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Inviscid damping of asymmetries on a two-dimensional vortex
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The inviscid damping of an asymmetric perturbation on a two-dimensional circular vortex is
examined theoretically, and with an electron plasma experiment. In the experiment, an elliptical
perturbation is created by an external impulse. After the impulse,ethgticity (quadrupole
momenj of the vortex exhibits an early stage of exponential decay. The measured decay rate is in
good agreement with theory, in which the perturbation is governed by the linearized Euler
equations. Often, the exponential decay of ellipticity is slow compared to a vortex rotation period,
due to the excitation of a quasimode. A quasimode is a vorticity perturbation that behaves like a
single azimuthally propagating wave, which is weakly damped by a resonant interaction with
corotating fluid. Analytically, the quasimode appears as a wave packet of undamped continuum
modes, with a sharply peaked frequency spectrum, and it decays through interference as the modes
disperse. When the exponential decay rate of ellipticity is comparable to the vortex rotation
frequency, the vorticity perturbation does not resemble a quasimode; rather, it is rapidly dominated
by spiral filaments. Over longer times, linear theory predicts algebraic decay of ellipticity; however,
nonlinear oscillations of ellipticity emerge in the experiment before a transition to algebraic decay
would occur. ©2000 American Institute of Physid$$1070-663(00)01110-7

I. INTRODUCTION Before analyzing the experiments in greater detail, we

Many flows that occur in oceans, atmospheres, and pIaSvylll elaborate upon the linear theory of perturbations that are

mas are approximately two dimensioné-D).- These created by an external impulse. We will show that in linear

flows are often dominated by a single vortex or by a group oiI heor_y, a(;w e_xternal tl_rn_{)ulsetofts nt_exctr;]est Z r(]quaswlnode. A
interacting vortices. Although the vortex dynamics can peduasimode is a vorticity perturbation that be alezly on

complicated, it is possible to gain a precise understanding d*ke a single exponentially damped wave in the vortex core,

certain elementary processes. One example is the decay of %th frequer_lcywq and decay rat_e/. Th? dgcay rate of the
asymmetric perturbation on a stable circular vorte¥ quasimode is slow compared to its oscillation frequency; that

The decay of asymmetric perturbations on circular vor-S: ¥/ @q<1. Moreover, the decay rate is proportional to the

tices can be studied experimentally with magnetized electrodCtiCity gradient at the critical radius;, where the vortex
plasmas in a cylindrical Penning tr&P We will show in rotation frequency(ly(r) satisfies the resonance condition,

Sec. IV that these electron plasmas evolve like inviscid inM¢o(rc) =wq (m=2 for an elliptical perturbation This in-
compressible 2-D fluids. dicates that the early exponential decay of the quasimode is

Figure 1 shows a typical experiment. &0, a circular due to a resonant wave—fluid interactidri} as explained in

vortex is deformed into an ellipse by an “external impulse” APPeNdix A. _ _ _
(described in Sec. I)I After the impulse, the vortex relaxes By its name, one can infer that a quasimode is not a
toward an axisymmetric state, in a manner that resemblegenuine eigenmode of the vortex: the monotonic vortices
previous numerical simulations of 2-D Euler flid{7**Dur- ~ that we treat here do not support exponentially damped
ing the relaxation, filaments form at a critical radiys and ~ €igenmodes” After a general discussion of eigenmode
vorticity contours become circular in the core of the vortex.theory(in Sec. 1), we will show that the quasimode appears
Moreover, the ellipticity of the vortex decagxponentially —analytically as a wave packet of undamped “continuum
by one order of magnitude, before oscillating and reaching &odes,” with a sharply peaked frequency spectriirithe
terminal value. Here, the ellipticity is measured by the am-peak of the spectrum is well described by a Lorentzian of
plitude of the quadrupole moment of the perturbed vortexwidth y, centered at,. The wave packet decays through
[the m=2 multipole moment, defined by E¢L2)]. interference as the continuum modes disperse. When the vor-
We will show (in Sec. IV) that the initial stage of expo- ticity gradient atr is zero, y is also zero, and the wave
nential decay in the experiments is governed by the linearpacket(quasimodgis replaced by a single undamped “dis-
ized Euler equations. Over longer times, linear theory precrete mode.”
dicts that the quadrupole moment will decay algebraically = The quasimodes of a circular vortex have been studied
(like t~).1"22%However, in the experiments, nonlinear ef- previously in the context of a Laplace transform solution to
fects emerge before a transition to algebraic decay woulthe initial value problent?=°In this approach, the frequency
occur. These nonlinear effects include the “trapping oscilla-wq and decay ratey of a quasimode appear as the real and
tions” and equilibration of ellipticity in Fig. (). imaginary parts of a “Landau pole.” A Landau pole is a
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FIG. 1. (Color) Electron plasma experimenta) The evolution of vorticity after an elliptical perturbation is applied to an initially circular vortex. As
filamentation occurs at., the vorticity contours relax back to circular form in the vortex cores(.). (b) The relaxation of the quadrupole moment
(ellipticity). The dashed line indicates that the initial decay is exponential. Time is measured in central rotation periddg(0)/27. The amplitude
|Q®@(1)] of the quadrupole moment is in units [@)(0)|.

