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ABSTRACT

The number of published approaches to solar flare forecasting using photospheric magnetic field observations
has proliferated recently, with widely varying claims about how well each works. As different analysis techniques
and data sets were used, it is essentially impossible to directly compare the results. A systematic comparison is
presented here using three parameters based on the published literature that characterize the photospheric magnetic
field itself, plus one that characterizes the coronal magnetic topology. Forecasts based on the statistical method
of discriminant analysis are made for each of these parameters, and their ability to predict major flares is quantified
using skill scores. Despite widely varying statements regarding their forecasting utility in the original studies
describing these four parameters, there is no clear distinction in their performance here, thus demonstrating the
importance of using standard verification statistics.

Subject headings: methods: statistical — Sun: flares — Sun: magnetic fields — Sun: photosphere

1. INTRODUCTION

Recently, several new parameters derived from observations
of the photospheric magnetic field have been proposed as useful
in determining the flare productivity of an active region (Geor-
goulis & Rust 2007; Schrijver 2007). It is claimed that one “is
an efficient flare-forecasting criterion” (Georgoulis & Rust
2007, hereafter GR07), while the other “can therefore be used
effectively for flare forecasting” (Schrijver 2007, hereafter
S07). In comparison, a recent study by Leka & Barnes (2007)
that included a large number of parameters characterizing the
photospheric magnetic field concluded that “the state of the
photospheric magnetic field at any given time has limited bear-
ing on whether that region will be flare productive.” In each
case, the qualitative statements are based on different ways of
assessing the performance of the parameter(s) that are derived
from different databases, in some cases using a different def-
inition of event. It is therefore not possible to make a quan-
titative comparison of these results from the literature.

To make such a comparison, we have computed parameters
based on those proposed by GR07 and S07 for the database of
vector magnetograms described in Leka & Barnes (2007) and
made forecasts using a statistical approach based on discriminant
analysis. With this consistent approach, we present here a careful
comparison of the performance of four illustrative parameters,
including two used in Leka & Barnes (2007). In addition to in-
tercomparing the success rates, skill scores were constructed from
the forecasts. A skill score gives a normalized measure of how
well a forecasting technique does in comparison to making uniform
(climatological) forecasts, for which no information about any
particular active region is needed. These validation statistics are
in common use in the meteorology community, have also been
used by Wheatland (2005) for an approach to flare forecasting
based on flare persistence, and are published by the National
Weather Service/Space Weather Prediction Center (SWPC, for-
merly NOAA/SEC) for their flare forecasts.1 Although care must
still be taken in interpreting the results, the use of validation sta-
tistics provides a quantitative way of comparing the performance
of approaches to flare forecasting that use different data sources.

The performance of the four representative parameters with
respect to major flare daily forecasting was found to be quite

1 See http://www.swpc.noaa.gov/forecast_verification/.

similar; indeed all four are moderately to strongly correlated with
each other (linear correlation coefficients ). At best0.78 ≤ r ≤ 0.93
there is modest improvement over making uniform (climatolog-
ical) forecasts. However, the modest improvements are comparable
to those of flare forecasting approaches based on completely dif-
ferent data sources. Thus, observations of the photospheric mag-
netic field appear to yield just as much information about whether
a solar flare is imminent as does past flaring history (e.g., Wheat-
land 2004) or white-light observations and associated climatology
(e.g., McIntosh 1990; Bornmann & Shaw 1994).

2. DATA AND EVENT DEFINITION

To test their performance for flare forecasting, parameters were
calculated for the magnetograms in the database described in Leka
& Barnes (2007). The database consists of 1212 single “quick
look” vector magnetograms taken by the Imaging Vector Mag-
netograph (IVM; Mickey et al. 1996; LaBonte et al. 1999) during
routine observations from 2001 to 2004. All numbered active
regions are included; the only selection criteria that were imposed
are that the center of the field of view not be farther from disk
center than , that at least 64 data points exist form p cos v p 0.5
which both the line-of-sight field and the transverse field were
greater than the level, and that the data are free of visible2 j
defects. Additional details can be found in Leka & Barnes (2007),
including a discussion in Appendix A of the limitations of the
quick-look data reduction; the data are available on the Web.2

A region is classified as producing a (major) flare if the event
logs for the Geostationary Operational Environmental Satellite
(GOES) available through the National Geophysical Data Center3

record at least one event with peak soft X-ray flux greater than
or equal to , corresponding to an M- or X-�5 �21.0 # 10 W m
class flare, in the 24 hr following the time of the magnetogram.
This definition matches that of S07, but differs from that given
in GR07, who considered events that occurred prior to, during,
and after the 12 hr interval over which magnetogram data were
averaged to construct their parameter. The goal here is a sys-
tematic comparison of flare forecasting parameters; thus we em-
ploy an event definition consistent with that goal. With this def-
inition of event, there are 111 flaring regions in the database.

