THE ASTROPHYSICAL JOURNAL, 656:1173—1186, 2007 February 20
© 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

PHOTOSPHERIC MAGNETIC FIELD PROPERTIES OF FLARING VERSUS FLARE-QUIET
ACTIVE REGIONS. IV. A STATISTICALLY SIGNIFICANT SAMPLE

K. D. LEka anD G. BARNES
Colorado Research Associates Division, NorthWest Research Associates, Inc., Boulder, CO;
leka@cora.nwra.com, graham@cora.nwra.com
Received 2006 July 21; accepted 2006 October 16

ABSTRACT

Statistical tests based on linear discriminant analysis are applied to numerous photospheric magnetic parameters,
continuing toward the goal of identifying properties important for the production of solar flares. For this study, the
vector field data are University of Hawai‘i Imaging Vector Magnetograph daily magnetograms obtained between 2001
and 2004. Over 1200 separate magnetograms of 496 numbered active regions comprise the data set. At the soft X-ray
C1.0 level, 359 magnetograms are considered “flare productive” in the 24 hr postobservation. Considering multiple
photospheric variables simultaneously indicates that combinations of only a few familiar variables encompass the
majority of the predictive power available. However, the choice of which few variables is not unique, due to strong
correlations among photospheric quantities such as total magnetic flux and total vertical current, two of the most
powerful predictors. The best discriminant functions result from combining one of these with additional uncorrelated
variables, such as measures of the magnetic shear, and successfully classify over 80% of the regions. By comparison,
a success rate of approximately 70% is achieved by simply classifying all regions as “flare quiet.”” Redefining “flare-
productive” at the M 1.0 level, parameterizations of excess photospheric magnetic energy outperform other variables.
However, the uniform flare-quiet classification rate is approximately 90%, while incorporating photospheric mag-
netic field information results in at most a 93% success rate. Using nonparametric discriminant analysis, we dem-
onstrate that the results are quite robust. Thus, we conclude that the state of the photospheric magnetic field at any

given time has limited bearing on whether that region will be flare productive.

Subject headings: methods: statistical — Sun: activity — Sun: flares — Sun: magnetic fields —

Sun: photosphere

1. INTRODUCTION

What constitutes the difference between those solar active re-
gions that produce energetic events and those that do not? The
answer no doubt lies in the state and ongoing evolution of the
magnetic field both in the immediate area of the active region and
in the context of the nearby and overlying magnetic structure.

The search for distinguishing characteristics of a flare-productive
active region has a long history. With several solar activity cycles
providing consistent, modern data, a number of studies have in-
vestigated the statistical relation between active-region magnetic
morphologies and flare productivity. Numerous different analysis
methods have been considered, relying upon continuum light im-
ages, line-of-sight magnetic field maps, coronal morphology, or
even helioseismology data. Highlights include investigations of
flare productivity with magnetic “class” designation (Mclntosh
1990; Bornmann & Shaw 1994), which is still the primary basis of
most flare forecasting methods even when other information is con-
sidered, such as coronal morphology and line-of-sight magnetic
morphology (NOAA/Space Environment Center [NOAA/SEC],
and see Gallagher et al. 2002). Indeed, flare persistence can sta-
tistically provide a flare forecast of similar quality to that cur-
rently provided by NOAA/SEC, with no additional information
concerning the details of visible active regions (Wheatland 2004,
2005). Still, new analysis of an old problem can be advantageous.
Very recently, the flare productivity of active regions was com-
pared to the power spectrum of magnetic features (Abramenko
2005), which indicated that the power-law index of a young active
region may predict its later flare productivity. A fractal analysis
of active regions (McAteer et al. 2005), also using line-of-sight
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magnetic field images, showed that there exist thresholds of frac-
tal index below which active regions simply do not produce flares
ofa certain size. From helioseismology, a link has been shown be-
tween the subsurface flow patterns beneath active regions and
flare productivity (Komm et al. 2005). In some recent studies,
the “events” considered were coronal mass ejections rather than
flares (Canfield et al. 1999; Falconer et al. 2003, 2006). While the
two phenomena may differ in the details of energetic output and
geo-effectiveness, we stress that the critical aspect is that these
cited studies were carefully crafted to test the null hypothesis;
that is, ““control” data are included against which a correlation
or trend can be tested.

In three papers of this present series, the question of identi-
fying a flare-imminent solar active region has been approached
in various ways. In Leka & Barnes (2003 a, hereafter Paper ), time
series of photospheric vector magnetic field data were introduced,
and numerous parameters were derived from the spatial maps of
the photospheric magnetic vector. A visual comparison of tem-
poral variations in these parameters was performed for preflare
and quiet times. While some parameters were observed to change
uniquely during the preflare observations, the vast majority had
no unique preflare signature easily discernible by eye. In Leka &
Barnes (2003Db, hereafter Paper II), a statistical approach based on
discriminant analysis (DA) was introduced and applied to time
series of photospheric vector magnetic field data for seven active
regions comprising 10 “flaring” and 14 “flare-quiet” epochs. The
results of this analysis included a demonstration that there ex-
ists no single parameter that reliably separated the samples of
the two populations (i.e., “predicted” the upcoming flare without
numerous false alarms), although examples were available of
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perfect discrimination between the samples when multiple pa-
rameters were considered simultaneously. Still, the problem of
small-number statistics loomed. Recently, in Barnes & Leka
(2006, hereafter Paper III), we investigated whether informa-
tion concerning the coronal topology, obtained from the ap-
plication of a magnetic charge topology model (Barnes et al.
2005), could provide better discrimination when applied to the
same samples (same photospheric time series) of the two pop-
ulations. With the acknowledgment that small-number samples
can still introduce statistical anomalies, it was shown that nu-
merous parameters derived to describe the coronal topology and
its temporal variation performed significantly better than param-
eters derived solely from the photospheric magnetic field.

In this, the fourth paper of the series, yet another approach is
taken. The analysis focuses once again on parameters directly
describing the maps of the photospheric magnetic vector; how-
ever, this time a different and much larger data set is tested. The
focus shifts away from temporal variations that occur a short
time prior to a solar flare and toward the analysis of daily samples
of the two populations. By choosing to neglect temporal infor-
mation, the available sample size is now increased to where some
new statistical approaches are employed that were inappropriate
for the smaller sample sizes considered in the previous papers.

2. DATA

The Imaging Vector Magnetograph (IVM) at the University
of Hawai‘i Mees Solar Observatory produces photospheric vec-
tor magnetic field maps with good spatial resolution and a field of
view that routinely covers entire solar active regions. The general
description of the instrument and data have been covered elsewhere
(Mickey et al. 1996; LaBonte et al. 1999; LaBonte 2004; Leka &
Barnes 2003a); thus, we focus here on the differing aspects of the
present data set.

