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Abstract

The objective testing of algorithms for performing ambiguity resolution in
vector magnetic field data is continued, with an examination of the effects
of noise in the data. Through the use of analytic magnetic field models, two
types of noise are “added” prior to resolving: noise to simulate Poisson photon
noise in the observed polarization spectra, and a spatial binning to simulate
the effects of unresolved structure. The results are compared through the use
of quantitative metrics and performance maps. We find that while no algorithm
severely propagates the effects of Poisson noise beyond very local influences,
some algorithms are more robust against high photon-noise levels than others.
In the case of limited spatial resolution, loss of information regarding fine-scale
structure can easily result in erroneous solutions. Our tests imply that photon
noise and limited spatial resolution can act so as to make assumptions used in
some ambiguity resolution algorithms no longer consistent with the observed
magnetogram. We confirm a finding of the earlier comparison study, that results
can be very sensitive to the details of the treatment of the observed boundary
and the assumptions governing that treatment. We discuss the implications of
these findings, given the relative sensitivities of the algorithms to the two sources
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of noise tested here. We also touch on further implications for interpreting
observational vector magnetic field data for general solar physics research.

Keywords: Sun: magnetic field, Sun: observations, polarimetry, data analysis

1. Introduction

Continuing in the search for the best algorithm with which to resolve the inherent
ambiguity in the transverse field component of vector magnetic field data, we
present here an examination of the effects of noise in the data and imperfect

instrumental spatial resolution. We build on the work of the first workshop
and its resulting manuscript (Metcalf et al., 2006) (hereafter “Paper I”), by
presenting the results of a second workshop held at NWRA/CoRA Division in
October 2006 which focused on more “real-world” challenges of observational
data.

As such, we simply reiterate that without the resolution of this ambigu-
ity which stems from a degeneracy in the linear polarization of the Zeeman
effect, the physical interpretation of vector magnetic field data is of limited
use. Observations at a single height do not contain sufficient information to
lift this degeneracy. Thus, algorithms are based on a variety of physics-based
“best guesses” or approximations implemented through a variety of optimization

approaches. For a detailed description of the algorithms tested see Paper I and
references therein.

In this series of comparisons a “hare and hound” approach is taken, construct-
ing synthetic data for which an answer is known and to which the solutions
arising from the application of an algorithm can be quantitatively evaluated. In

Paper I, the model data tested two distinct aspects of most ambiguity resolution
algorithms: first, mixed field morphologies (using a field-of-view which contained
both a potential and significantly non-potential field), and second the difficulties
of off-disk-center observations (using a constant-α force-free field which was
viewed from an angle of just over 45◦). From that first study it was realized that

acute-angle azimuth resolution based on a potential-field comparison could have
quite different results depending on the implementation of the potential-field
calculation. It was also demonstrated that automated algorithms which globally
optimized a combination of the divergence and inferred currents, performed best.
Full details are given in Paper I; the most obvious unrealistic character of the

model fields used therein was their smoothness and lack of noise.
A second workshop was held at NWRA/CoRA Division in October 2006 for

which new model data were constructed to test the effects of Poisson noise in
the observed spectra (Section 3.1), and the effects of limited instrumental spatial
resolution (Section 3.2). These two aspects of observational reality were tested
independently, in the hopes of separately evaluating the observational effects on

this necessary part of the data reduction. Additional effort has been put into
constructing appropriate evaluation metrics, as described in Section 4.1.
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2. The Hounds

All participants who provided solutions in the first workshop were invited to
the second, and additional interested scientists attended from the local area and
from the National Solar Observatory. In the end, the provided solutions were
more numerous for the first noise test (photon noise), and for the second test
(spatial resolution) essentially only the best-performing automated algorithms
are compared, along with different realizations of potential-field acute-angle
ambiguity-resolution methods.

We refer to the methods by the names and acronyms used in Paper I, and
summarize the salient differences in Table 1. In contrast to Paper I, the Non-
Potential Field Calculation method (“NPFC2”) (Georgoulis, 2005; Metcalf et al.,
2006)1, was run by G. Barnes for this investigation. The methods tend to either
locally or globally minimize a functional which may or may not depend on a
model field (such as a potential or linear force-free construct). Improvements or
changes in the algorithms which have been made since Paper I are described
here.

2.1. The Minimum Energy Method

The Minimum Energy method (Metcalf, 1994; Metcalf et al., 2006) was a work-
in-progress by our late colleague Dr. Thomas R. Metcalf, and additional options
and features had been recently added or were being tested at the time of his
death. Included in these were approaches to “tile” the data, meaning to break
a magnetogram into small sub-areas with which to compute a best-fit force-free
α-parameter, effectively constructing a non-linear force-free field from which to
infer the vertical gradients needed to compute the divergence. The optimization
algorithm and weightings used for the functional of divergence and current were
also under development. Application of the latest version of this algorithm and its
complex array of options (primarily related to functional weighting, optimization
method and schedule, and derivative calculations), was performed by K. D. Leka
and the results are presented with the abbreviation “ME2”.

We also include a version of the Minimum Energy method which is closer
to the original version described in Metcalf (1994). This version, referred to as
“ME0”, has been recoded in Fortran by Ashley Crouch and Graham Barnes,
and extensively optimized for use in the SDO/HMI data reduction pipeline2. It
can now resolve the ambiguity in moderate-sized fields of view (of order 5122

pixels) in roughly ten minutes. The main features of the code are as follows. The
quantity to be minimized is λ|Jz | + |∇ · B|. The optional weighting factor λ is
unity by default (and as implemented here). The vertical derivative needed in
the approximation for the divergence of the field is obtained from a potential
field calculated directly from the line of sight component of the field; thus the
potential field need only be calculated once per magnetogram because it does

1Code is available at
http://sd-www.jhuapl.edu/FlareGenesis/Team/Manolis/codes/ambiguity resolution/

2Code is available at www.cora.nwra.com/AMBIG
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Table 1. Summary of tested algorithms.

Name Quantity minimized† Minimization scheme

Acute angle to reference field |θo − θr| local

e.g., Potential-Field

Uniform Shear Method (“USM”) |θo − θr − ∆θmp| local

Non-Potential Field |θo − θr|, iterative + smoothing

Calculation II (“NPFC2”) Br = Bp + Bc

Pseudo-Current (“PCM”)
∫

d2a J2
z conjugate gradient

U. Hawai’i Iterative
∫

d2a J2
z , |θo − θr| iterative

Method (“UHIM”)

Minimum Energy v0 (“ME0”) (λ|Jz | + |∇ · B|) simulated annealing

Minimum Energy v2 (“ME2”) weighted combinations simulated annealing,

of |J|, |∇ · B| genetic crossover

NCAR/HAO “AZAM” angle between interactive

neighboring pixels

†: θo refers to the observed azimuthal angle,
θr refers to the reference-field azimuthal angle,
∆θmp refers to the most probable shear angle, see Paper I.

not depend on the ambiguity resolution. This removes the need for interpolation
and for iteration to calculate the value of the force-free parameter to use in a
linear force-free field.