complex frequency at which the temporal Laplace transformA. The eigenmode expansion

of the quadrupole moment is singular: its value depends only We assume that the vortex is governed by the 2-D Euler

on the equilibrium vorticity profile, and not the initial pertur- ; ; e ; .
. : equations, which neglect compressibility and viscosity:
bation (see Appendix B Of course, the values @b, andy g g P y Y

obtained from the Landau pole agree with those obtained ¢ . )

from our eigenmode analysis of the quasimode. g TVVE=0, v=zXVy, VoY= (1)
We will also consider a case where the vortexGauss-

ian) has a Landau pole with a large imaginary pajldq  Here,v(r,6,t) is the velocity field,Z(r,6,t)=2-VXv is the

~1). In this case, we show that the vorticity perturbationyorticity, and(r, 6,t) is a stream function. We also assume

evolving from an external impulse does not resemble a singlgnat the fluid is bounded by a circular wall at which there is

damped wavequasimodg Rather, the vorticity perturbation free slip, i.e.,y=0 at the wall radiuR,, .

becomes dominated by spiral filaments in a few vortex rota-  The vorticity distribution in the flow can be decomposed

tion periods:’~*! Surprisingly, the quadrupole momef&l- into an axisymmetric equilibriung(r) and a perturbation
lipticity) of this perturbation decays exponentially, at a ratea ¢(r, g,t); that is,

given by the Landau pole. So, “Landau damping” is physi-
cally relevant even if the vortex appears to have no quasi- {(r,0,t)={q(r)+AL(r,6,t). (2
mode.
After reviewing and elaborating upon linear responseFurthermore, the perturbation can be expressed as a Fourier
theory, we will examine the initial behavior of the experi- SEies in the polar angle,
mental vortices more thoroughly. We will show that the ob- o
served (_exponential decay of the quadrupole moment_ is acclks(r, 9,t)=6¢O(r 1)+ E (60™(r t)eMf+c.cl. @)
rately given by a Landau pole of the vortex. We will also m=1
show that the spatial structure of an experimental quasimode,

as well as its frequency and decay rate are in good quantita- ' the perturbation is sufficiently small, it is approxi-
tive agreement with linear theory. mately governed by the linearized Euler equations. These

We now give an outline of the main text. In Sec. I, we equations are obtained by neglecting second-order perturba-

review the eigenmode approach to the study of linear perturio" t€rms in Eq.(1), and can be written for each Fourier
bations on a circular vorte¥2”We then examine the quasi- COMPOnent separately:

modes of circular vortices, in the context of eigenmode im

theory. In Sec. I, we present the linear theory(elfiptical) 7+im Qo(r) 86— T{é(r)5¢= 0, (4a)
perturbations that are created by an external impulse. In Sec.

IV, we show that the experiments agree quantitatively with
linear response theory. In Appendix A, we provide a physical
picture of the resonant wave—fluid interacfibf’that causes

exponential decay. In Appendix B, we review how to calcu- ] )
late Landau poles numericall§). Here,(,(r) is the unperturbed angular rotation frequency of

the vortex, and/y(r) is the radial derivative of the equilib-
rium vorticity distribution. In additiongy(r,t) is the (mth)
Fourier coefficient of the stream function perturbation. The

In this section, we review and extend upon the eigensuperscript “(n)” has been dropped to simplify notation.
mode theory of small perturbations on a 2-D vortex!-3? Equation (4b) can be solved formally with a Green’s
This provides necessary background for Secs. Il and IV. function technique, yielding

oY= 6L. (4b)

