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Abstract. We compare the results of using a Random Forest Classifier with the results of using
Nonparametric Discriminant Analysis to classify whether a filament channel (in the case of a
filament eruption) or an active region (in the case of a flare) is about to produce an event. A
large number of descriptors are considered in each case, but it is found that only a small number
are needed in order to get most of the improvement in performance over always predicting the
majority class. There is little difference in performance between the two classifiers, and neither
results in substantial improvements over simply predicting the majority class.
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1. Introduction

The Sun releases energy stored in its atmosphere by way of various pathways, including
solar flares and filament eruptions. Predicting the occurrence of these events is important
both for understanding the physical processes at work, and for mitigating the impacts
at the Earth. Solar filaments are cool, dark channels of partially-ionized plasma that lie
above the chromosphere. Their structure follows the neutral line between local regions
of opposite magnetic polarity. The occurrence of filament eruptions is associated with
coronal mass ejections (Schmieder et al. 2015; McCauley et al. 2015). A solar flare is a
rapid, localized release of radiation, predominantly X-rays. They originate in the atmo-
sphere above sunspot groups (active regions), where concentrations of strong magnetic
field pass through the solar surface. Flares are often associated with CMEs and solar
energetic particle events.
Previous investigations have shown at best modest improvements over simply always

classifying as the majority class, despite a wide range of methods being considered, partic-
ularly for flares (e.g., Barnes et al. 2016). However, the different classifiers have typically
been applied to different data sets, so it has been difficult to determine whether the
ability to correctly classify these events is limited by the descriptors or the classifier. We
present here a comparison of the performance of two types of classifier: Random Forest
Classifier (RFC; Breiman 2001) and Nonparametric Discriminant Analysis (NPDA; Sil-
verman 1986), applied to the data sets for two types of solar energetic events (filament
eruptions and flares).
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Figure 1. Left: Example nonparametric density estimates for eruptive (red) and quiescent
(black) filaments for the rate of change of the filament length. Vertical blue lines show places
where the density estimates are equal, while vertical dotted lines show the mean of each sample.
Right: An example tree showing a split at the first level based on the value of the rate of change
of the filament length.

2. Data and Classifiers

Filament Eruptions. For the filament eruptions, a total of thirty descriptors were used.
The descriptors were computed for a sample of 126 filaments that erupted, and a sample
of 141 that did not erupt from 2012-2013. The individual filament events were tracked and
grouped together by an algorithm developed by Kempton & Angryk (2015). Most of these
were filament features were taken from the Heliophysics Event Knowledgebase (HEK;
Hurlburt et al. 2012) and characterize the morphology of the filament. This includes
the length, area, tilt and number of barbs of the filament, and its chirality. For each
feature, the minimum, maximum, mean, skew, and change in the value were computed.
In addition, the decay index from 42-105Mm above the filament channel was computed
with the FORWARD code (Gibson et al. 2016).
Flaring Regions. For flaring active regions, a total of 412 descriptors were used. The

descriptors were computed for a sample of 2623 HARPs (HMI Active Region Patches)
that produced at least one C1.0 or larger flare within 24 hr and a sample of 25996 HARPs
that did not produce any C1.0 or larger flare within 24 hr from 2010-2015. Most of the
descriptors were characterizations of the photospheric magnetic field measured by the
Helioseismic and Magnetic Imager (HMI; Hoeksema et al. 2014) on board NASA’s Solar
Dynamics Observatory (Pesnell et al. 2012). This included the first four moments of
distributions, supplemented by totals where appropriate, of the different components of
the field, the vertical current density, measures of the excess magnetic energy, properties
of polarity inversion lines, the twist parameter, the shear and the current helicity (see
Leka & Barnes 2007, for a list of descriptors). In addition, a simple coronal model based
on magnetic charge topology (Barnes et al. 2005, and references therein) was computed.
From this, additional descriptors characterizing the distribution of source properties and
the connectivity matrix were computed (see Barnes & Leka 2006, for a list of descriptors).
Finally, the past flaring history inferred from the peak GOES 1–8 Å flux was used to
construct additional descriptors.
Classifiers. Two classifiers were applied to each data set: a Random Forest Classifier

and Nonparametric Discriminant Analysis. Figure 1 shows an example of each for the
filament eruption data. RFC is an ensemble method of machine learning that uses the
aggregate of multiple decision trees to make classifications. Within a tree, each branch
splits on a feature until the prediction is made. The tree shown has a depth of two, but
for most of the results presented, the maximum depth was five. Ten-fold cross-validation
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Figure 2. Accuracy of classifiers. The highest accuracy for one (black) and two (red) variable
NPDA (left) and the accuracy as a function of the maximum depth of tree (with twenty trees in
the forest) for the RFC (right) for filaments (top) and flares (bottom). The blue line in all panels
is the accuracy from classifying as the majority class. Black and red lines in the right panels
indicate the accuracy of the best performing descriptor(s) for one and two variable NPDA.

was used to remove bias and estimate uncertainties for the RFC. NPDA estimates the
probability density of each population, in this case using the Epanechnikov kernel. A
filament or active region is classified as belonging to the class with the higher density
estimate at the value of its descriptor(s). For NPDA, cross-validation and a bootstrap
were used to remove bias and estimate the uncertainties respectively.

3. Results

Figure 2 shows the accuracy (fraction of correct classifications) of the classifiers. Neither
of the classifiers results in a substantial improvement in accuracy relative to always
predicting the majority class, whether we consider filament eruptions or flares, and both
produce classifications with similar accuracy. For NPDA, there is a small increase in
accuracy, less than the estimated combined uncertainty, in using two descriptors instead
of one. Similarly for the RFC, the accuracy does not significantly improve by increasing
the depth or by adding more trees (not shown) beyond perhaps two or three. Thus only
a small number of descriptors are needed to get the majority of the predictive power,
which suggests that different descriptors have little independent information.

Figure 3 shows the descriptors that result in the highest accuracy classifications from
NPDA and the most important descriptors in the RFC. There is considerable overlap,
with NPDA and the RFC having approximately half of the top ten descriptors in com-
mon for both filament eruptions and flares. We therefore conclude that the limitation in
predicting solar events is more likely to be the descriptors than the classifier.
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Figure 3. The most important descriptors. The best performing variables from one-variable
NPDA based on the accuracy (left) and the relative importance of variables in the RFC (right)
for filament eruptions (top) and flares (bottom).
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