In its normal observing mode, the [IVM rapidly repeats the data
acquisition sequence on an active region selected by the observer
with guidance from recent activity, NOAA/SEC activity forecasts,
and external information such as the Max Millennium report; such
time sequences characterized the data used in Papers [-III. Prior
to this targeted “movie mode,” however, the [IVM obtains data in
“survey” mode, acquiring the spectro-polarimetric data for sin-
gle magnetograms of each active region on the visible solar disk.
These survey data are subjected to a “quick-look” data reduction
and inversion' and are saved locally. The quick-look data reduc-
tion is expected to show systematic effects due to the nature of
the data reduction, such as saturation of the field strengths in
sunspot umbrae and possibly a slight deflection of the azimuthal
angle near umbral-penumbral boundaries, since magneto-optical
effects are not accounted for. However, no such issue arising from
the data reduction should preferentially affect one population over
the other. As they are acquired in the morning, the seeing is gen-
erally good, and as temporal variations are not considered, the see-
ing of each individual magnetogram is not otherwise accounted
for in the uncertainties. To demonstrate that these data were worthy
of analysis, comparisons were made between quick-look and full
reduction data for a handful of active regions, and this compari-
son is discussed in Appendix A.

The image-plane data were sampled with 1.1 arcsec? pixels
and were automatically trimmed to a 192 x 192 pixel size to
remove possible edge effects. The 180° ambiguity was resolved
with two iterations of the University of Hawai‘i approach, which
minimizes the vertical current and the divergence of the mag-

' Images are available at http://www.solar.ifa.hawaii.edu/TVM /archive.html.

netic field (Canfield et al. 1993; Metcalf et al. 2006): the first
resolution is based on a linear force-free field constructed using
the image-plane data and the force-free parameter o determined
using the apes; approach (Leka & Skumanich 1999), followed
by a second iteration performed after redetermining « using the
new heliographic results.

The survey data covering 20012004 initially included almost
4000 magnetograms. This time period was chosen with attention
to providing a sufficient number of magnetograms during a time
when the IVM instrument and quick-look data reduction did not
change. For the analysis here, the data were further selected to
only include single active regions within the trimmed field of
view and to be free of visible defects (gross instrumental offsets
or fringes in the magnetic field maps). Within a trimmed magne-
togram, it was required that at least 64 data points exist for which
both the line-of-sight field B; and the transverse field B; were
greater than the 2 o level; the general noise level for each com-
ponent in each magnetogram is determined by integrating the
histogram of field strengths in bright, quiet-Sun regions to 68%
of the area under the curve. Magnetograms with the solar limb in
the field of view were not included; generally, the minimum ob-
serving angle for the center of the field of view was u = cos 6 =~
0.5. As an additional precaution, however, a mask was im-
plemented to zero out any pixels limbward of ;1 = cos 6 < 0.25;
it was only invoked for a few magnetograms. All numbered
active regions for which data were acquired when the IVM was
observing were otherwise included: no further selection for size,
bipolar nature, complexity, or flaring history was imposed. The
final tally is 1212 magnetograms of 496 different active regions
on 430 days.

The flare events were determined using the event logs for the
Geostationary Operational Environmental Satellite (GOES')
available through the National Geophysical Data Center.” All GOES
soft X-ray events with a peak flux above 1.0 x 107° W m~? (that
is, a C flare or greater) that were also active region identified were
tabulated for the 24 hr period after the acquisition of the region’s
magnetogram in the database. No region-associated Ha or ra-
dio-burst flares were included if they did not also register as a
GOES event. There are no further distinctions here concerning
the character of the flare.

For the results presented here, a region was classified as “flar-
ing” in a Boolean manner if it produced at least one soft X-ray
event of class 7 or greater in the 24 hr postmagnetogram and “flare-
quiet” otherwise. For the majority of the results presented here,
T = C1.0, with a short discussion in § 4.3 where 7 = M1.0.
This fairly low threshold was chosen to balance statistical re-
quirements with background X-ray contamination levels. There
were indeed days when the background level was higher than
C1.0, and as such there are undoubtedly flare-quiet regions that
were misclassified as such, because they produced only a single
small event that failed to register on the GOES list. However,
there are numerous examples of GOES events in our database
that have a peak soft X-ray flux below the calculated background
level; the apparent contradiction is simply based on the details of
how the daily background level is calculated. Thus, we argue
that the number of misclassifications due to the GOES back-
ground level should be small. That is, while arguments can be
made against the need to forecast small flares, we take the view
that a small event is indicative of the same physics as prevails in
larger events. With this definition, the database contains 359
magnetograms of flaring regions (29.6% of the total), with 111 of
those having produced at least one M flare or greater (9.2%), and

2 See hitp://www.ngdc.noaa.gov.



TABLE 1
PARAMETERS USED IN THE DISCRIMINANT ANALYSIS

Description Formula Variable
Atmospheric Seeing

Median of the granulation CONrast ............ccecvevereeireieinieerieeeeieeeeanns s = median(AI) N
Distribution of Magnetic Fields

Moments of vertical magnetic field..........cccoveennrniiennncireecee B.=B-e, M(B;)

Total unSigned fUX .......oovviviveieieieieieieieeee e Do = >|B.|dA Dot

Absolute value of the Net flUX........coceuevrieeiriciririeierceeereeee e [®et] = > B-dA| | P et

Moments of horizontal magnetic field ............ccccevveecinnciccnnccccnne By = <Bf + 35)1/2 M(Bp)
Distribution of Inclination Angle

Moments of inclination angle............oeeeeverireieenrieceninneeeereecereeas v = tan~'(B./B),) M(v)

Distribution of the Magnitude of the Horizontal Gradients of the Magnetic Fields

Moments of total field gradients .............cccoeeeericeerrincereneereeeeeeeees [VB|=[(0B/8x)* + (8B/0y)*] 1 \ M(|V,B|)

Moments of vertical field gradients.............cceeeueueeeninnininicceeeeenes |ViB:|= [(GBZ /0x)? + (0B./ 8y)2] M(|VB:))

Moments of horizontal field gradients .............ccoceuererreurecincnriercnrenniens [V,.By| =[(8B),/Ox)? + (0B1/y)*]" M(ViBa))

Distribution of Vertical Current Density

Moments of vertical current density ............coceeveeieiereierisieseeresieieennnes J. = C(OB,/0x — OBy /dy) M)

Total unsigned vertical CUITENL ...........ccoveiiuiurureeieieieieieeieiee e Lot =Y |Jz| dA Lot

Absolute value of the net vertical current.................. [lhet] = |3 J- dA| [Znet|

Sum of absolute value of net currents in each polarity. [78,] = |32 J-(B: > 0)dA| + |3 J(B. < 0)dA| |I72,|

Moments of vertical heterogeneity current density?.. JI = C(b, 0B, /0y — b,0B,/0x) MUY

Total unsigned vertical heterogeneity current............ Ik ="\ dA It

Absolute value of net vertical heterogeneity current...........cccoovvvvinnnnnes 78| = |3 st dA| |7,
Distribution of Twist Parameter

Moments of twist parameter®................ccooooovviooeeeeeeoeeeeeeeeeeeeeseeeeeeeeeen a = CJ./B, M(a)

Best-fit force-free twist parameterb ........................................................... B =asVxB o]
Distribution of Current Helicity

Moments of current helicity © ........ocoviririieeieieieieieeeee s he = CB.(0OB,/0x — OB, /0y) M(h,)

Total unsigned current helicity ..... H =%"|h|dA H*

Absolute value of net current heliCity ..........cocevrnirnicirnierneenecienenees |H2e| = 3 he dA| et

Distribution of Shear Angles

Moments of 3D shear angle? ............ccoo..ooerrveereeeneeeeeeeeeeeseeeeserees e, U = cos™'(B” - B°/BPB°) M(T)