To find the permutation of azimuthal angles that corresponds to the minimum
of E = λ|Jz|+|∇·B| we use simulated annealing as described in Crouch, Barnes,
and Leka (2009), except here we use a “temperature” that varies from pixel to
pixel. The initial temperature is set to a value that exceeds the expected value for
the change in E caused by changing the azimuth at each pixel. This modification
greatly improves the efficiency over simulated annealing with a uniform temper-
ature. In areas with large uncertainties in the transverse field, approximations to
the divergence are dominated by the noise and the minimization may not return
a good solution. Hence, after annealing, pixels in weak-field areas (determined
with a “threshold” generally set to be below 2–3 times the noise-level of B⊥) are
revisited using a neighboring-pixel acute-angle algorithm similar to that used
in UHIM (see Canfield et al. (1993)), to encourage a spatially smooth solution
for noise-dominated regions. The present approach differs from UHIM in the
following ways. Instead of considering pixels in order of distance from the point
with the lowest continuum intensity, the pixels with the greatest number of
neighbors above threshold are considered first, in order of decreasing transverse
field strength. Once a pixel has been visited, it is treated as if it is above threshold
(hence unlike UHIM, iteration is not needed). In determining the maximum dot
product of a target pixel with its eight closest neighbors, any of the nine pixels
involved which are considered to be below threshold are allowed to change their
ambiguity resolution independently. Since this last step is a local approach, it is
quite fast. Additional details can be found in Leka, Barnes, and Crouch (2009).
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Table 2. Summary of terminology.

Term Descriptions Notes on azimuth

“model”/“true” model analytic field

Poisson noise case: Original analytic field

Limited resolution case: Binned analytic field,

θ = tan−1(binned(By), binned(Bx))

“answer”/”hare” Field against which

metrics are computed |∆θ| ≤ 90◦ from model

Poisson noise: Noise-added magnetogram’s azimuth

is resolved with |∆θ| ≤ 90◦

from the model field.

Limited nesolution: Binned/inverted magnetogram’s

azimuth resolved with |∆θ| ≤ 90◦

from the azimuth resulting from

binned model field (above)

“solution” Participants’ submitted |∆θ| = 0◦or 180◦ from answer field.

results

3. The Hares

To perform the tests desired here required different model fields than used for
the tests described in Paper I. The cases differ in how the “noise” source to be
tested was applied to the model field, but the general approach to generating
the test cases was the same:

1. At each pixel of an analytically-derived, spatially resolved model field, the
ideal Unno-Rachkovsky Stokes profiles are generated using a Milne-Eddington
atmosphere (see e.g., Auer, Heasley, and House (1977), Skumanich and Lites
(1987)).

2. Parameters consistent with the λ630.25nm Fei line were used: Doppler width
3.0pm (3.0 × 10−12m, or 30mÅ), glandé = 2.5, line-depth ≈ 0.7Ic.

3. To mimic observational methods, linear combinations of the pure Stokes
[I, Q, U, V ] spectra were produced: I ± Q, I ± U, I ± V .

4. These resulting “observed” profiles were convolved with an assumed 3.0pm
instrumental spectral response.

5. The resulting convolved profiles were modified according to the specifics of
the “noise” being tested (see below).

6. The noise-added blend spectra were demodulated to recover pure, but noise-
added, Stokes [I, Q, U, V ] spectra.

7. The modified “noise-added” Stokes spectra were inverted using the same
Milne-Eddington algorithm that computed the spectra from the model field
originally, using standard and consistent minimization algorithms for the
inversion.

In this manner, the effects of “noise” on the spectra and the resulting vector
magnetic field map are isolated. The spectral inversions were initialized using
the input model in order to present the inversions with the best case possible
for the “initial guess” and thus avoid testing the inversion procedure itself. A
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more sophisticated model for the spectral line could be used, and other common
instrumental effects such as scattered light could be included, but this would add
complexity to the problem of isolating the worst noise influences. Are the noise-
added “observed fields” realistic? Not completely, but these cases are constructed
to ensure controlled “hare and hound” tests of solely the ambiguity-resolution
algorithms.

3.1. The Case of Photon Noise

Photon noise in data is an observational restriction related to the specifics of
the instrumentation used; in this study we focus on this effect as it takes the
form of Poisson-distributed noise in polarization spectra. The primary question
we test is whether the ambiguity resolution algorithms are susceptible to prop-
agating incorrect solutions beyond their immediate area of influence as a result
of increasing noise. We specifically disregard spectral asymmetries of solar or
instrumental origin, spectral distortions contributed by the blurring from atmo-
spheric turbulence (“seeing”) which are present in ground-based data, systematic
polarization cross-talk, and other sources of spectral distortion.

The underlying model magnetic field is similar to that used in Paper I: a multi-
polar arrangement of sources was used to construct a field by means of a Green’s
function and a non-zero constant-α field which is force free everywhere; a simple
functional, Ic = 1− 0.9 |B|/max(|B|) is used to calculate an effective continuum
intensity. As in Paper I, one source is outside the field-of-view, hence within
the field-of-view the magnetic flux is not balanced. The distribution of sources
is chosen to loosely resemble an active region, includes three bald-patch areas
(where the horizontal field traverses the magnetic neutral line from negative to
positive polarity, indicating a concave upward magnetic field; see Titov, Priest,
and Demoulin (1993)), and is computed on a regular grid in the image-plane at
roughly S09 E36 (µ = cos θ ≈ 0.80, where θ is the observing angle). The general
morphology of the field is shown in Figure 1.

Randomly generated noise was incorporated into the magnetograms at step
#5 above, by manipulating the model Stokes spectra in the following manner. To
mimic the noise in photon-counting instruments, a Poisson-distributed random
number generator was used. At each spatial point, the noise-free blend spectra
(from step #4) were used as the input “expectation values” to the random
number generator, producing as output the “observed”, noisy, blend spectra
(step #5)3. The noise level is, according to Poisson statistics, determined by

3During the preparation of the manuscript, it was discovered that this protocol was not, in
fact, followed for the preparation of the photon noise test cases. Co-author Metcalf had argued
that polarization signals are small compared to the intensity (i.e. P ≪ I, P ∈ [Q,U, V ]), thus
the uncertainty in I ± P is indistinguishable from that in I, and hence noisy Stokes spectra
could be generated directly from the pure Stokes spectra. Using this assumption, the noisy P
spectra at each point were obtained by first adding, then subtracting, two realizations of the
accompanying I spectra which had been acted on by the Poisson-distributed random number
generator. This differs from the correct implementation of obtaining noisy blend spectra and
then demodulating (as described in the text), and resulted in the test case fields having slightly
elevated noise levels. See also foootnote 4, below.
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Figure 1. (Top left): the model magnetic field, for which the “observed” line-of-sight (red/blue
positive/negative contours at ± 100, 200, 400, 800, 1600G) and transverse (arrows, length equiv-
alent to one pixel ≈ 600G) components of the field are shown, along with the location of the
apparent magnetic inversion line (black), all on top of a “continuum” image. (Top right): detail
of the region indicated by the box on the full-area image, except the grey-scale image is the
inferred vertical electric current density, scaled to ±50mA m−2 and a 1–pixel length arrow
is approximately 400G. (Bottom, left to right): detail of the low-noise and high-noise hare
(“answer”) fields, with the same contour levels, arrow lengths, and scaling.

the expectation value: the different degrees of noise tested were accomplished by
varying the constant term of the source function (step #1).

