convective features moving across the disk. This
narrow dispersion relationship exhibits harmonics above mode
#200. The spectral signatures of the orbital artifacts in the
large-scale flows is exhibited in the middle panel of the first
column. Significant isolated spectral peaks are present at 1 and
2 cycles day−1 in mode #1 and at 1, 2, and 3 cycles day−1 in
mode #2. There are also harmonics at 1, 2, and 3 cycles day−1

near mode #400 in the top left panel. These spectral signatures
are largely mitigated after the removal of the large-scale flow
bias, as shown by the panels in the middle and right columns.
However, what remains (shown particularly well in the middle
column) are multiple harmonics of the relatively narrow
dispersion relationship  #f . These harmonics are caused
by the modulation in the amplitude of convective structures as
they rotate across the disk. The stage 3 data show that the
spatially and temporally dependent gain adjustment included in
Equation (26) considerably reduces the effect of this modula-
tion by collapsing the harmonics to a single peak at  #f .

5. DISCUSSION AND CONCLUSIONS

We have presented and characterized a method to reduce and
mitigate the orbital artifacts from the Dopplergrams as retrieved
from the HMI Milne–Eddington inversion output. It is
important to note that the stage 3 data cannot be claimed to
be more accurate, only that they are more consistent from
Dopplergram to Dopplergram. There are still artifacts that
remain in the data shown in the right column of Figures 17 and
18; however, this is clearly a dramatic improvement in the
quality of the Doppler data. While it is well known that the
Milne–Eddington inversion of the HMI pipeline data contains
orbital artifacts up to harmonics of several cycles day–
1 (Hoeksema et al. 2014), the important takeaway from the
left column of Figures 17 and 18 is that all temporal and

spatial scales are contaminated by the orbital artifacts!We
know of no simple postprocessing that will filter each spatial
scale appropriately to remove the harmonics. It would be very
surprising if the same conclusion did not also apply to the other
critical observables produced by the Milne–Eddington inver-
sion of the HMI pipeline data such as the magnetic field data.
Furthermore, if similar contamination is present in the 45 s
Dopplergrams observed by Camera #2, we speculate that the
modulation of the observations will affect the amplitude of the
5-minute oscillations critical to helioseismic observations.
The important new result of this paper is that the COADRED

procedure does successfully remove the orbital artifacts in the
HMI Doppler data. Figure 2 shows that the improvement in the
data is dramatic; the daily oscillations are almost completely
eliminated. Furthermore, the procedure is robust in that, as
shown by Figure 18, it cleans the data on all spatial scales
without introducing new artifacts. The COADRED procedure
is straightforward to implement and will work on any data set
of HMI Dopplergrams; consequently, we recommend that our
procedure, or some modification, be incorporated into any HMI
data analysis investigation. A key feature of the procedure is
the use of the limb shift eigenfunctions to correct the gain in
each pixel. The fact that this gain correction is so successful has
major implications for the possible mechanisms giving rise to
the HMI errors and, consequently, for removing these errors
from the vector magnetograms as well. If we can correct the
vector magnetograms to the same level of fidelity as that shown
by Figures 2 and 18, the resulting data would be invaluable for
studying solar structure and dynamics.
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APPENDIX A
OBSERVER MOTION

Using heliocentric Cartesian coordinates ( )x y z, , , the z-axis
is defined along the axis parallel to the observer–Sun line,
pointing toward the observer. The y-axis is define to be
perpendicular to that line and in the plane with the z-axis and
the solar north pole, with y increasing toward solar north. The
x-axis is defined to be perpendicular to both the y- and z-axes,
with x increasing toward solar west. The location of a feature
on the disk is given by (see Equation (17) in Thompson 2006)

( )q y= - rx d asin sin , 33

( )q y= ry d bsin cos , 33

( ) q= - rz D d ccos , 33
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where qr is the helioprojective angle, ψ is the position angle
defined counterclockwise from solar north, d is the distance
between the feature and the observer, and D is the distance
between the observer and Sun center. The LOS vector pointing
from the feature to the observer is then (as shown in Equation
(1) repeated here for reference)

ˆ ( )  h q y q y q y q= - +r r r rx y z, sin sin sin cos cos .LOS

This implies that the raw observed Doppler velocity for stage 0
at each pixel i can be expressed as

ˆ · ˆ · ( )h h= -- V Uv , 34i SDOLOS 0, LOS LOS surface

and the stage 1 data with the satellite velocity subtracted, or the
“V-sat subtracted” data, may be expressed as (as shown in
Equation (2) repeated here for reference)