2 See http://www.cora.nwra.com/∼ivm/IVM_SurveyData/.
3 See http://www.ngdc.noaa.gov.
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3. THE PARAMETERS

The parameters considered consist of the total unsigned mag-
netic flux, plus one each from Leka & Barnes (2007) and S07
characterizing the photospheric magnetic field, and one from GR07
characterizing the coronal connectivity. The total flux is given by

2F p d x FB F, (1)tot � z

where the integral is approximated by a sum over the field of
view. It is a simple measure of the size of an active region,
and is often viewed as a standard against which to compare
other forecasting parameters.

3.1. From Leka & Barnes (2003a)

One of the best performing parameters considered by Leka
& Barnes (2007) for predicting the occurrence of large flares
is the “total excess energy”

2 2E p d x (B � B ) , (2)e � p

where is the potential field, and the integral is again approximatedBp

by a sum over the field of view. This integral of the deviation from
the potential state is taken as a proxy for the magnetic free energy
(Leka & Barnes 2003a); thus one expects that major flares will only
come from regions with a large value of .Ee

3.2. From Schrijver (2007)

The next parameter considered here was proposed by S07,
and is a measure of the amount of magnetic flux close to high-
gradient polarity-separation lines. It was interpreted by S07 as
a proxy for the emergence of current-carrying flux. To compute
this parameter R, bitmaps of the magnetograms where the pos-
itive or negative flux density exceeds 150 Mx were dilated�2cm
with a kernel of pixels2. The high-gradient polarity-3 # 3
separation lines were defined to be the areas where the bitmaps
overlap. Then, the bitmap of the high-gradient polarity-sepa-
ration lines was convolved with a Gaussian to obtain a weight-
ing map. Finally, the unsigned flux close to these areas was
determined by multiplying the weighting map by the unsigned
line-of-sight field to obtain the parameter R.

This parameter was calculated by S07 for MDI magneto-
grams that have a pixel size of 2� # 2�. In order to approxi-
mately match this spatial scale, the IVM magnetograms used
here were spatially binned, resulting in 2.2� # 2.2� pixels.
Even though the vertical magnetic field is available for the
magnetograms used, the line-of-sight component was used to
compute the “flux” to match as closely as possible what was
done by S07. In addition, the convolution was done with a
Gaussian of width 10 (rebinned) pixels, not a physical distance,
to again match as closely as possible the calculations of S07.

3.3. From Georgoulis & Rust (2007)

The final parameter, as proposed by GR07, is based on a mag-
netic charge topology (MCT) model (Baum & Bratenahl 1980;
Gorbachev & Somov 1988; Lau 1993), in which the contribution
to the coronal magnetic field by each concentration of magnetic
flux at the photosphere is represented by the field of a magnetic

point source. This class of model has the advantage that the coronal
magnetic topology becomes particularly simple: with a few special
exceptions, each field line must start on a source of one polarity,
and end on a source of the opposite polarity. It is therefore straight-
forward to define a connectivity matrix whose elements, , com-wij

prise the magnetic flux connecting source i with source j.4 To
determine the point sources, each magnetogram was partitioned
following the algorithm used by GR07, first described in Barnes
et al. (2005) with a smoothing parameter Mm and ah p 0.5
saddle point parameter G.B p 100s

From the connectivity matrix and the locations of the sources,
, GR07 define the “effective connected magnetic field,”xi