Area with shear >Wg, o = 45, 80°.....crivriirirrrirceerrieeeeeeeieeeneneee AW > Wo) =3y g, d4 A(T > 45°%), A(¥ > 80°)

Moments of neutral line shear angle.............coc.ecueeueereereeereereeencuecnnenns Uy = cos™!(BY, + B, /BR B M(UnL)

Length of neutral line with shear >W........ccocooeiiurinnnnniceecens L(WnL > Wo) = Dy, su, 9L L(¥np > 45°%), L(InL > 80°)

Moments of horizontal shear angle®.............coceevrureurieinienienieersinereens ¢ = cos~ (B} - By/B}BY) M)

Area with horizontal Shear >0 ......cccovriuiriieiecieees AW > o) =Dy y, 44 A(p > 45°), A(xp > 80°)

Distribution of Photospheric Excess Magnetic Energy Density

Moments of photospheric excess magnetic energy density“................... pe = (B” — B°)/87
Total photospheric excess Magnetic ENErgY ...........oeeererererueverereruerererunens E, =Y p.dA

M(p.)
E,

Notes.—The M(x) denotes taking the first four moments of the distribution of the variable x: the mean X, the standard deviation o(x), the skew ¢(x), and the kurtosis

K(x). The C indicates physical constants that are included in the calculation but not listed here for clarity.
4 Zhang (2001).
® Leka & Skumanich (1999).
¢ Abramenko et al. (1996); Bao et al. (1999).
4 Wang et al. (1996).
¢ Hagyard et al. (1984), although By, is used here, rather than B .
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20 having produced at least one X flare (1.7%); no flares of at
least C class were recorded for the remaining 853 magnetograms
(70.4% of the total).

From each photospheric vector magnetic field map, most of
the same parameters discussed in Papers I and Il were constructed.
There are essentially eight categories of variables, each evaluated
over the field of view and describing the distribution of:

1. the magnetic fields B, and By,

2. the inclination angle v = tan~'(B./B},),

3. the horizontal gradients of the magnetic fields |V,B|,
|V,B.|, and [V;,B;],

4. the vertical current density J. ~ 0B,/0x — 0B,/0y,

5. the twist parameter o ~ J./B,

6. part of the current helicity density 4. ~ J.B.,

7. the shear angle ¥ = cos™!(B” « B°/B?B°),

8. the photospheric excess magnetic energy density p, =
(B” — B°)*/8.

These are supplemented by a measure of the atmospheric seeing,
which is included as a control variable that should have no pre-
dictive power. See Table 1 for a summary of the variables, and
Paper I for detailed descriptions. For the present analysis, all var-
iables were computed on a uniform image-plane grid, primarily
due to issues of handling the large arrays that result from trans-
forming off-disk-center data to the heliographic grid. Spatial de-
rivatives were computed using heliographic coordinates, however,
and the linear and areal dimensions of each pixel were computed
so that all variables in fact result in physically relevant helio-
graphic quantities.

For the sake of objectivity and considering the size of the
database, it is essential to characterize the distributions of these
variables in a completely autonomous manner. Thus, following
Papers [-111, the distribution of a variable x is parameterized by
its first four moments: mean ¥, standard deviation o(x), skew
(x), and kurtosis x(x) (Leka & Barnes 2003a, 2003b; Barnes &
Leka 2006). The mean and standard deviation are familiar to most
readers, giving the typical value of the distribution and the spread
about that typical value. The skew describes the asymmetry of
the distribution, indicating the presence of a one-sided tail. The
kurtosis is normalized to zero for a Gaussian distribution, and
deviations from zero indicate whether the distribution has long
or short tails in comparison to a Gaussian distribution. The skew
and kurtosis are sensitive to small patches of extreme values. Thus,
for example, a highly twisted §-spot in an otherwise potential
region should appear as a significant nonzero skew in the dis-
tribution of «v. In some cases, the moments are supplemented by
the total and/or net value of the variable; when considering the
distribution of the magnetic shear angle, we also consider the total
area of strong shear and the length of strongly sheared neutral
lines, as originally proposed by Hagyard et al. (1990) and in-
corporated into more recent studies (e.g., Falconer et al. 2006).

Because the variables are computed on a uniform grid in
image coordinates, each moment is weighted by the pixel area, ex-
cept the neutral line shear angle, which is weighted by a typical
linear dimension for each pixel. To understand why this weighting
is used, consider the weighted mean value of the vertical field,

3 — Y B.(AArea) Dy
* S (AArea)  Area’

(1)

where A Area is the area of a pixel. By weighting the vertical
field by the area of a pixel, the first moment (the mean) represents
the net flux divided by the total area, rather than being affected by
variations in pixel area at different observing angles. This ap-

Vol. 656

proach is equivalent to interpolating the observations to a regular
grid in heliographic coordinates before taking the (unweighted)
mean, as was done in Papers I and II. Unlike in Papers I and II,
we do not consider changes in the parameters leading up to a
flare, as only a single magnetogram characterizes each 24 hr pe-
riod. Thus, the parameters described here are equivalent to the
temporal means used in Papers I and II.

3. DISCRIMINANT ANALYSIS

To determine which properties of an active region are im-
portant for the occurrence of a flare, we use the same statistical
approach as in previous papers of this series: discriminant anal-
ysis (e.g., Kendall et al. 1983; Anderson 1984). The basic goal of
discriminant analysis is to classify a new measurement as belong-
ing to one of two mutually exclusive groups, in this case flaring or
flare quiet. This approach has the advantage of being able to
simultaneously consider multiple parameters, so that if several
conditions must be met before a flare can occur, discriminant
analysis will be able to determine this.

Parameter space is divided into two regions such that mea-
surements from a new magnetogram that fall in one region are
predicted to flare, while measurements that fall in the other are
predicted to be flare quiet. The boundary between the two is de-
fined by where the discriminant function vanishes, and is con-
structed so as to maximize the overall rate of correct predictions.
Assuming that the variables’ distributions for both populations
are Gaussian with equal covariance matrices, the discriminant func-
tion is linear in all the variables, and the boundary is a hyperplane,
which is simply a line in two dimensions. Unlike in Paper I, it is
assumed here that the a priori probability of membership in each
population is proportional to the sample size. This results in a
discriminant boundary that does not necessarily pass through the
midpoint between the means of the samples, as had been the case
in Paper I1.

Discriminant analysis as implemented here minimizes the over-
all rate of misclassification. Particularly when the a priori proba-
bilities of membership in the two populations are significantly
different from 0.5, as is the case here, this can lead to a situation
that favors errors of one type (the off-diagonal element in a clas-
sification table) over the other: for example, many more flaring
data points can be predicted to be flare-quiet than flare-quiet data
are predicted to flare. In comparison, the success rate quoted in
Falconer et al. (2003, 2006) for a +2 day window assumes that
there are equal errors of both types; that approach does not
necessarily lead to the lowest overall error rate.

The performance of the discriminant function is typically judged
by estimating the error rate, that is, the fraction of measurements
that are incorrectly classified by the discriminant function. The
standard and most straightforward way to estimate the error rate
for a discriminant function is by way of a classification table in
which the discriminant function is used to make a prediction
about each of the data points used to construct it, and the pre-
diction is then compared to what actually occurred. Unfortunately,
this approach is biased (Hills 1966), simply because it judges
the performance of the discriminant function based on the same
data set used to construct it.