ˆ · ˆ ·h h= - º -- - V Uv v .i i SDOLOS 1, LOS 0, LOS LOS surface

APPENDIX B
STONYHURST UNIT VECTORS

Since we are describing the Sun in Stonyhurst coordinates,
the unit vectors must be determined to resolve the projection of
various vector quantities onto the LOS. The transformation
between Stonyhurst and heliocentric Cartesian coordinates is

[ ( )] ( )= Q F - Fx r acos sin , 350

[ ( ) ] ( )= Q - Q F - Fy r B B bsin cos cos cos sin , 350 0 0

( ) ( )= Q + Q F - Fz r B B csin sin cos cos cos , 350 0 0

where Θ and Φ are the latitude and longitude, respectively, B0

is the so-called solar-B angle (the latitude of the center of the
solar disk as seen by the observer), and F0 is the Carrington
longitude of the center of the solar disk. The gradient in
Stonyhurst coordinates is given by

( )  F Q=
Q

¶ + ¶ + ¶Q r
r r

1

cos

1
. 36r r

Figure 18. Power spectral density in the coefficients of the KL transforms ( )a2 for stage 1 (left column), stage 2 (middle column), and stage 3 (right column) data
estimated using the CLEAN algorithm with a gain of 0.05 and about 1400 iterations. The middle row corresponds to a magnified view of the 10 lowest modes from 0
to 5 cycles day−1 for each stage, corresponding to the small box in the lower left corner of the panels in the top row. The bottom row is a magnified view of the modes
#650–1000 from 20 to 30 cycles day−1for each stage, corresponding to the box in the lower middle of each panel in the top row.
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The Jacobian of transformation between heliocentric Cartesian
unit vectors and Stonyhurst unit vectors is then

where  transforms heliocentric Cartesian to Stonyhurst unit
vectors and  T vice versa:

( ) · ( ) ( )   F Q =r x y z a, , , , , 38T T

( ) · ( ) ( )    F Q=x y z r b, , , , . 38T T T

These unit vectors can be combined with Equation (1) to
determine the projection of the Stonyhurst unit vectors onto the
LOS:

ˆ · · (
)

( )

h q y
y q

F = - F + F
- F

r

r

B

B

a

cos sin cos cos sin

sin sin cos sin ,

39

LOS
T

0

0

ˆ · · ( )
[ (

) ] ( )

h q
y
y q

Q = Q - F Q
- F Q + F Q
+ Q

r

r

B B

B
B b

sin cos cos cos sin cos

sin sin sin sin cos sin
cos cos cos sin 39

LOS
T

0 0

0

0

ˆ · · ( )
[ (

) ]
( )

h q
y

y q

= F Q + Q
+ F Q - Q
- F Q

r

r

r B B

B
B

c

cos cos cos sin sin cos

sin cos sin cos sin
sin cos cos cos sin .

39

LOS
T

0 0

0

0

APPENDIX C
HELIOCENTRIC COORDINATES FOR MERIDIONAL

FLOWS AND THE CONVECTIVE BLUESHIFT

The convective blueshift is conventionally described in
heliocentric spherical coordinates, where ñ is the angle between
the point on the solar surface and the line connecting Sun
center to the observer (z -axis):

( )  y= -x R asin sin , 40

( )  y=y R bsin cos , 40

( ) =z R ccos . 40

Equating Equations (33a) and (40a), we can obtain the law
sines for the relationship between the angles

[ ( )]
( )

 

 q p q
= =

- +r r

d R D

sin sin sin
, 41

where the last relationship is determined from the law of sines.
Rearranging, we have (see pp. 174–175 in Smart 1977)

( ) ( )


 q q+ =r r

D

R
asin sin 42

or

( )


 q q= -r r

-
⎛
⎝⎜

⎞
⎠⎟

D

R
bsin sin . 421

From Equations (35a–35c) and (40a–40c) we obtain the relations
between Stonyhurst and heliocentric spherical coordinates

( )  yQ = +B B asin sin cos cos sin cos , 430 0

( ) yQ F = - bcos sin sin sin , 43

( )  yQ F = -B B ccos cos cos cos sin sin cos . 430 0

APPENDIX D
EVALUATION OF HATHAWAY’S INTEGRAL

( ) ˆ · · ( ) ò h
p

y Q= Q
p

G B d P,
1

2
sin .ℓ ℓMF, 0

0

2

LOS
T 1

Equation (18) (repeated above for reference) is a complicated
integral to evaluate given that Θ and Φ must be reexpressed as
functions of ñ and ψ. Noting that the associated Legendre
function may be expressed in terms of the Legendre function of
order zero ( )=m 0 ,

( ) ( ) ( ) ( ) ( )= - -P x x
d

dx
P x1 1 , 44ℓ

m m m
m

m ℓ
2 2

and using a lemma for the expansion of the derivative of
Legendre functions ( )P xℓ

m (see Garfinkel 1964),

( ) ( ) ( ) ( )
( )