1 wijB p , (3)�eff 22 Fx � x Fi(j i j

where is the position of source i. This quantity is extremelyxi

similar to the parameter

1 wij
f p (4)�tot 2 Fx � x Fi(j i j

previously considered by Barnes & Leka (2006). For the da-
tabase used here, the correlation coefficient between andBeff

is 0.97, and the forecasting ability of the two parametersftot

is extremely similar; thus it is hard to believe that the additional
factor of in plays any significant role. Thus, we�1Fx � x F Bi j eff

evaluate only whether our rendition of is a robust parameterBeff

for major flare forecasting.
One difference in our computation of is the method usedBeff

for determining the connectivity matrices. The connectivity ma-
trices computed herein were calculated by tracing field lines
and employing the Bayesian estimate described in Barnes et
al. (2005). For this analysis, the number of field lines was
chosen to give a detection threshold of . That2w p 15 G Mmc

is, typically 95% of domains with a flux will be found.w 1 wij c

GR07 determined a connectivity matrix by using simulated
annealing to minimize the function

N N� � ′ ′Fx �x F FF � F Fi j i jF p � , (5)�� ( )′ ′FxF � Fx F FF F � FF Fip1 jp1 i j i j

where is the flux of source i in flux “units” and are the′F N , Ni � �

number of positive and negative sources. The physical meaning
of the connectivity arrived at by this method is unclear, since the
function being minimized depends on the choice of origin of the
coordinate system. The resulting connectivity, in general, matches
neither the potential field connectivity nor the true coronal con-
nectivity. Since minimizing F selects for the shortest connections
available, the parameter constructed from this connectivityBeff

could perhaps be viewed as having a similar interpretation to the
parameter proposed by S07, measuring the amount of flux close
to polarity inversion lines, but in this case with a weighting de-
termined by the connectivity, rather than a Gaussian. Our field
line tracing code appears to be at least as fast as the simulated
annealing approach, recovers the potential field connectivity thus
giving it a physical meaning, and hence was used here.

4 We shall use the notation of Barnes et al. (2005) which differs from that
used by GR07, but the values of the resulting parameter do not change.
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Fig. 1.—Nonparametric density estimates for the flaring (green) and nonflaring (black) populations for (a) , (b) , (c) R, and (d) . The discriminant boundaryF E Btot e eff

(50% probability forecast) is shown as a vertical blue line, and the sample means are shown as black/green vertical dashed lines. All the parameters exhibit similar
behavior, with a tendency for regions with large parameter values to be more likely to produce an event, but no clear separation between the populations.

TABLE 1
Success Rates and Skill Scores for the Sample

Parameters

Parameter
Success

Rate
Heidke

Skill Score
Climatological

Skill Score

Climatology . . . . . . 0.908 0.000 0.000
Ftot . . . . . . . . . . . . . . . . 0.922 0.153 0.197
Ee . . . . . . . . . . . . . . . . . 0.916 0.081 0.231
R . . . . . . . . . . . . . . . . . . 0.922 0.144 0.242
Beff . . . . . . . . . . . . . . . . 0.913 0.072 0.220

4. RESULTS FROM DISCRIMINANT ANALYSIS
AND PROBABILITY FORECASTS

To compare the forecasting ability of the parameters, the results
of discriminant analysis (Kendall et al. 1983; Leka & Barnes 2003b,
2007) were used. In this approach, a nonparametric estimate of the
probability density is used to minimize the overall rate of misclas-
sifications by forecasting a region to flare whenever the probability
density estimate for flaring regions exceeds the probability density
estimate for nonflaring regions. Probability density estimates for the
two populations using the Epanechnikov kernel (Silverman 1986),
along with the discriminant boundary, are shown in Figure 1. Qual-
itatively, all the parameters have similar distributions, with signifi-
cant overlap between the flaring and nonflaring populations. Both
the flaring and nonflaring distributions peak at relatively small pa-

rameter values, although the flaring population in each case has a
longer tail to large parameter values.

The forecasting ability of a parameter was first evaluated by
estimating its success rate, that is, the fraction of correct clas-
sifications. An unbiased estimate of the success rate was ob-
tained by removing one point from the data, using the re-
maining points to make a prediction about the removedn � 1
point, and repeating for all n points in the sample (Hills 1966).
The performance of the sample parameters, shown in the first
column of Table 1, initially looks impressive, with success rates
over 90%. However, it is important to realize that simply pre-
dicting that no region will ever produce an event can result in
quite a high success rate because the majority of active regions
do not produce any large flares within a 24 hr period (e.g.,
McAteer et al. 2005; Leka & Barnes 2007); for the data shown
here, 90.8% of the regions produced no flares of at least M
class within 24 hr, so a flare forecasting parameter must get
more than 90.8% correct for it to add any value.