Examples of resulting noise-added Stokes spectra are shown in Figure 2.
The noise was added at two levels, roughly corresponding to σI/Ic levels of
10−2 and 10−3 as measured in “quiet sun” (low polarization-level regions).
The range of photon noise levels considered here is consistent with data from
commonly-used past, present, and future instruments such as the Imaging Vec-
tor Magnetograph (“IVM”) (Mickey et al., 1996; Labonte, Mickey, and Leka,
1999; Labonte, 2004), the NAOJ Solar Flare Telescope (Sakurai et al., 1995), the
SOLIS Vector SpectroMagnetograph (Keller and The Solis Team, 2001), the Hin-
ode Solar Optical Telescope/SpectroPolarimeter (“SOT/SP”) (Tsuneta et al.,
2008; Ichimoto et al., 2008), and the Solar Dynamics Observatory/Helioseismic
and Magnetic Imager (“HMI”) (Scherrer, Hoeksema, and The HMI Team, 2006).
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Figure 2. Examples of the addition of Poisson noise to sample spectra near one of the “um-
brae”. (Top to bottom): the Stokes [I, Q, V ] spectra normalized by the quiet-sun continuum
or local continuum intensity as noted, to present the relative observed intensity level and
the percent polarization, respectively. (Left to right): the three noise levels considered here,
noise-free, σ I/Irmc ≈ 10−3 (“low noise”), and σ I/Ic ≈ 10−2 (“high noise”).

Indeed, we build here on earlier investigations of the effects of noise in vector
magnetographs, for example targeting the Marshall Space Flight Center Mag-
netograph (Venkatakrishnan and Gary, 1989). Initially a noise level of 10−4 was
also considered, reminiscent of the reported sensitivity of instruments such as
ZIMPOL (Stenflo and Keller, 1997), but the effect on the field was indistin-
guishable from the noise-free case and we do not include it here. However, to
ensure consistent comparisons we also include for testing a no-noise case where
the spectra have been inverted but no noise was added to the spectra. Since the
continuum intensity varied as a function of field strength, there was effectively
a lower signal-to-noise ratio in the “umbrae” than elsewhere, as seen in real
observational data. After inverting the spectra, the effect of the noise is most
obvious in the weak-field areas where the noise level and inferred field strength
are comparable (Figure 1, detail panels).

The noise-added magnetograms were compared to the noise-free cases, to
quantify how much “noise” was added a priori. The noise-added ambiguity-
resolved “hare” or “answer” fields were established by imposing the acute-angle
solution with reference to the original model field (see Table 2). Upon this
azimuth choice, the magnitude of the angular differences between the “model”
and “answer” fields were in the −90◦ ≤ ∆θ < 90◦ range. In other words, we
allow the photon noise to impart less than 90◦ error in the azimuthal angle.

Two representations of the effects of this photon noise on the inferred az-
imuths are shown in Figure 3. The high-noise case indeed results in a greater
number of pixels being more adversely affected; the areas affected are most
pronounced where Btrans is the smallest (whether |B| is intrinsically large or
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Figure 3. (Left): fractional number of points as a function of angular difference between
the test cases and the original no-noise model. The former was ambiguity-resolved us-
ing an acute-angle solution with the model. Results of both added-noise levels are shown,
σ I/Ic = 10−3 “low noise” case (orange), where 68% of the points are less than 4◦ different,
and the σ I/Ic = 10−2 “high noise”case (purple), where 68% are less than 11◦ different.
(Right): spatial distribution of the points with the worst angular difference, with contours
of the line-of-sight field and the apparent magnetic inversion line following Figure 1, for the
low-noise case. Grey-scale image is of the angle difference, scaled to saturate at 45◦.

small). The M∆B metric (described in detail in Section 4.1, below) is based
on a mean vector difference between a model and a test case, and can pro-
vide an estimate of the 1σ noise level imparted by the combination of added
photon noise and the inversion. Here, M∆B = 0.13, 24, 71G (gauss) for the
no-noise/low-noise/high noise cases respectively when compared to the original
analytic model. The largest differences introduced by the inversion for the no-
noise case occur in the areas of strongest B‖, and given the above we suggest the
inversion-introduced uncertainties are not important. Similarly, the MI metric
quantifies the total magnitude of the vertical current of a test case, in this case
vertical current introduced by the addition of the noise; for the no/low/high
noise cases MI = 1.5, 6.3, 17 × 1013A, respectively. Inverting (the “no-noise”
case) added roughly 0.1 % to MI computed directly from the model field.

3.2. The Case of Limited Spatial Resolution

A second stark reality of observational data is the limit of spatial resolution.
All present spectropolarimetric instrumentation and all planned for the near
future is subject to the limits of spatial resolution: even at ≈ 0.1′′, there is
unresolved magnetic structure on the Sun (see e.g., Borrero and Solanki (2008)).
The spatial mixing of spectropolarimetric signals results in an intensity-weighted
average which can challenge the inversion codes, due to imposed asymmetries
and combinations of [I, Q, U, V ] spectra for which a consistent atmospheric
model cannot be found. The spatial mixing challenges the ambiguity resolution
as what may be a smoothly-varying field on the Sun becomes discretized and
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Figure 4. Full-resolution model for the “flowers” case, showing (top, left) continuum intensity
(scaled from 0.2–0.9), (top, right) vertical field strength (scaled to saturate at ±1000G, white
is positive), (bottom, left) horizontal field strength (scaled to saturate at 1000G), and (bottom,
right) model (true) azimuth, scaled black/white to 0◦, 360◦. For all, the magnetic neutral line
is also indicated for reference (green).

“jumpy” on the observed grid, with large pixel-to-pixel variations in strength

and azimuth of the transverse field.

To test this aspect of robustness in ambiguity resolution algorithms, a model

was devised so as to be current-free (potential) but possess fine-scale structure

reminiscent of both sunspot penumbrae and solar plage areas.

The “flowers” test case is constructed by specifying the normal magnetic

field component on two horizontal surfaces, and calculating the horizontal com-
ponents of the corresponding potential field. By placing the two surfaces close

together (in this case, the equivalent of six horizontal pixels on the original 0.03′′

grid apart in height), it is possible to control the direction of the horizontal field
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to some degree. For example, by using the same normal component on both
surfaces, the field can be made more vertical than if the second surface were
absent.

Each individual “sunspot” is constructed from the following normal magnetic
field component on each surface

Bs = B0 exp(−r2/a2

0) + B1(r
2/a2

1) exp(−r2/a2

1)[1 + cos(n1θ + φ1)]

+B2(r
2/a2

2) exp(−r2/a2

2)[1 + cos(n2θ + φ2)] (1)

where the first term forms an axisymmetric “umbra”, and the other two terms
produce the pattern of “petals” similar to penumbral fibrils. The value of each
of the parameters, Bj , aj , nj , φj is typically different on the two surfaces. By
introducing a phase shift, ∆φj , between the petals on the upper and lower
surfaces, it is possible to produce a horizontal field with a significant azimuthal
component, while by changing the radii, rj , on the two surfaces, the field can be
inclined to a greater or lesser degree, in both the umbra and penumbra. However,
the combination of Bj and aj is chosen such that the net flux through the lower
boundary is equal to the net flux through the upper boundary.

One can see from a detailed examination of Figure 4, that in the top/right
“sunspot” at the “radius” where the total field strength falls dramatically and
the fine-scale structure becomes increasingly variable azimuthally, the general
orientation of the horizontal field switches direction, from being essentially radi-
ally inward (as expected from a negative-polarity sunspot) to outward. There is a
ring of very small, but potential, “azimuth centers” in the underlying model. This
may be dismissed as being “non-solar”, but we argue that it may be appropriately
descriptive of the many small structures near penumbral/moat boundaries.