An unbiased estimate of the error can be obtained from the
n — 1 error rate (Hills 1966; Leka & Barnes 2003b), in which
one data point is excluded and the discriminant function is con-
structed from the remaining n — 1 data points. The discriminant
function is then used to classify the excluded point, and the
procedure is repeated for all n points. While this approach pro-
vides an unbiased estimate, it involves evaluating » discriminant
functions to obtain one error rate, and with our sample size of
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TABLE 2
10 BEST-PERFORMING SINGLE-VARIABLE LINEAR DISCRIMINANT ANALYSIS RESULTS

MAHALANOBIS DISTANCE CLASSIFICATION TABLE ERROR RATE n — 1 ERROR RATE

Variable Dy Variable Rate Variable Rate
1.3132 0.2277 0.2277
1.0974 0.2318 0.2335
1.0499 0.2351 0.2351
0.9713 0.2384 0.2384
0.8958 0.2393 0.2393
0.7684 0.2516 0.2516
0.7435 0.2516 0.2516
0.7235 0.2550 0.2550
0.7089 0.2566 0.2566
0.6968 0.2607 0.2607

n = 1212, this rapidly becomes prohibitively slow. In practice,
with the large sample sizes presented here, the bias introduced by
using the classification table error rate is relatively small, but the
n — 1 error rate is also computed for key examples to ensure
there are no large differences.

For most of the results presented here, it is assumed that the
populations have Gaussian distributions with equal covariance
matrices. This assumption is clearly not valid for all variables:
for example, the total magnetic flux is a positive definite quantity,
and so cannot have a truly Gaussian distribution. However, the
error rates that result from this assumption can be considered lower
bounds on the information content of the variables, as knowledge
of the true distributions would lead to a better discriminant. This
possibility is discussed in Appendix B in the context of first re-
laxing the assumption of equal covariance matrices and second
in the context of nonparametric statistics. The results are surpris-
ingly robust to the assumption of Gaussian distributions with
equal covariance matrices.

The error rate of the discriminant function is an indication of
the degree to which the two populations (flaring vs. flare quiet)
overlap. However, with a very wide disparity between the sample
sizes of the two populations, it is easy to construct hypothetical
examples in which the probability density of one population falls
wholly below the other, even though there is physically and sta-
tistically a significant difference between the two populations. In
this case, it may be more meaningful to consider the Mahalanobis
distance, which is a standardized measure of the distance between
the sample means (Kendall et al. 1983). Combined with the num-
ber of degrees of freedom, the Mahalanobis distance can be com-
pared to Hotelling’s 72 distribution to determine the probability
that the null hypothesis can be rejected (Kendall et al. 1983),
the null hypothesis being that the flaring and flare-quiet samples
come from the same population (see also the Appendix in Leka
& Barnes 2003b). From the point of view of understanding and
modeling solar flares, it would be extremely interesting to identify
variables that clearly discriminate between flare-imminent and
flare-quiet states, so the focus here is on error rate estimates. The
use of the Mahalanobis distance becomes most appropriate when
we consider larger flares (§ 4.3).

Before proceeding, however, it is shown in Table 2 that the
single-variable rankings are relatively insensitive to which mea-
sure is used to judge their performance: the Mahalanobis dis-
tance, the classification table error rate, or the n — 1 error rate.
The top two single variables, @ and /iy, are ranked the same by
all three measures, and most of the same variables appear in the
top 10, although in slightly different order. The n — 1 rate is the
same as the classification table rate for all but one of the variables,

indicating that the bias described earlier is small. It is worth noting
that for the one exception, the n — 1 error rate is larger than the
classification table error rate, as the latter does tend to underesti-
mate the true error rate. Given the consistency of these results, and
particularly the small differences between the two error rate cal-
culations for these data, the classification table approach is used
hereafter to determine the best combinations of more than one
variable. Additionally, for ease of comparison with other studies,
the success rate (defined as 1.0—the classification table error rate)
will henceforth be used and quoted as a percentage.

4. THE BEST VARIABLES AND THE BEST
VARIABLE COMBINATIONS

Of particular interest for understanding the process that trig-
gers solar flares is knowing what, if any, distinct configuration
the photospheric magnetic field must assume for a flare to occur.
Discriminant analysis can shed some light on this by determin-
ing the variables with the greatest ability to distinguish between
a flare-producing and flare-quiet field. Further, it can determine
the combinations of variables that are best able to identify a flare-
productive magnetic field. However, there are a number of ways
of selecting those variables, some impractical from a computa-
tional point of view. In this section, the optimal number of var-
iables is determined first, then the best variables are presented.

4.1. How Many Variables Are Needed?

Perhaps the simplest approach for determining the best vari-
ables is to construct a single discriminant function of all the var-
iables under consideration. When the variables are in standardized
form, the magnitude of each variable’s coefficient in the dis-
criminant function gives its relative predictive power, provided
the variables are not correlated (e.g., Klecka 1980). If some of the
variables are correlated then the predictive power of correlated
variables will be shared. The magnitude of the coefficient may
not be particularly large for a variable with quite a large predic-
tive capability because of the masking by a variable with which it
is strongly correlated. Thus, any variable with a large coefficient
is expected to have a relatively large amount of predictive power,
but a small coeflicient does not necessarily mean that a variable is
without predictive power. Thus, considering the magnitudes of
the standardized coefficients will yield at least some of the var-
iables with the greatest predictive power, but it is not the best
approach for strongly correlated variables.

Table 3 lists the best-performing variables based on their co-
efficients in an all-variable discriminant function. Several vari-
ables are also included that appear to perform less well but are
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TABLE 3
ALL-VARIABLE DiScRIMINANT FUNCTION COEFFICIENTS

Rank Variable Coefficient
Do 1.385
Lot 1.232
4 —1.230
E, —1.016
|V,,B.| 0.848
o(|VB:|) 0.730
G(q’NL) 0.402
LUy > 45°) 0.315
H 0.257
a(pe) 0.174

of interest elsewhere. Figure 1 shows the magnitudes of all the
coefficients; note from both the table and the figure that the mag-
nitude of the coefficients drops off quite rapidly for the first seven
variables and continues to decrease significantly for about an-
other four variables. This indicates that larger combinations of
variables are unlikely to greatly increase the performance of the
discriminant function. The all-variable discriminant function has
a success rate of 81.02%.

Another way to deal with issues surrounding correlated var-
iables is to consider the discriminant functions of all permuta-
tions of a given number of variables. This is the most complete
approach, but it suffers from serious computational drawbacks
for the sample size and number of variables considered here. To
determine the best m-variable combination out of a total of #,
variables requires evaluating n,!/(n, — m)! permutations; for this
investigation n, = 74, so determining the best five-variable com-
bination requires evaluating more than 10° discriminant func-
tions. Thus, this approach is employed only for combinations of
five or fewer variables. The results for discriminant functions of
different numbers of variables are shown in Table 4. Most of the
predictive power available in these data are realized by considering
small numbers of variables. The best three-variable discriminant
function has a 80.28% success rate, only 0.74% lower than the
all-variable discriminant function, which should have the best
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TABLE 4
BEST m-VARIABLE COMBINATIONS

Vol. 656

Variables Success Rate
Do 77.23
Dior, o(UnL) 79.37
Do, o(Unp), T 80.28
(I)tota J(lI}NL)a U(a)v U(’Y) 80.45
Dior, o(UNL), K(UNL), A > 45°), <(pe) 80.69
all 81.02

success rate. Thus, using combinations with more variables im-
proves the classification rate by less than a percent.