å= - -
=

-

- -
dP x

dx
ℓ n P x2 4 1 , 45ℓ

n

ℓ

ℓ n
0

1 2

1 2

the associated Legendre function of order 1 may be expressed
as a terminating series of Legendre functions of order 0:

( ) ( ) ( ) ( )
( )

å= - - - -
=

-

- -P x x ℓ n P x1 2 4 1 . 46ℓ
n

ℓ

ℓ n
1 2

0

1 2

1 2

Substituting = Qx sin ,

( ) ( ) ( )

( )

( )

åQ = - Q - - Q
=

-

- -P ℓ n Psin cos 2 4 1 sin ,

47

ℓ
n

ℓ

ℓ n
1

0

1 2

1 2

and using the spherical harmonic addition theorem,

( ) ( ) ( )

( ) ( )

( )

* 



å

å

p
y yQ =

+
-

=
+

y

=-

=-

P
ℓ

Y B Y

ℓ
P B P e

sin
4

2 1
, 2 , 2 ,

2

2 1
sin cos ,

48

ℓ
m ℓ

ℓ

ℓ
m

ℓ
m

m ℓ

ℓ

ℓ
m

ℓ
m i m

0

0

( ) ( ) = x y z a, , , 37

( )=
F F - F

- F Q Q + F Q Q - F Q
Q F Q - F Q F Q + Q

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B B
B B B B
B B B B

b
cos sin sin cos sin

sin sin cos cos cos sin sin cos sin cos cos sin
cos sin cos sin cos cos sin cos cos cos sin sin

37
0 0

0 0 0 0

0 0 0 0
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this becomes

( )

( ) ( ) ( )

( )

( )



å åQ =- Q

´ y
=

-

=- - -

- -

- - - -

P

P B P e

sin 2 cos

sin cos 49

ℓ
n

ℓ

m ℓ n

ℓ n

ℓ n
m

ℓ n
m i m

1

0

1 2

1 2

1 2

1 2 0 1 2

where ψ is now external to the Legendre functions. Using
Equation (8),

( ) ( )( )!
( )!

( ) ( )= -
+ -

+
P x

ℓ ℓ

ℓ
P x

2 1 1

2 1
, 50ℓ ℓ

1 1

we obtain a form consistent with Equation (18),

( ) ( )( )!
( )!

( ) ( )
( )

( )

( )



å åQ = Q
+ -

+

´ y
=

-

=- - -

- -

- - - -

P
ℓ ℓ

ℓ

P B P e

sin 2 cos
2 1 1

2 1

sin cos .
51

ℓ
n

ℓ

m ℓ n

ℓ n

ℓ n
m

ℓ n
m i m

1

0

1 2

1 2

1 2

1 2 0 1 2

Thus, the integral may be evaluated as

( ) ( )( )!
( )!

( ) ( )
[ ( ) ( ) ]

( )

( )

( )




å å

r q r q

=
+ -

+

´
´ -r r

=

-

=- - -

- -

- - - -

G B
ℓ ℓ

ℓ

P B P

I B I B

, 2
2 1 1

2 1

sin cos

, cos , sin ,

52

ℓ
n

ℓ

m ℓ n

ℓ n

ℓ n
m

ℓ n
m

m m

MF, 0
0

1 2

1 2

1 2

1 2 0 1 2

1 0 2 0

where

( )

( )

( ) [

( ) ]
( )

ò

ò

r
p

y

r
p

y y

y

= Q

´ Q - Q F

= Q Q F

+ Q F + Q

p
y

p
y

I B d e

B B

I B d e

B B
a

,
1

2
cos

sin cos cos sin cos ,

,
1

2
cos sin sin sin

sin sin cos cos cos cos .
53

m i m

m i m

1 0
0

2

0 0

2 0
0

2

0 0

Evaluating the first integral,

Similarly,

( )

( )∣ ∣

  



d

d

=

-

I B B

B b

, sin sin cos
1

2
cos cos . 54

m
m

m

2 0 ,0 0

,1 0
2

Noting that ( ) ( )  = -I B I B, cot ,m m
2 0 1 0 ,

( ) ( )

( )( )!
( )!

( )

( ) ( )

( )

( )

 





å

å

q q= +

´
+ -

+

´

r r

=-

=

-

- - - -

G B

ℓ ℓ

ℓ
I B

P B P

, cos cot sin

2
2 1 1

2 1
,

sin cos .
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ℓ

m

m

n

ℓ

ℓ n
m

ℓ n
m

MF, 0

1

1

1 0

0

1 2

1 2 0 1 2

Noting the symmetry property of the Legendre functions

( ) ( ) ( )!
( )!