The plage region (in the center/right portion of the model) is created by
randomly distributing individual “flux tubes” of the same sign across a spec-
ified area. The probability distribution for the locations of the flux tubes is
initially Gaussian. However, to prevent the superposition of two flux tubes,
a minimum separation between the centers of the flux tubes is imposed. The
normal component of each flux tube is given by a simple Gaussian

Bp = B0 exp(−r2/a2

0) , (2)

but the values of B0 and a0 are allowed to vary slightly from one tube to the
next. The value of a0 is chosen such that the flux tubes are a few pixels across in
the unbinned case, and thus spatially resolved. For the plage field presented here,
a0 = 5.2 pixels, B0 = −1.8 kG, and the minimum separation was ≈ 6.5 pixels.

The continuum intensity for this model field was computed using the field
strength weighted for the vertical component:

Ic =

{

1. − 0.9 b/(2 × 103), for b ≤ 2 × 103,
0.1, otherwise,

where (3)

b =
√

0.2 (B2
x + B2

y) + B2
z ,

(4)
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Figure 5. Images of the model-field azimuth for a small area between the top two oppo-
site-polarity “sunspots”, for the different spatial binnings tested here. Contours indicate the
vertical mean magnetic field (red is positive) at 100,200,400,800 G. (Left to right): original
(0.03′′), bin-factor 10 (0.3′′), and bin-factor 30 (0.9′′). Note the lack of smoothness, implying
a deviation from potential in the latter two, simply due to the spatial binning and limited
sampling.

that is, a function based on the field strengths, scaled to a maximum of 2kG (the
model field maximum is ≈ 3kG) and normalized by the same; this reproduced a
fairly “solar-like” pseudo-continuum looking image, as shown in Figure 4.

This model field was computed on a fully resolved grid assumed to repre-
sent 0.03′′. The emergent polarization spectra were computed as per the steps
outlined above, combined to reflect observed I ± Q etc, spatially averaged by
factors of 5, 10 and 30, demodulated to pure polarization states again, and re-
inverted. Noting that there is no solar atmosphere and there are no plasma
velocities to introduce asymmetric polarimetric spectra as often observed in
sunspots, the present case is greatly simplified over real observational data. The
resulting magnetograms have model spatial resolutions of roughly 0.15′′ and 0.3′′

(consistent with the resolution provided by Hinode SOT/SP magnetogram data
(Tsuneta et al., 2008) and high-resolution ground-based instrumentation such as
the Diffraction Limited SpectroPolarimeter (Lites et al., 2003; Sankarasubrama-
nian et al., 2006)), and 0.9′′ (which is consistent to that achieved by instruments
such as the IVM, SOLIS, and HMI on SDO).

As shown in Figure 5, there is small-scale structure which is smoothly varying
on the fully resolved model boundary, but becomes significantly less so with
spatial binning. This results directly from the averaging of the intermediate
I ± P (P ∈ [Q, U, V ]) spectra over a variety of small-scale structures, each
of which (after demodulating) produces its specific set of pure Stokes spectra
but with an intensity-weighted averaging; the resulting Stokes spectra for any
particular binned pixel may, or may not, still be consistent with the Milne-
Eddington Unno-Rachkovsky approximations. This is demonstrated in Figure 6
for a selection of Stokes spectra from points in the “plage” area of the model
field and a binning factor of 10. In this case, the 100-pixel area of the underlying
model field contains points with field parameters that cover a broad range:

76 Mx cm−2 ≤ |B| ≤ 2017 Mx cm−2

−81◦ ≤ γ ≤ −11◦

−178◦ ≤ θ ≤ +179◦

whereas the resulting inverted bin-10 field at the relevant point has:
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Figure 6. (Top to bottom): selection of six [I, Q, U, V ] spectra from the original model
field in the plage area. When binned by a factor of 10 (100 points averaged) for the 0.3′′ case,
the bottom row of [I, Q, U, V ] spectra result. All are plotted on the same scale for their
polarization type (that is, all [I] spectra are on the same scale, all [ Q, U ] spectra are on the
same scale to each other but different from [I], and same for [V ] spectra).

|B| = 633 Mx cm−2

γ = −67◦

θ = 69◦ or − 111◦

(with θ subject to the 180◦ ambiguity). This raises at least the question of
whether the resulting point is an acceptable average representation of the un-
derlying field. There is simply no way that this single binned point can reflect
all of the physics of the underlying field (recall Parker (1996)), yet that is how
observational data are routinely interpreted.

Again, metrics were computed for the “hare”, or answer, fields (see Ta-
ble 2) of different spatial resolutions, inverted and ambiguity-resolved using
an acute-angle solution with reference to the directly-binned model field. A
bin-1 (no binning, but inverted and acute-angle ambiguity resolved) case is
included here for completeness. We find that the binning and inversion result
in M∆B = 0.25, 1.8, 4.7, 20G and MI = 0.1, 3.4, 4.6, 7.8 × 1012A for the
0.03′′, 0.15′′, 0.3′′, 0.9′′ cases respectively. In a small fraction of the pixels
(less than 1%), the angular differences were significant between the hare and
the model, indicating a strong influence of the spatial sampling (see Figure 7).
Fewer than 0.01% of the points in the unbinned but inverted case resulted in a
change in azimuth due solely to the inversion. Certain areas proved to be most
affected by the limited resolution in this manner (Figure 7), and below we show
that these areas were indeed the most troublesome for the ambiguity resolution
algorithms.
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Figure 7. (Left): fractional number of points of angular difference between the azimuth
resulting from a direct binning of the original model field and that from the inversion of the
binned spectra. The latter was ambiguity-resolved using the former such that no difference is
greater than 90◦. Results of both binnings are shown, 0.3′′ (orange), where 97.7% of the points
are less than 1◦ different, and the 0.9′′ (purple), where 88.0% are less than 1◦ different. In both
cases, the 1σ level (68% of the points) falls below 0.5◦ difference. (Right): spatial distribution
of the points with the worst angular difference for the 0.9′′ case (see text for details), with
contours of vertical field and magnetic neutral line shown following Figure 4. Grey-scale image
is of the angle difference, scaled to saturate at 45◦. The 0.3′′ case shows similar degree and
locales of disagreement.

With limited spatial resolution, no finite-difference calculation is guaranteed
to accurately represent the spatial derivatives of the original field. The ability to
infer the potential-field nature of the underlying field degrades, and the presence
of vertical currents is inferred. The discretized nature of the binned boundary
field impacts the inferred horizontal derivatives, and any resulting calculation
which depends on them, such as ∇h · B and ∇h×B.

To quantify the degree to which the lack of spatial resolution affects the field,
we construct the quantity

D =
|∂Bx/∂x + ∂By/∂y + ∂Bz/∂z|

31/2[(∂Bx/∂x)2 + (∂By/∂y)2 + (∂Bz/∂z)2]1/2
, (5)

in which all of the derivatives are approximated by centered finite differences.
The first height is the “binned model” used as reference for the metrics below; the
second model “binned model” height is treated consistently. The two heights are
used to approximate the vertical derivatives (Figure 8). The normalization is such
that D ≤ 1.0. For a fully resolved field, in which the derivatives are accurately
represented by finite differences, D ≪ 1, since the numerator is simply ∇·B. For
ambiguity resolution methods which rely on horizontal derivatives to compute
either the vertical current density or the divergence of the field, large values of
D indicate that the value of Jz or ∇·B arrived at by finite differences will not
accurately reflect the underlying field. Thus one expects that areas of large D
may predict areas where the ambiguity resolution algorithms fail.

paper.tex; 21/08/2009; 9:46; p.14



Resolving the 180◦ Ambiguity in Vector Magnetograms

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

0 20 40 60 80
0

20

40

60

80

0 50 100 150 200 250
0

50

100

150

200

250

0 20 40 60 80
0

20

40

60

80

Figure 8. Images of the parameter D, indicating (by grey-scale) where finite-differences
succeed (black, D = 0) and fail (white, D = 1) to reproduce the underlying model field’s
derivatives. The contour indicates the magnetic neutral line, for reference. (Top, left to right):
original (0.03′′) fully resolved model, bin-5 (0.15′′), (Bottom, left to right): bin-10 (0.3′′), and
bin-30 (0.9′′).