This is confirmed yet another way, a “step-up” procedure in
which a single m-variable combination, starting with the best-
performing single variable, is combined with each of the remain-
ing variables in turn, and the best-performing m + 1 variable
combination is retained (Klecka 1980). This approach is not
guaranteed to determine the best-performing m-variable combi-
nation, but it is quick, and it produces a combination that performs
very nearly as well as the best. In addition, the variable added
with each step is unlikely to be correlated with recently added
variables, since adding correlated variables will generally not
significantly improve the discrimination. The step-up approach
can be used to see how rapidly the predictive power changes with
increasing numbers of variables. Figure 1 shows the results of the
step-up procedure, specifically based on both the Mahalanobis
distance and the classification error rate. It is evident from the
figure that little independent information is gained after about
the first three variables.

4.2. What Are the Photospheric Characteristics
of a Flare-imminent Region?

All of the approaches considered indicate that a function of a
few variables contains the majority of the discriminating power
available. However, combining the two best-performing single
variables in Table 5, [ Dy, [0t ], leads to a discriminant function with
a success rate of only 77.64%, compared to the best two-variable
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Fic. 1.—Left: Magnitudes of the coefficients in an all-variable discriminant function. For uncorrelated, standardized variables, the magnitudes of the coefficients
indicate the relative predictive power of the variables. There is a rapid decrease in the magnitude of the coefficients for the first seven variables, and a further significant
decrease for roughly the next four variables, but after about the first 10 variables, the coefficients decrease slowly, indicating that a discriminant function containing more
variables will have little additional predictive capability. Right: Mahalanobis distance (diamonds), which indicates how likely the samples are from different populations,
and the rate of correct classification ( plus signs), based on the classification table. Both of these measures, resulting from the discriminant functions of m-variables (here m
is the “variable rank”), confirm the results of the standardized coefficients shown at left: significant improvements occur for the first few variables, but little improvement

occurs after about 10 variables.
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TABLE 5
RANKING OF VARIABLES’ PREDICTIVE POWER
ONE-VARIABLE DF Two-VariaBLE DF Four-VariaBrLE DF
Variable Success Rate Variable Frequency Variable Frequency
77.23 73 Do eererrererereereeeree e 62054
76.82 73 Lot eveneeneeeeieieieieeee e 52086
76.49 73 T s 39620
76.16 73 HE s 37809
76.07 73 (o023 29103
74.84 67 11510
74.84 48 11260
74.50 22 10841
74.34 18 10764
73.93 13 10628

combination of [®yy, o(Pnr)], with a 79.37% success rate. The
reason for this can be seen by considering the relationship be-
tween pairs of variables. Figure 2 shows the strong correlation
between P, and /iy compared to the lack of correlation between
Dot and o(Pyp ). Combining Py, and Iy, into a single discrim-
inant function provides little additional information compared to
a discriminant function of either variable alone, whereas includ-
ing the combination of either @ or I;o; and o(¥yr ) does improve
the performance, because o(Wy ) is not strongly correlated with
either @y or [y

Because of the issue of correlated variables, it is possible that
more than a few variables have significant predictive power. In-
deed, there are a number of strongly correlated variables that have
significant predictive power. To determine what parameters are
best able to distinguish a flare-producing photospheric magnetic
field, the approach described in Paper II is used: the discriminant
functions are evaluated for all permutations of m-variables, and
the best-performing variable combinations are retained (500 for
m = 2; 200,000 for m = 4). The number of best-performing
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discriminant functions in which a particular variable appears is
recorded and provides the basis for ranking that variable (Table 5).
The number of top-performing combinations retained is chosen
to sufficiently sample the available combinations. The one-variable
ranking is based on the classification success rate. The exact
order of the ranking is not maintained when varying m, but for
m < 5 many of the same variables show up as being the best
performing.

Of the top variables listed in Table 5, there are strong corre-
lations among the total flux @, the total vertical current /i, as
well as the total heterogeneity current It’(’)t, the total current he-
licity 4", and the total excess energy E.. Note that, in Table 3,
the coefficient of @, is much larger than the coefficient of H:"t
for the all-variable discriminant function. According to the rank-
ings in Table 5, the two parameters actually have similar predic-
tive power, a fact that is masked in the ranking by the all-variable
coefficients due to the high correlations between the two. In ad-
dition, the standard deviation of the neutral line shear o(¥yy) is
weakly correlated with a different group of variables. The best
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FiG. 2.—Examples of two-variable discriminant functions for the strongly correlated pair @ and /ot (left ) and the uncorrelated pair o and o(VUny ) (right). Nonflaring
regions (crosses) and flaring regions (diamonds) are shown with the largest flare in any 24 hr period (C, M, X) indicated by color (green, yellow, and red, respectively). The
mean of each sample is shown (blue circles) as is the discriminant function (blue line). There are a number of points with o(¥xn;) = 0.0 from regions where there are no
well-measured horizontal fields on the neutral line. The points with ®, ~ 1023 Mx are region NOAA AR 10486.
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Fi6. 3.—Comparison of linear discriminant functions for @ for a flare/flare-quiet threshold set at C1.0 (/eff) and M 1.0 (right). The histograms show the flaring (green)
and nonflaring (black) probability densities. The normal distribution fits to the data (dashed lines) and the means (dotted lines) are also shown. The point at which the two
density estimates are equal is shown with a blue line that corresponds to the location of the discriminant function. The sample sizes differ significantly, as expected, yet the
means are widely separated; the discriminant boundary lies out in the tails of the distributions, where the assumptions fail and the discriminant analysis performs poorly.

discriminant functions result from taking one variable from each of
the correlated groups, rather than simply combining the best in-
dividual variables. Therefore, the regions that are most likely to
be flare productive are those that are big (large total flux), which
necessarily implies a large total current, large current helicity, etc.,
and those that have a large range of shear angles along their neutral
lines, which typically implies other localized patches of strong shear.

These results are based on a linear discriminant. For most var-
iables, a quadratic discriminant shows a very slight improvement
over a linear discriminant, and a nonparametric discriminant shows
only a slightly larger improvement. For example, the success rate
for the total flux increases from 77.23% to 77.39%. For a few
variables, most notably E., the improvement is much greater, from
a linear discriminant success rate of 74.34% to a nonparametric
success rate of 78.71%, the highest of any single variable, but
still comparable to those variables with which it is correlated.
Similarly, L(¥np > 45°) shows a significant improvement and
is weakly correlated with o(W¥yr) and thus may also be a good
variable. For a detailed discussion of the nonparametric results,
see Appendix B.