This drawback to interpreting the success rate when the oc-
currence of events is very rare has been known in the mete-
orology community for over a century, and is often illustrated
by the study of Finley (1884) (see Murphy 1996 for an over-
view of the “Finley affair” and the response it provoked). A
plethora of ways to quantify the performance of a forecasting
method while taking into account the frequency of events have
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been discovered and rediscovered over the last century. One
is the Heidke skill score (e.g., Wilks 1995), given by

n � n � nff qq qSS p , (6)
nf

where is the number of regions that were predicted to flarenff

and did flare, is the number of regions that were predictednqq

to remain flare-quiet and did so, is the number of regionsnf

that produced a flare, and is the number of regions that didnq

not produce a flare. This skill score indicates the improvement
of the forecasts over always forecasting that no flare will occur.
Positive scores indicate better performance, with a maximum
score of 1.0 for perfect forecasting, while negative scores in-
dicate worse performance. The Heidke skill scores for the sam-
ple parameters are shown in the second column of Table 1.
The general results are very similar to evaluations using the
success rate, in that there is little variation among parameters,
but now the small values of the skill score ( )SS ! 0.16 K 1
clearly indicate that there is only slight improvement over fore-
casting that no flares will occur ( ).SS p 0

As an alternative to the binary classification of the points
presented above, Bayes’ theorem can be used to estimate the
probability of a flare occurring:

q f (x)f fP(x) p , (7)f q f (x) � q f (x)f f q q

where is the prior probability of belong to population j,qj

estimated as is the probability densityq p n /(n � n ), f (x)j j f q j

function, and here . One way to assess the perfor-j � { f, q}
mance of probability forecasts is the climatological skill score
(e.g., Murphy & Epstein 1989), defined by

SS(P, x) p 1 � MSE(P, x)/MSE(AxS, x) (8)f f

where is the mean square error. This2MSE(P, x) p A(P � x) Sf f

skill score indicates the improvement of the forecasts over a con-
stant forecast given by the average observed rate, . The inter-AxS
pretation of this skill score is similar to the previous one, with a
maximum score of 1.0 for perfect forecasting, and 0.0 for a cli-
matological (uniform probability) forecast. This skill score for the
sample parameters is shown in the final column of Table 1. The
results ( ) are slightly better than for the binary0.20 � SS � 0.24
forecasts, but still show only modest improvements over uniform
forecasts ( ). Values of this skill score are also quoted bySS p 0
Wheatland (2005) as 0.258 for his approach to forecasting, and

0.262 for the published results from the SWPC. These values are
based on a different data set, with a somewhat different definition
of event, so care should still be taken in making the comparison.
However, using skill scores to account for the differences, it ap-
pears that forecasts based on magnetic field observations can per-
form comparably to other approaches. Barnes et al. (2007) pre-
sented a detailed comparison of combinations of parameters
characterizing the photospheric magnetic field to the results of
Wheatland (2005) and the SWPC.

5. CONCLUSIONS

Using only nonparametric discriminant analysis and the re-
lated probability forecasts, the empirical parameters considered
here were not found to be robust daily flare predictors. The
results for all these parameters are extremely similar: there is
substantial overlap in the estimated probability density func-
tions, with the flaring probability density only exceeding the
nonflaring probability density in the tail of the distributions.

Although the parameters have not necessarily been calcu-
lated in the exact fashion proposed, all have high success rates,
as in the initial studies. The highest success rate for any single
parameters was 92.2%, yet this is only a slight improvement
compared to the success rate of 90.8% obtained by forecasting
that no region will ever produce an M or larger flare. Rather
than quoting success rates alone, which at the least should be
compared to the event rate, we encourage other investigators
to make use of standard verification statistics that account for
the mean event rate. In this case, skill scores clearlySS � 0.24
show that the parameters considered here show only modest
improvements over uniform or climatological forecasts after
accounting for the low mean event rate.

Although the improvements in forecast performance are fairly
small for the parameters considered here, the best magnetic param-
eters already perform comparably to independent approaches for
flare forecasting. Improvements may come from treating flares as
an example of self-organized criticality (e.g., Bélanger et al. 2007),
considering the evolution of the magnetic field, or combining mag-
netic field observations with independent quantities, such as flaring
history. Ideally, comparisons of the performance of existing and
new approaches to flare forecasting should be made from the same
database, but the use of skill scores can make comparisons based
on different data sources more meaningful.
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