Are the models and binning levels appropriate? To demonstrate that they are,
we show in Figure 9 a comparison of magnetic flux densities in the line-of-sight
and transverse components observed in plage and penumbra by Hinode SOT/SP
in “fast-map” mode with 0.32′′ sampling, compared to the analogous structures
resulting from the bin-10 (simulating 0.3′′ sampling). While the observational
data have more scatter than the model-derived data, the general characteristics
in terms of distribution functions and magnitude limits match well.

4. The Metrics and Results

In the first paper, quantitative metrics were devised to evaluate the algorithms’
performances. We also presented spatial maps of success and failure, for insight
into which particular structures presented the most challenge.

In the present cases, the addition of noise precludes exactly this approach.
The underlying model is known (referred to as the “true” case), but the addition
of noise and subsequent inversion of the affected Stokes spectra (resulting in
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Figure 9. Comparison of the bin-10 data which approximates 0.3′′ spatial resolution with
observational vector-field data from the Solar Optical Telescope/Spectropolarimeter aboard
the Hinode mission, from 30 April 2007. (Top row, left to right): continuum images from the SP
data, with boxes indicating selected areas of “plage” and “penumbra”, and the distribution of
the observed line-of-sight and transverse magnetic flux densities for the “plage” area (middle),
and the “penumbral” area (right). (Bottom row, left to right): same as top row, but for the
model data.

ambiguous azimuthal angles), precludes direct comparison without additional
levels of interpretation. We address this issue in two ways.

First, as alluded to above (Table 2), the hare, or “answer” map is produced
using an acute-angle calculation minimizing the difference between the azimuth
derived from the noise-added inversion and the original noise-free model or its
proxy. In the case of the added Poisson noise, the “answer” was the direction
within 90◦ of the noise-free model; in the limited-resolution cases, the “answer”
was the direction within 90◦ of a proxy model field derived by directly bin-
ning the original model. By “directly binning”, it is meant that (1) the model
Bx, By, Bz components are spatially averaged by the specified bin factor, (2)
then θ = tan−1(binned(By), binned(Bx)), resulting in ambiguity-resolved az-
imuths. Second, a few additional metrics were devised that were less dependent
on these “answer” maps, relying instead on global quantities of the submitted
solutions.

Using these hares and the participants’ submitted solutions, we compute met-
rics and the spatial maps of success/failure in the same manner as in Paper I.
Still, it must be emphasized that interpreting the performances is hampered by
the fact that the presence of noise precludes knowing “the right answer”, even
when using synthetic data.
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4.1. The Metrics

Finding from Paper I that various metrics added only limited insight, we present
select metrics from the full list in Paper I, and then develop additional metrics
described below which add insight for these cases. The metrics from Paper I
which are used here are:

• Area: the simple fraction of pixels which were resolved correctly:
M(a, s)

area
= #pixels(∆θ = 0)/#pixels. “Best” is 1.00; “random” gives

0.50.
• Normalized Vertical Current Density: Following paper I, the vertical

currents were computed for both the submitted solutions and the “answer”
map, and compared. In this metric, the solution is rewarded where it is
correct and penalized where it is incorrect:

M(a, s)Jz
= 1 −

∑

(|Jz(answer) − Jz(solution)|)

2
∑

(|Jz(answer)|)
. (6)

M(a, s)Jz
is normalized such that “good” is closer to 1.00, and 0.00 occurs if

the current is exactly reversed at each pixel; scores less than 0.00 indicate
the presence of strong line currents. A score of about 0.00 can also be
attained with a combination of exactly reversed currents and moderate line
currents.

The additional metrics described below attempt to measure sensitivity to the
specific type of noise being tested.

• Total Vertical Current: The total unsigned vertical current,
MI =

∑

| Jz(s) |, computed for the submitted solutions and also for the
“answer” maps for comparison (c.f. Section 3.1).

• Transverse Field: the fraction of transverse field above a specified thresh-
old T which was resolved correctly:
M(a, s)B⊥>T =

∑

(B⊥(s)∆θ=0,B⊥>T )/
∑

(B⊥(s)B⊥>T )).
• Mean Vector Difference Magnitude: The average magnitude of the

vector difference between the solution and the model field:
M∆B =

∑

|B(s)−B(m)|/#pixels. In units of Gauss, this metric quantifies
how much additional noise is generated by the ambiguity resolution, and is
strongly weighted such that the contribution of incorrect answers in weak-
field areas is less significant. Computed for the submitted solution and also
for the “answer” maps as a 1σ noise level (c.f. Section 3.2).

For each of the metrics, a submitted image-plane azimuth solution was used
to resolve the ambiguity in the test magnetogram, and the vector components
of the image-plane and helioplanar field were computed from this solution. The
vertical current densities were computed using finite-differences as described in
Canfield et al. (1993). Most importantly, all quantities required for the metrics
were calculated consistently. The MI metric should be very discriminating for
the tests of spatial resolution: the field inferred after spatially binning and then
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re-inverting the spectra from the original current-free model may no longer have
zero vertical current everywhere. The results of MI are also presented for the
“answer”, as it too is affected by the addition of the spatial-binning noise and is
no longer current-free as determined using a standard finite-difference approach.

The M(a, s)B⊥>T metric is applied for both noise-tests, for in truth it quanti-
fies how well an algorithm performs in the stronger-transverse-field areas where
it is arguably most important (or at least where the polarization signals and
hence the field is best determined). We present results for two thresholds, 100G
and 500G, to highlight the performances in weak and strong field areas.

The M∆B metric is useful for both tests, and could be considered a “noise
level” introduced by an incorrect ambiguity resolution. The results for this metric
are also included for the “answer” or noise-added hares as compared to the “true”
model or its proxy, for reference.

4.2. Results for Photon-Noise Cases:

The results are presented below in both quantitative metric and graphical form.
We present the metrics for all submitted solutions, but only graphical results for
a select few in order to highlight specific trends.