Using a nonparametric estimate for the probability density re-
sults in a large improvement in the ability of a few variables to
discriminate between flaring and flare-quiet regions. However,
there is only a slight improvement in the best single-variable non-
parametric discriminant (as compared to the best single-variable
linear discriminant), and there is still only a modest improvement
in the highest success rate as compared with the prediction that
nothing will flare. Estimating the probability density using non-
parametric techniques requires extremely large sample sizes when
considering multiple variables simultaneously. Thus, we cannot
use the present sample to construct an all-variable nonparametric
discriminant function. Based on the results for one- and two-
variable discriminant functions, we believe that the improvements
over linear discriminants will not be large.

The best variables listed in Table 5 have very little overlap with
the best variables determined in Paper II. There are a number of

reasons for this. Over half the best variables in Paper II describe
the evolution of the photospheric magnetic field, which could
not be calculated here. The time interval in question has been ex-
tended to 24 hr after the observation, compared to approximately
1 hr epochs in Paper II. Finally, the sample size in Paper Il was
too small to be statistically significant, so the results there were
presented as a demonstration of the method. Thus, it is not sur-
prising that a different set of variables performs well in this study.

4.3. What Are the Photospheric Requirements
for Large Flares?

Heretofore, our approach has been to investigate what char-
acteristics are required to produce rapid reconnection events
(flares), regardless of the peak energy flux released (with the
caveat of the soft X-ray background level). It is common to focus
on what aspects of solar magnetic fields are required to specif-
ically produce large flares.

With the database presented here, it is now possible to com-
ment on the latter aspect using discriminant analysis by raising
the minimum threshold of what is classified as flaring from C1.0
to M1.0. Only 9.2% of our full data set (111 magnetograms) are
associated with the production of a flare event of size M1.0 or
greater within the 24 hr after the magnetogram acquisition. In
other words, a prediction that no region will ever produce a large
flare should have a success rate of 90.84%.

This much smaller sample size of regions producing large
flares implies that the a priori probability of belonging to the flar-
ing population is much smaller. In this case, the probability of
flaring is larger than that of being flare-quiet only far out in the
tail of the distribution (see Fig. 3). Unfortunately, the tail of the
distribution is where the Gaussian assumption is least appro-
priate. The tail of the distribution is also where the nonparametric
estimates are least helpful, because there are too few data points
to accurately reconstruct the true probability density function.
The best discriminant functions make very small improvements
to the success rate, with the best single variable, E,, having a
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TABLE 6
RANKING OF VARIABLES’ MAHALANOBIS DISTANCE FOR M FLARES
ONE-VARIABLE DF Two-VariaBLE DF Four-VariaBLE DF
Variable Dy Variable Frequency Variable Frequency
3.415 73 62196
3.363 73 56452
3.299 73 49993
3.101 73 34144
2.700 73 18177
2.581 73 12220
2.466 64 12210
2.240 19 12085
1.997 12 11241
1.955 11 10602

92.08% success rate, and even the best five-variable combination
only achieving a 92.82% success rate.

With such small improvements in the success rates, can the
two populations be distinguished? Yes, if the population means
are well separated. Using the Mahalanobis distance rather than
the success rate enables us to determine the probability that the null
hypothesis (that the two samples come from the same population)
can be rejected. For the sample sizes present here, a Mahalanobis
distance greater than 0.4 gives a probability greater than
0.999999997; thus, hereafter solely the Mahalanobis distances
are quoted for clarity.

The best variables for distinguishing regions capable of large
flares, as determined by the probability of rejecting the null hy-
pothesis, are shown in Table 6. It is interesting that the best-
performing single variable is E,, or the total “excess’ magnetic
energy density, with a Mahalanobis distance of 3.415. The best
m-variable discriminant functions up to m = 5 all include £,,
and several other moments of the excess magnetic energy are
present in the top 10 that were not common for the C1.0 thresh-
old. This result implies in a fairly direct manner (rather than quite
indirectly, as in Falconer et al. 2006) that active regions with
substantial magnetic free energy are more likely to produce large
solar flares.

5. CONCLUSIONS

By applying discriminant analysis to a wide range of param-
eters characterizing a large sample of active regions, we have
determined the most common characteristics of a flare-imminent
active region’s photospheric magnetic field. The results indicate
that about a half-dozen properties are important in allowing an
active region to be flare productive. Many of these quantities are
strongly correlated; physically, large active regions as measured
by the total flux also tend to have large vertical currents, signif-
icant excess energy, and significant current helicity. Despite the
correlations, the top-performing variable for larger flares is the
total excess photospheric magnetic energy. Thus, it is not neces-
sary to measure all the correlated quantities in order to distinguish
which active regions will be flare producing. However, when
modeling active regions, it appears necessary to construct regions
that do present all of these (correlated) characteristics in order to
best represent the conditions typically found on the Sun.

Interestingly, most of the best variables here are totals of
various quantities over the entire region, complemented by mea-
sures of the shear, particularly along neutral lines. By including
the higher moments of the various distributions, we investigated
whether localized areas of, for example, strong vertical current
density are important for an active region to flare. The conclu-

sion appears to be that the global properties of the region have
more bearing on the flare productivity of the region, while lo-
calized variations are not uniquely flare related.

This is surprising, given the association between §-spots and
flaring (e.g., McIntosh 1990). Although merely the presence of a
o-configuration does not necessarily imply the presence of non-
potential field, we find indirect indications that the presence of
a 6-spot has a weak association with flaring. A §-spot contains
strong horizontal gradients in the magnetic field, and at least
one parameterization of field gradients is present in both Tables 3
and 5. A highly nonpotential 6-spot is likely to have a strongly
sheared neutral line, so the parameterizations of neutral line shear,
also present in Tables 3 and 5, may also be related to the presence
of a d-spot.

It may also be that the higher order moments are not being re-
covered well. Particularly for a distribution with a long tail, a large
number of points are needed to determine the skew and kurtosis.
Even though all the magnetograms considered here have at least
64 pixels with well-measured fields, this may be insufficient to
accurately represent localized areas of strong gradients and/or
highly nonpotential magnetic field. If the higher order moments
are well determined, their absence in the lists of well-performing
variables suggests that small patches, which differ from the active
region as a whole, do not play an important role in flare production.

It can be seen in Table 4 that even the best discriminant func-
tions do not greatly improve upon the success rate obtained from
predicting that nothing will ever flare. That is, over 70% of the
data are flare quiet at the C1.0 level, so even with no information
about the active region, a 70.38% success rate can still be at-
tained. In comparison, the best-performing discriminant func-
tions of three or more variables only improve the rate of correct
classification by about 10%. This is quite a modest improvement,
indicating that no variables make a strong distinction between
the two states. In part, this is because the majority of active re-
gions are flare quiet during any given 24 hr period, so even though
the means of the flaring and flare-quiet samples are quite distinct
for many parameters, there is still significant overlap between the
populations. The situation is even more extreme when the analysis
considers only flares of class M1.0 and larger: the almost 93%
success rate of the best discriminant function is only a few percent
better than that obtained using a default prediction that no large
flares will occur.

Our statistical results are similar to the success rates of Falconer
et al. (2006), notwithstanding that their “events” are coronal mass
ejections rather than flares, considering that the sample used for
that study contained 67% event-quiet regions. Their highest suc-
cess rates are ~75%, albeit for a much smaller sample, confirming
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that the state of the photospheric magnetic field at any particular
time does not have a strong influence on the occurrence of energetic
events. The approaches to analyzing the data are significantly dif-
ferent, but, as shown in Appendix B, even using nonparametric
techniques to estimate the probability density functions is likely
to make only small improvements.