( ) ( )= -
-
+

-P x
ℓ m

ℓ m
P x a1 , 56ℓ

m m
ℓ
m

( ) ( ) ( ) ( )= --P x P x b1 , 56ℓ
m m

ℓ
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( )
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( )
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MF, 0

0

1 2

1 2
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0 1 2
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0
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Employing an inductive proof, this generally becomes

( ) ( ) =G B , 0, 58MF,0 0

( ) ( )

( ) ( ) ( )

( )

  

 

q

q

= +

= +
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2

3
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2 2
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and generally
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where q »r 0 corresponds to the results of Hathaway (1992).

APPENDIX E
KARHUNEN-LO’EVE (KL) ANALYSIS

The KL analysis (Loéve 1955) is known by various names:
principle component analysis, proper orthogonal decomposition,
empirical orthogonal functions, and/or the Hoteling transform.
The approach presented here follows the method of snapshots
(Lumley 1967; Sirovich 1987; Holmes et al. 1996). The goal of
KL is to determine an optimal representation for the data—
optimal in the sense that the vector d maximizes the projection
onto the median-subtracted  ´N NtD image array I. This
optimality can be expressed by the functional

d d d d d( ) ( · ) ( )† † † l= - -- I IN 1 , 62D
1

where † represents the conjugate transpose for complex data or
just the transpose for real data, as is being considered here, and
the constraint ensures normalization. The  ´N Nt t spatially
averaged covariance matrix of the image sequence is defined as

( )
†

 º
I I
N

a, 63
D

[ ] [ ] ( )† å=
=

I I
N

b
1

, 63nm
i

N

ni im
D 1

D

which permits the expression of the functional

d d d

d d

( ) ( ) ( )
[( )( ) ] ( )

† †

† †
  

 
 d d d

l d d
+ = + +

- + + - 1 64

where d is a small vector perturbation on d. Using the
calculus of variations, the first variation of the functional is

d d d d d( ) ( )

( )

† † † †     
d

d l+ = + - +
d

d

d
a

lim ,

65
0

d d d d( ) ( ) ( )† † † †  l l= - + - b, 65

d d d d( ) [ ( )] ( )† † †  l l= - + - c. 65

Therefore, finding the vectors that maximize their projection
onto the data is equivalent to finding the eigenvalues lk and
eigenvectors dk of the covariance matrix:

d d ( ) l= a, 66k k k

or

D D ( ) L= b, 66

where the columns ofD d d d( )= ¼, , , N1 2 t are the eigenvectors
of  and L is a diagonal matrix of the eigenvalues in
decreasing order. The covariance in Equation (63a) is a
Hermitian † = positive semi-definite matrix with non-
negative eigenvalues that can be ordered by decreasing
value     l l l l-... 0N N1 2 1t t with orthonormal
eigenvectors15

d d· ( )†d = a, 67ij i j

D D ( )*åd =
=

b, 67ij
n

N

ni nj
1

t

I D D ( )†= c, 67

where I is the identity matrix. Assuming that the image
sequence can be described by a  ´N NtD matrix of spatial
eigenmodes F and  ´N Nt t matrix of temporal coefficients a,
this ansatz takes the form (as shown in Equation (32) repeated
here for convenience)

†aF=I ,

where

D ( )a Lº . 681 2

Post-multiplying Equation (32) by D and using the orthogon-
ality relationship (67c)

D ( )F L=I 691 2

results in the equation for the spatial eigenfunctions F, where

D ( )F Lº -I . 701 2

Multiplying this by its adjoint

D D ( )† † †F F L L= - -I I , 711 2 1 2

and using Equation (63a)

D D ( )† † F F L L= - -N , 72D
1 2 1 2

followed by Equation (66b), produces

D D ( )† †F F L L L= - -N , 73D
1 2 1 2

which by virtue of Equation (67c) becomes the orthogonality
relationship for the spatial eigenfunctions

I ( )†F F L L L= =- -N N . 74D
1 2 1 2

D

The temporal coefficients are orthogonal,

( )†a a L= , 75

which implies that the temporal dynamics of the spatial
eigenfunctions is on average uncorrelated. The temporal
coefficients may also be used to reconstruct the covariance matrix

( )† a a= . 76

An analogous methodology could be applied to the two-point
time-averaged spatial correlation function †II Nt instead of the
spatially averaged correlation function in Equation (63a).
However, this direct method leads to a  ´N ND D correlation
matrix with N 10D

7 spatial eigenvalues and eigenvectors,
which is prohibitively large for present computers. The method
of snapshots, described above, is a practical method to obtain
similar results when N Nt D (Sirovich 1987).
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