In general, the algorithms performed worse with increasing photon noise,
as expected (see Table 3)4. The notable exception was the “Pseudo-Current”
method, which performed better as noise levels increased (see Figure 10). This
unexpected (but not yet fully understood) effect is possibly achieved due to the
method’s focus on the major current systems and minimal influence from weak
magnetic field contributions (those dominated by noise), resulting in a minimal
sensitivity to the presence of noise. The effects of noise are indeed the worst where
B⊥ signal is weak, as demonstrated by the M(a, s)B⊥>100G,500G metrics: seven
of the methods scored perfectly for all noise levels for M(a, s)B⊥>500G whereas
none achieved the same feat for M(a, s)B⊥>100G. This is confirmed by comparing
Figure 10 and Figure 3, the areas where the best algorithms had problems were
generally areas of lowest transverse field strength, where essentially the noise
dominates the signal and a good performance simply cannot be expected. This
may occur in areas of weak field, but may also be the case where field strengths
are large but the observing angle is such that there is minimal transverse field
signal. The value of relying on multiple metrics is also clear, since even with a
perfect M(a, s)B⊥>500G = 1.00 score, different algorithms will score differently
regarding the average field strength difference metric, M∆B. This differentiates
the UHIM results as compared to the NPFC2 results, for example. The effects of
increasing noise are more or less impacting for different algorithms; some show
steep changes for increasing noise levels (ME0, ME2), whereas others are rela-
tively insensitive (NPFC2, potential). Note that for the potential field methods,

4A full metrics analysis was performed on maps generated by the protocol exactly described in
Section 3 (see footnote #3) for the potential-field acute-angle and the UHIM algorithms. The
resulting metrics differed from those shown here by at most a few percent, and there were no
unexpected systematic trends. We conclude that there is no significant impact to the results
of this study.
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the way in which the potential field is calculated typically has a much larger
impact than the changes in the noise level. These differences in implementation
are similar to what was found in Paper I.

Fundamentally, the addition of photon noise and its effects on the inferred
“observed” field is to make the latter inconsistent with most of the assumptions
being made by most algorithms. As discussed in Paper I, most algorithms assume
that observed magnetograms reflect a Sun which is in a state of minimum current
and/or divergence; here, we present evidence that while the original field satisfied
these criteria, the observed field no longer does. Indeed, the final global minimum
of vertical current and divergence for ME0 for these cases fell below that for the
“answer” field, yet ME0 alone (and ME2) returned decent but not great results.
Similarly, when the NPFC2 algorithm was initiated with the vertical current
density of the answer field, it did not correctly resolve all pixels. Instead, it
resulted in a solution which scored similarly to that presented in the tables,
achieved with no additional information. Thus we conclude that its assumptions
are also violated by the addition of photon noise.

Algorithms which incorporate nearest-neighbor smoothing (NPFC2, AZAM)
performed most robustly for this test. The recognition of the value-added for a
nearest-neighbor smoothing component initiated the addition of this component
to ME0, substantially improving its performance in the case of photon noise
dominating the linear polarization signal.

4.3. Results for Limited-Resolution Cases:

The second test case proved challenging to most algorithms. We again present
the results for this challenge in both quantitative metric (Table 4) and graphical
(Figure 11) form, limiting the presentation of the graphical results to highlight
a few trends. Note that not all algorithms submitted solutions to test against
this source of noise.

The areas which are most affected by the spectra’s spatial averaging and
subsequent inversion are the plage and regions between like-polarity sunspots
where the underlying model field (for example) smoothly passes through zero by
transitioning from being directed +x̂ to −x̂, as between the two same-polarity
sunspot centers. We focus on the areas where finite differences may not ac-
curately approximate derivatives, to examine whether they especially become
problematic for ambiguity resolution algorithms (Figures 8), keeping in mind
the noise arising from the “mixing” of polarization signals (Figures 7).

In addition, the ring of azimuth centers that is part of the “sunspot” in
the north/west corner of the field of view is constructed such that outside of
this ring, the direction of the field is opposite that which one would generally
infer for a “negative-polarity sunspot”, with the field being directed radially
outward from the center of the spot in this case. This aspect is analogous to the
case in Paper I of a potential-field arcade overlying a twisted flux-tube, where
the horizontal field direction at the edges was opposite what would normally
be expected. When supplied with only the lower boundary “observation”, all
methods need additional information regarding the nature of the field, hence all
methods make assumptions to furnish that missing information. As in Paper I
we find many methods perform poorly when the underlying field violates the
assumptions being made.
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Figure 10. Examples of the effect of Poisson noise on the ambiguity resolution algo-
rithms. Throughout, black/white areas in the underlying image represent areas which
were/were not solved correctly, and red/blue contours indicate positive/negative Bz at ±
50, 700, 1500, 2800 G, with the true magnetic neutral line shown by a green line. (Left to
right): no-noise, low-noise and high-noise cases, (from top): results for a Potential-Field Acute
Angle method, for the Pseudo-Current method, for NPFC2, for ME0, and AZAM. Results for
other potential-field and linear force-free field based solutions were similar in nature to that
shown at the top: large swaths with some smaller patches which were incorrect. The general
trend shown here was that for most methods: the presence of noise did not generally lead to
dramatic changes in the results or new propagation of erroneous solutions, but additional “salt
and pepper” of correct/incorrect solutions in weak-B⊥ areas. In one case, the Pseudo-Current
method (second from top), the results improved with noise.
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Table 3. Results for noise-added cases.

M(a, s)area M(a, s)Jz
M(a, s)B⊥>100G M(a, s)B⊥>500G MI (1013A) M∆B

Noise level: none low high none low high none low high none low high none low high none low high

“Answer” field 1.53 6.27 17 0.13 24.0 71.3

Potential, FFT

YLP (Y. Liu) 0.81 0.81 0.81 0.30 0.52 0.57 0.91 0.91 0.89 0.99 0.98 0.98 3.4 9.0 22 79 97 139

KLP (K.D Leka) 0.64 0.65 0.65 0.53 0.41 0.44 0.85 0.84 0.82 0.98 0.99 0.98 2.8 8.1 20 139 152 187

JJP (J. Jing) 0.66 0.66 0.66 0.31 0.36 0.40 0.84 0.84 0.82 0.97 0.97 0.97 3.4 8.9 22 140 153 189

GBP (G. Barnes) 0.63 0.62 0.67 0.53 0.33 0.37 0.82 0.80 0.79 0.96 0.96 0.96 2.9 8.7 23 146 167 180

Acute Angle (LFFF)

HSO (H.N. Wang) 0.85 0.85 0.83 0.67 0.51 0.53 0.96 0.95 0.92 1.00 1.00 0.99 2.3 9.5 23 46 64 115

Uniform Shear Method

USM (Y.-J. Moon) 0.94 0.93 0.91 0.92 0.84 0.82 1.00 0.99 0.97 1.00 1.00 1.00 1.7 6.6 17 10 33 82

Non-potential Field

Field Calculation II

NPFC2 (G. Barnes) 1.00 0.99 0.98 0.99 0.98 0.95 1.00 1.00 0.99 1.00 1.00 1.00 1.5 6.3 17 0.16 24 72

Pseudo-Current

PCM (A. Gary) 0.77 0.84 0.94 0.59 0.64 0.81 0.90 0.94 0.97 1.00 1.00 1.00 2.5 7.8 18 86 69 85

UH Iterative

UHIM (K. Leka) 0.98 0.91 0.91 0.94 0.84 0.84 0.99 0.98 0.97 1.00 1.00 1.00 1.6 6.4 17 8.2 41 86

Minimum Energy

ME0 (Crouch/Barnes/Leka) 1.00 1.00 0.99 1.00 0.98 0.96 1.00 1.00 0.99 1.00 1.00 1.00 1.5 6.3 17 0.13 24 72

ME2 (K.D Leka) 1.00 0.98 0.94 0.96 0.91 0.83 1.00 1.00 0.98 1.00 1.00 1.00 1.5 6.4 18 24 39 84

AZAM

AZAM (B. Lites) 1.00 0.99 0.98 0.96 0.98 0.95 1.00 1.00 0.99 1.00 1.00 1.00 1.5 6.3 17 0.13 24 73
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Figure 11. Graphical representation of the success/failure (black/white) for the tests of spa-
tial resolution, for representative algorithms. (Left/right:) the 0.15′′ and 0.9′′ cases respectively,
including a contour of the magnetic neutral line for reference (compare Figure 4). (From top):
results for a Potential-Field acute-angle method, the NPFC2 method, a Minimum-Energy
method, and the AZAM utility (by Kubo and Lites, respectively). While not shown, results
from other Potential-Field Acute-Angle methods basically resemble the top figures, the UHIM
results most closely resemble those from NPFC2.

paper.tex; 21/08/2009; 9:46; p.22



R
eso

lv
in

g
th

e
1
8
0
◦

A
m

b
ig

u
ity

in
V
ecto

r
M

a
g
n
eto

g
ra

m
s

Table 4. Results for limited-resolution cases.