Based on our earlier studies, it may be possible to better dis-
tinguish a flare-imminent active region by including either the
evolution of the photospheric field (Paper IT) or the coronal mag-
netic field (Paper IIT). The first of these is consistent with the
results of Schrijver et al. (2005), who found that the rate of flaring
is significantly higher for rapidly evolving active regions. Both
of these are supported by various models for the initiation of
energetic events, as some require particular coronal magnetic to-
pology (e.g., a coronal null point; Antiochos 1998; Antiochos et al.
1999) or evolution of the photospheric field (e.g., converging
flows at polarity inversion lines; Linker et al. 2001; Amari et al.
2003). It may be that including other approaches for characteriz-
ing the photospheric magnetic field, such as its fractal dimension
or power spectrum of the spatial scales present (Abramenko

Vol. 656

2005; McAteer et al. 2005), may significantly improve the
success rates. Indeed, simply using observations of the chromo-
spheric magnetic field, which is believed to be force free (Metcalf
etal. 2005), may improve the results. However, our results suggest
that the state of the photospheric magnetic field at any single time
has limited bearing on the occurrence of solar flares.
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from the University of Hawai‘i Mees Solar Observatory. We
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for the suggestion of using nonparametric techniques. We also
thank the referee for helpful suggestions and especially for point-
ing out our oversight of the Abramenko et al. (1996) paper. Funding
from the Air Force Office of Scientific Research is gratefully
acknowledged under contract F49620-03-C-0019. This project
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APPENDIX A
THE IVM QUICK-LOOK DATA

The present analysis represents the first use of the Imaging Vector Magnetograph (IVM) “survey” data in its quick-look form. The
quick-look data reduction differs from the “full” data reduction in that it uses a fairly rudimentary flat-fielding approach, takes no
account of scattered or parasitic light, and no correction is attempted for seeing variations that occur during the data acquisition.

The inversion from polarization spectra to a magnetic flux map in the image plane (B;, B;, ¢) is performed using a “wavelet analysis,”
with a transform on each Stokes (I, O, U, V) spectral profile used to locate the position and amplitude of the components (D. Mickey
2006, private communication). The Paul wavelet is used, since its real component is similar to (Q, U) profiles, and its imaginary part
matches the V-profile. The magnetic field values are obtained by multiplying the polarization parameters by a constant, as with “mag-
netograph” type inversions, and thus suffer from saturation at large fields; additionally, no accounting for magneto-optical effects is
included.

The argument made here is that whatever saturation or other errors are systematically present will be present for all regions whether
“flaring” or not. If umbral regions saturate and sunspots never achieve the strong fields expected, the estimate of (for example) total
magnetic flux will be systematically underestimated as will the spatial gradients of the field distribution. However, with the use of
moment analysis of the distributions of derived variables and the discriminant analysis to examine whether there are differences between
the two populations, the relevant question to ask is not whether a region had exactly 6 x 1032 Mx of magnetic flux, but rather whether the
data can distinguish between two regions that had 6 x 1032 Mx and 3 x 10°? Mx, respectively. The answer to the latter is “yes” to within
standard uncertainties, since all data are being treated in the same manner.

We show a comparison between a particular quick-look magnetogram and a full reduction of the same raw data exactly following that
used to prepare the time series data for Papers [-II1. The region is NOAA AR 09026, a medium-sized active region observed near disk
center on 2000 June 05 at 16:30 UT. Figure 4 shows scatter plots for the two different reductions. The data shown are all 2 ¢ or above,
both from plage (grey) and sunspots (black). The expected saturation is evident (the field strengths from the quick look never achieve that
from the full data reduction), the transverse field strength has significant scatter, and there can be significant azimuthal angle differences
between the two. This example is fairly clear and typical of the differences found, although of course wide variations do exist. The
differences in azimuthal angle are perhaps the most critical, and we point out that in sunspot regions, the vast majority of the points
have a difference of less than 20°, or within roughly 2 ¢ of the normal azimuthal uncertainty.

While any one point in any particular quick-look magnetogram is undoubtedly disputable, we present here a quantitative com-
parison of the robustness of these data for use in a statistical analysis of solar active regions. We acknowledge that (for example) the
possible prevalence of magneto-optical effects may contribute to the correlation between total magnetic flux and (for example) total
vertical current. We look forward to a similar-sized database of fully reduced vector magnetograms from future programs and space
missions.

APPENDIX B
PROBABILITY DENSITY FUNCTIONS AND THE POSSIBLE ADVANTAGES OF NONPARAMETRIC APPROACHES

To this point in the analysis, the distributions of all the parameters have been assumed to be normal (Gaussian), and the covariance
matrices of the two populations have been assumed equal. Clearly, these assumptions cannot be correct for all the parameters con-
sidered, although in some cases, they may be a reasonable approximation. With the small samples considered in Papers II and 111, it was
unreasonable to consider other approximations for the probability distribution functions. However, with the present sample size, two
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Fi6. 4—Comparison of quick-look and full data reduction for NOAA AR 09026 2000 June 05 obtained at 16:30 UT. Lefi: Longitudinal magnetic field; middle: field
strength transverse to the line of sight; right: angular difference of the azimuthal angle between the two, modulo 90°. Points from sunspots (black) and plage area (grey) are
shown in all three plots, as is the x = y line for the field strengths (left and middle plots) and the means of the angular differences (vertical dashed lines, right plot) for both
sunspots (black) and plage areas (grey).

ways of relaxing the assumption of normal distributions with equal covariance matrices are investigated. First, the covariance matrix of
each population is estimated from its sample, independent of the other sample. Second, a very simple way of approximating the
probability distribution function from the sample using a nonparametric technique is considered. Each of these approaches can, for a
single-variable example, improve the performance of the discriminant analysis.

B1. UNEQUAL COVARIANCE MATRICES AND THE QUADRATIC DISCRIMINANT

Assume that each of the two samples (flare and nonflaring) comes from a population with a multivariate normal distribution of p
variables with mean p® and covariance matrix X%, Using the sample means ¥) and covariance matrices C%) to estimate the
population means and covariance matrices, the probability density functions are estimated as

O]

o e U /2)(xfi“>)C”)"(xfi“)). (B1)
™

fitx) =

Further assume that the a priori probability of membership in the populations is proportional to the sample size. The boundary be-
tween predicting a region to flare and predicting it to be flare quiet occurs when the probabilities of flaring and not flaring are equal, so

mfi(x) = nay fo(x),

n /|C(1)—1|e—(1/2)(x—fc('))C(')"(x—i'(l)):n2 /‘C(Z)—l|e—(1/2)(x—5c(2))C(2)"(x—i(z)). (B2)

Taking the logarithm of both sides leads to

21(1)—1
x(c(Z)*l _ C(l)*l)x _ 2()2-(2)C(2)*1 _ _i-(l)c(l)*l)x =y OcO-1x0 _ Oc@-15@ _ 1 n12|C : 71| ’ (B3)
n |C( ) |

which is quadratic in x, but for C") = C®, reduces to the linear expression given in Appendix A of Paper II plus the additional term
In (n1/n,), which comes from assuming the a priori probabilities are proportional to the sample sizes; in Paper 11, we assumed equal
a priori probabilities because of our selective sample.