M(a, s)area M(a, s)Jz
M(a, s)B⊥>100G M(a, s)B⊥>500G MI (1013A) M∆B

0.15′′ 0.3′′ 0.9′′ 0.15′′ 0.3′′ 0.9′′ 0.15′′ 0.3′′ 0.9′′ 0.15′′ 0.3′′ 0.9′′ 0.15′′ 0.3′′ 0.9′′ 0.15′′ 0.3′′ 0.9′′

“Answer field” 0.34 0.46 0.78 1.8 4.7 20

Potential, FFT

YLP (Y. Liu) 0.69 0.69 -1.6 -0.08 0.90 0.90 0.96 0.96 2.5 2.1 123 134

KLP (K. Leka) 0.83 0.83 0.83 -1.7 -1.1 0.12 0.94 0.94 0.94 0.98 0.98 0.98 2.0 2.1 1.8 75 78 90

JJP (J. Jing) 0.80 0.80 -1.2 0.16 0.93 0.93 0.98 0.98 2.2 1.8 82 94

GBP (G. Barnes) 0.83 0.83 0.84 -1.7 -1.1 0.18 0.94 0.94 0.94 0.98 0.98 0.98 2.1 2.1 1.7 77 78 92

Non-potential Field

Calculation II

NPFC2 (G. Barnes) 0.84 0.85 0.84 -2.2 -0.43 0.42 0.94 0.94 0.94 0.98 0.98 0.98 2.3 1.4 1.4 75 70 82

Pseudo-Current

PCM (A. Gary) 0.78 0.80 0.72 -2.2 -2.0 -0.1 0.90 0.91 0.92 0.95 0.94 0.95 2.4 3.0 2.1 116 110 119

UH Iterative

UHIM (K. Leka) 0.87 0.87 0.83 -0.65 -0.26 0.51 0.95 0.95 0.95 0.99 0.98 0.99 1.4 1.3 1.3 57 66 79

Minimum Energy

ME0 (Crouch&Barnes) 1.0 1.0 0.98 0.95 0.81 0.82 1.00 1.00 0.99 1.00 1.00 1.00 0.34 0.48 0.92 1.8 5.3 27

ME2 (K. Leka) 0.86 0.89 -0.002 0.62 0.94 0.96 0.98 0.99 1.0 1.1 75 81

AZAM

AZAM (B. Lites) 0.99 0.96 0.56 0.68 1.00 0.98 1.00 0.99 0.61 1.1 6.9 40

AZAM (M. Kubo) 1.00 0.99 0.21 0.51 1.00 1.00 1.00 1.00 0.77 0.66 3.5 7.2
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We find that there are few obvious trends with spatial resolution, but we note
that we present a sparse sampling. We find that the weak trends differ somewhat
according to an algorithm’s approach: arriving at a solution by way of an acute
angle test to a comparison field computed from the boundary, or arriving at a
solution by way of simply smoothing the field or globally optimizing a prescribed
functional.

For the latter methods, such as ME[0,2] and AZAM, there is a trend evident
both spatially and from the metrics of a general decrease in performance with
worsening spatial resolution. In contrast, reference-field methods, such as all
potential-field acute-angle methods, fail in almost identical areas as spatial reso-
lution is varied. Methods which do not use global optimization, such as NPFC2,
PCM, and UHIM, perform similarly with varying spatial resolution based on the
metrics, but fail in somewhat different areas as spatial resolution changes.

The interpretation of the metrics requires some care. In some cases, the spa-
tial resolution degradation did not translate to an obvious degradation in the
metrics. Those metrics which compute a (weighted) fraction of the total resolved
correctly, such as M(a, s)area or M(a, s)B⊥>100G are unable to distinguish per-
formance differences between the spatial resolutions. As an example, 3 of the 6
metrics are almost identical between the tests for the potential-field acute-angle
cases.

The metrics based on the vertical current, M(a, s)Jz
and MI , seem to indi-

cate that methods may improve with worsening spatial resolution. For example,
recalling that M(a, s)Jz

= 1.0 is best, most methods have M(a, s)Jz
< 0 for the

0.15′′, 0.3′′ cases but M(a, s)Jz
> 0 for 0.9′′. However, by visually examining the

spatial right/wrong maps (Figure 11) we see that this improvement is not really
the case.

Instead, decreasing spatial resolution effectively increases the distance be-
tween pixels; the magnitude of the horizontal field may or may not (depending on
how rapidly the underlying field is varying) decrease by a similar amount. Thus,
current computed by finite differences will generally have a smaller magnitude as
∆ x increases. In addition, the M(a, s)Jz

metric is sensitive to line-currents: with
fewer pixels available between the remnants of the fine-scale structure, there are
fewer pixels across which to produce strong line currents, and the metric appears
to improve with worse spatial resolution.

The MI metric provides mixed messages, but in this case we also have the
results for the “answer” fields themselves. While small, the hares show an in-
crease in total current for worsening spatial resolution. AZAM, ME0, follow this
trend, while the rest all suffer from the misleading trend of decreasing MI with
worsening spatial resolution while having overall substantially higher MI scores.
Recalling that the underlying model field is potential, for which MI = 0.0, this
metric provides a good evaluation when fully understood.

The M∆B metric indicates how much additional “noise” is present in the
magnetogram due to incorrect ambiguity resolution. For comparison, we include
this metric computed by comparing the hare, or answer field, with the model
field, finding that the three spatial resolution cases have 1.8/4.7/20 G of noise
respectively imparted in the field solely from the binning and spectral inversion
itself. All ambiguity resolution methods add additional noise, and all follow the
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trend of higher M∆B for lower spatial resolution. Some methods impart minimal
additional noise (ME0, AZAM), while others add substantial noise levels (the
potential-field acute-angle methods). This appears to be one of the most sensitive
and clearest metrics for interpreting the effects of spatial resolution.

As with the Poisson-noise added cases, the physical assumptions invoked by
the algorithms may no longer be consistent with the boundary. As an example,
despite the underlying field being a current-free potential field construct, the
acute-angle algorithms based on a potential field did not perform particularly
well. Algorithms based on minimizing quantities such as the vertical current
could be affected as well: as discussed earlier, the intensity-weighted mixing of
the polarization spectra sampled on a sparse discrete grid enhances the inter-
pixel discontinuities, resulting in significant inferred unsigned vertical current
where there is none in the underlying field.