Figure 5 shows the linear and quadratic discriminants for the total flux ®, plus the probability density estimate given by normal
distributions. Clearly neither probability density is truly normal, but the density for nonflaring regions appears more sharply peaked (at a
smaller value of @) in comparison to the flaring probability density, indicating clear differences in both the means and the covariance
matrices of the flaring and nonflaring populations. The linear discriminant is only able to capture the difference in the means, while the
quadratic discriminant is able to improve upon the linear discriminant by recovering the greater width of the flaring density but is still not
a particularly good representation of the true density.

In Table 7, the best linear and quadratic single-variable discriminant functions are compared based on the classification table error
rate. Generally, the quadratic discriminants show a slight improvement compared to the linear discriminants, with all of the same
variables being present in the top 10, in slightly different order. In most, but not all cases, the rate of correct classification for the quadratic
discriminant is larger than for the linear discriminant.

B2. NONPARAMETRIC ESTIMATES OF THE PROBABILITY DENSITY FUNCTION

If the probability density functions for the variable(s) under consideration were known exactly, the optimal discriminant func-
tion could be constructed by predicting a flare wherever the probability density for flaring regions exceeds the probability density for
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Fig. 5.—Comparison of linear and quadratic discriminant functions for the variable @y, for a C1.0 threshold, in the same format as Fig. 3. Lefi: Equal covariance
matrices (linear discriminant) fit is unable to capture the difference in width of the flaring and nonflaring distributions. Right: Unequal covariance matrices (quadratic
discriminant) fit has a larger spread for the flaring distribution, but is still not a particularly good fit to the true probability density.

flare-quiet regions, adjusted for the a priori probability of membership in each population. That is, predict a flare wherever nsf;(x) >
n, f»(x), where the probability of a measurement falling between x, and x; is given by

Plx, <x<xp)= /th(x) dx. (B4)

In previous sections, it was assumed that f took the form of a Gaussian distribution, and the parameters describing the Gaussian dis-
tribution were estimated from the data. However, the probability density can also be estimated without making any assumption about
its functional form as was done in the parametric approach using the Gaussian fit. The kernel method (e.g., Silverman 1986) for
estimating the probability density is demonstrated here as a simple and straightforward approach to density estimation.

In the kernel method, the probability density is estimated by summing over the contribution from each data point, weighted by a
given kernel function. Given the kernel K(¢) and measurements {x;, - - -, x, }, the probability density is estimated as

n 1 &
Jo =—3 K, (BS)
i=1

where ¢ = (x — x;)/h and / is a “smoothing parameter” that must also be selected based on the data. A large value of 4 will result in an
over-smoothed probability density, in which real structure may be hidden, while a small value of / will result in an under-smoothed
probability density, in which small-scale structure may be an artifact of the smoothing.

TABLE 7
10 BEST SINGLE-VARIABLE CLASSIFICATION TABLE DISCRIMINANT ANALYSIS RESULTS
LiNEAR DISCRIMINANT QUADRATIC DISCRIMINANT NONPARAMETRIC DISCRIMINANT

Variable Rate Variable Rate Variable Rate
0.7723 0.7772 0.7871

0.7682 0.7756 0.7814

0.7649 0.7706 0.7772

0.7616 0.7706 0.7756

0.7607 0.7673 0.7739

0.7484 0.7632 0.7673

0.7484 0.7607 ! 0.7649

0.7450 0.7566 L(TynL > 45°). 0.7607

. 0.7434 0.7500 L(Inp > 80°). 0.7599

L(UNL > 45%) e 0.7393 0.7442 \If‘et| ........................................ 0.7566
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Fic. 6.—Comparison of parametric and nonparametric discriminant functions for the variable @y, in the same format as Fig. 3. Lefi: Parametric representation using
Gaussian distributions whose parameters are determined from the sample data, and a nonparametric estimate of the probability density using histograms with optimal bin
size (see also Figs. 3 and 5). Right: Nonparametric representation of the probability density estimates using the Epanechnikov kernel. The discriminant boundary shown
(blue line) corresponds to the linear discriminant (Gaussian distributions; leff) and the nonparametric discriminant boundary (for the Epanechnikov kernel; right). Although
a different nonparametric discriminant boundary could be calculated from the histograms, the histograms are in fact only included for familiarity. For the Epanechnikov
kernel, the bump in the nonflaring density estimate at ®,,; = 4.5 x 10?> Mx followed by the dip at ®,,; ~ 6 x 10?2 Mx are likely examples of the under-smoothing of the
tails of the distributions, while the peaks are likely to be over smoothed.

The simplest and best-known nonparametric density estimate is a histogram, which is a convenient way of inspecting data, but it is
not the optimal way to estimate the probability density, even when the bin size is selected to optimize the smoothing, as was done here.
The most efficient kernel for univariate data is the Epanechnikov kernel (Silverman 1986):

i<1_ﬁ> 1 <5
Ke(t)=1 4V/5 5) ’ (B6)

0, otherwise.

This kernel is used for all the results presented here, with a smoothing parameter based on the optimum value for the Epanechnikov
kernel applied to a normal distribution:

hopt = 0'1’1_1/5, (B7)

where o is the population standard deviation.

The kernel method typically does not work well for distributions with long tails, as either the peak of the distribution will be over
smoothed in comparison with the tail, or the tail will be under smoothed in comparison with the peak. Such issues can be dealt with by,
for example, using an adaptive kernel method in which the amount of smoothing varies based on the local density estimate. Also, the
Epanechnikov kernel does not guarantee that the probability density vanishes for x < 0, as must be the case for some variables, such as
the total flux. This also can be addressed by, for example, using a kernel that is antisymmetric about 0, but this introduces other
difficulties, as the resulting density is no longer normalized to 1. Thus, the nonparametric approach is demonstrated here using only the
Epanechnikov kernel with constant /, while noting its limitations.

Figure 6 shows the estimated probability densities for the total flux. Note that neither of the density estimates goes to zero at $y,y = 0,
as should be the case for the reason described above, and that there is a distinct bump in the nonflaring density estimate at Oy, ~
4.5 x 10%2 Mx followed by a dip at ®,; ~ 6 x 10?2 Mx, which is likely due to under-smoothing of the tail of the distribution.

The error rate for a nonparametric discriminant function can be estimated in the same ways as are done for a parametric discriminant
function. The classification table is constructed by evaluating the density estimates at each sample data point, and the point is classified
as belonging to the group with the larger density estimate. For ®y, the result is a correct classification rate of 0.7739, which is a very
slight improvement over the linear discriminant. The n — 1 error rate is similarly constructed by estimating the probability density at
each data point while excluding the data point under consideration. The result is a correct rate of 0.7723. Table 7 lists the top 10 single
variable nonparametric discriminants. As in the quadratic discriminant case, most of the same variables appear as the best performers,
but in different order, and generally with slight improvements to the classification rate. Note, however, that a few variables, like E,, have
shown a dramatic improvement in comparison with the linear discriminant. These are variables whose distributions are far from
Gaussian; in the case of E,, squaring the field results in a distribution with a very long one-sided tail.
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