The structure at the top/right of the model, with the ring of azimuth centers,
was particularly troublesome; contributor Lites stated, “there is no obvious AZAM
good solution for the upper right” regarding the 0.9′′ case. The effects of degrad-
ing spatial resolution are dramatic here, in the sense that the inverted points
deviate noticeably from a directly binned model field: the “azimuth centers”
become unrecognizable. In addition, when one computes a reference field (po-
tential or linear force-free) using solely the B‖ boundary, the fine-scale structure
is completely lost. As a result, a reference field computed in this way behaves as
if this should be a single negative-polarity sunspot, with all associated horizontal
field heading toward the umbral center. The assumptions used in computing the
reference field to supplement the inadequate information provided by just the
boundary observation, lead the solutions astray.

Methods which performed a global optimization, or those which relied solely
on spatial smoothness without regard to a reference field (such as AZAM at the
0.3′′ resolution) were able to recover this somewhat counter-intuitive structure.
Spatially, ME[0], AZAM, generally performed well on this structure. On the other
hand, methods which relied on a reference field for an acute-angle solution sys-
tematically failed in the outer parts of the north/west sunspot. Hybrid methods
such as UHIM and NPFC2, which include treatment of non-potential fields or
iterative minimization of divergence, performed with mid-quality results.

Still, smoothing or global optimization methods were not perfect; all methods
failed to some degree in the “plage area”, even the bin-5, 0.15′′ solution from
ME0. This model “plage” is a collection of very small but fully resolved (before
binning) azimuth centers with significant horizontal field, randomly distributed
subject to constraints on overlap. They have none of the “reverse” field challenges
of the north/west structure; this area is purely a test of the effects of spatial
averaging. With the underlying field varying rapidly with position, it is the
most problematic with regards to the assumption that finite-differences suitably
approximate the true derivatives, as seen by the area’s large values of D (see
Figure 8). These structures are prone to a varying degree of mixing of the polar-
ization spectra and do not conform to (are not successfully resolved by) any single
method’s assumptions at any spatial resolution tested here. We demonstrate that
while not attempting to provide a fully developed model of solar plage areas, the
“plage” area reproduces the salient features of spectropolarimetric observations.
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One must wonder, given that all methods had difficulty on this basically simple
magnetic field construct, how to best interpret real observations of unresolved
structure.

5. Conclusions

We subjected a variety of algorithms for the ambiguity resolution in vector
magnetic field data to systematic challenges, and evaluated their performance
in the presence of observational noise. Two different noise sources were tested:
photon noise and unresolved structure. All observational data are susceptible to
these two types of noise. Even at very high spectropolarimetric precision and
very high spatial resolution, there will be Poisson-distributed photon shot-noise,
and there will be unresolved structures in each resolution element. The question
is one of the level of noise and the extent to which an algorithm’s performance
degrades.

As in Paper I, we find that even acute-angle potential-field methods can
give different results according to the details of the potential field calculation
and the treatment of the side boundaries. None of the acute-angle potential-
field algorithms performed substantially better or worse with increasing noise
(whether photon or spatial-resolution) than expected. As in Paper I, the acute-
angle potential field methods fared moderately, and can be considered a standard
against which more sophisticated models should be compared.

We find that almost all algorithms perform less well with an increased level of
photon noise, as expected. The different algorithms have different sensitivity, and
one in fact performs better at higher noise levels. No method appears to widely
propagate a bad solution from a certain noisy pixel, and no method completely
succeeds in the face of the (unrealistic) challenge of determining the azimuthal
direction when the signal-to-noise ratio for the transverse field is less than unity.

Indeed, it is in the small-magnitude areas of the transverse field where photon
noise is most troublesome, and these tests remind us that such areas are not

limited to plage or quiet-sun areas, but can occur mid-sunspot as well. In these
areas, the noise appears as random vertical current which can have different
effects depending on whether it occurs in weak-field areas or in the middle of a
sunspot.

For all ambiguity-resolution algorithms, the existence of photon noise simply
means that there is inferred current where the underlying field has none, and
there is limited information to be used for the ambiguity-resolution. This implies
that the assumptions can be invalid when the polarimetric signal is dominated by
noise, even when the assumptions are valid for the true field. Global minimization
of a physics-based function was not a guaranteed success. Those algorithms which
relied upon a spatial smoothing in their approach appeared to perform the best
in areas where photon-noise dominates.

Isolating the effects of unresolved structure produced somewhat parallel re-
sults. Finite spatial resolution spatially mixes the polarization spectra in an
intensity-weighted non-linear manner. When this mix is inverted, unresolved
structures are not necessarily “smoothed out”; the inversion itself will intro-
duce noise and the increased pixel-spacing introduces large apparent inter-pixel
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jumps. Significant vertical current is then inferred where there was none at full
resolution, and the “observed magnetogram” may no longer be consistent with
∇ · B = 0. Does this constitute an inappropriate test, then? Not in the least.
In this case we know what the changes are from a constructed field for which
∇×B = 0 and ∇ ·B = 0, and thus can test how sensitive the algorithms are to
approximating derivatives from discretely-sampled data. For solar observations,
we assume that the resulting magnetic field map, inverted from spectropolari-
metric data at finite resolution, is a valid field. We show here that it may not be
so.

A result from Paper I is confirmed: all methods employ assumptions in light
of the insufficient information provided by a single-height observation. If the
assumptions from which a reference field is constructed do not match the true
field, the results are usually not good. Details of the area outside the field of
view (horizontally or vertically) and its effects on the structure within the field
of view can be problematic.

Moreover, different implementations of the same basic assumption can lead
to different results. ME0 and NPFC2 use the same basic assumption of deriving
∂Bz/∂z by the use of a potential-field extrapolation, but the subsequent use of
the derived information is different, as are the results. The same can be said
for the potential-field acute-angle methods: the same basic assumption is used,
but the treatment of the side boundaries in particular can lead to very different
results.

All methods performed very well in areas of strong transverse fields, with
M(a, s)B⊥>500G ≥ 0.95. No method ever produced a perfect solution to any of
the cases tested when noise was present; no method ever perfectly resolved the
ambiguity in areas which were not spatially resolved. The new “average vector
difference” metric demonstrated that spatial resolution effectively adds noise to
a magnetogram. We find that low-scoring algorithms worsen this effect, while
algorithms based on global minimization of ∇ · B and Jz perform best against
all of these challenges.

In summary, in light of observational sources of noise, the potential-field acute-
angle methods once again were the “‘standard” against which more sophisticated
methods were judged. Hybrid methods such as UHIM and NPFC2 performed
with good but not great results. Algorithms which performed a global opti-
mization of a physics-based functional overall performed best of the automated
methods. Results for interactive methods such as AZAM were dependent on the
user but generally very good (when available).

The behavior of the algorithms in light of observational noise sources points
to an observational approach which can be taken with today’s instruments:
first invert polarization spectra which are obtained on the finest spatial scale
possible, then perform the ambiguity resolution. If spatial binning is considered
advantageous, there may be cases where the binning should be performed not

on the spectra, but on the final ambiguity-resolved vector field map. Subject
to appropriate signal/noise limits, with this approach the noise added due to
spectral mixing is be minimized, errors in the inversion and ambiguity-resolution
affect the smallest observed area possible, and necessary assumptions are the
least challenged by the nature of discrete data. This is contrary to conventional
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wisdom of binning spectra prior to a spectral inversion, but might be taken
under advisement in certain specific signal/noise scenarios. Given the results of
the tests performed herein, we put forth this guarded suggestion.
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