Il. EIGENMODE THEORY
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R, spacing between two neighboring continuum modes. For all
op(r,t)= fo dr'r'G(rlr")s¢(r' v, (®)  numerical results in this papef ., is made sufficiently
small (by increasingN) to keepr larger than the time scale
where R, is the radius of the vortex. For the asymmetric of interest.

components of the perturbatiomé& 1), the Green’s func- The expansion coefficientA,} in Eq. (10) depend on
tion G(r|r’) is given by how the eigenfunctiongé,} are normalized. With the excep-
1 [r_\m o\ 2m tion of a single case, discussed in connection with Fig. 10,
< >
N~ .= | = we let
G(r|r") Zm(r> 1 (RW) } (6)
R

wherer. (r.) is the larger(smalley of r andr’. This f Udrrm+1§k(r)=b, (11)
Green’s function incorporates the boundary conditié 0
=0 atr=R,,.

whereb has the same value for all modgke exact value of

The linearized Euler equations support azimuthallyb is unimportan. In Sec. Il D, we will show that Eq11) is

propagating waves, i.e., Eqeta) and(4b) have solutions of a convenient normalization for analyzing quasimodes. Of

_ —iwt : ITPT
the dfon;n 5§“_ §(tr.)e ) Trcljese”vléavislzare.elther dlscr?tef course, Eq(11) can not be used if the integral vanishes for
modes” or “continuum modes.” Each Fourier component o any eigenfunctioré, .

the vorticity perturbation can be expressed as a s!éjlrgsgz dis- By using Eq.(11) for the normalization, we also estab-

crete modes, plus an integral of continuum motfes; lish a direct proportionality between the eigenmode ampli-

that is, tudes and the frequency spectra of the perturbation’s multi-
ot ot pole moments. We define thath multipole moment of a
5§(f1t)=§ Alwg)&y(r)e"wd +f doA(w)¢,(r)e ' vorticity perturbation by
" (m) Ro +1 57(m)
m — m m
The discrete modes have radial eigenfunctigg(s) that are Q™(H)= JO drr™ 2 el (r Y. (12)

spatially smooth. Therefore, a discrete mode is a physical
solution to the linearized Euler equations. On the other handThe amplitude and phase of theth multipole moment mea-
the eigenfunction of a continuum mode has a singular poinsure the strength and orientation of the wave-numimer
at the radius where the fluid co-rotates with that méske  asymmetry. Each multipole moment can be written as a sum
Sec. 110.23334 Consequently, only an integral of con- over eigenmode  contributions; that s, Q(t)
tinuum modes has physical meaning. =31, qee” ', Substituting Eq(10) into Eq. (12) gives

526The eigenvalue equation for these modes can be writteq,=bA,, provided thatf('?" drr™* g (r)=b.
a

I[&(r)]= wé(r), ) B. The eigenmodes of a general monotonic vortex

The experimental vortices are monotonic. That is, their

equilibrium vorticity profiles decrease monotonically with
radiusr, until reaching zero at the vortex radiis :

wherel is the linear integral operator defined below:

m Ry
TEl=mOgnEn) - T [ ar reler. o)
0 £o(r)<0 for 0<r<R,,
Equation(8) is obtained by substituting an eigenmode solu- B _ (13
tion 5¢=&(r)e ' into Eq. (4a), and using Eq(5) for 8. {o(r)=0 for r=R,.

In practice the integral eigenvalue equatipBq. (8)]is | this section, we briefly state the general properties of the
solved numerically. The radial coordinateis discretized eigenmodes of a monotonic vortex.

into N (typically 1(~10%) grid points between 0 ang, , All eigenfrequencies of a monotonic vortex are real, so
and the operator is converted into atN XN matrix=>The 4| gjgenmodes are neutrally staBieThis is because the
resulting matrix eigenvalue equation is solved with a staniniegral operatot, appearing in the eigenmode equatj&.

; 6
dard routme”._ _ . . . (8)], is Hermitian with respect to the inner-product
The solution gived eigenfrequenciefw,} andN eigen-

functions (eigenvectors{&(r)}. They are used to form an R, r2
approximate(i.e., numericgl solution to the initial value (f,h>5fo dr| ,(r)|f*(r)h(r). (14
problem: o
N That is,
SL(r )=, A&(r)e e, 10
£(r,t) gl ) (10 (£ I[N =(h,I[F])*. (15)

This sum overk includes the discrete modes, and a finite The Hermiticity of | also guarantees that its eigenfunctions
representation of the continuum modes. form a complete orthogonal set.

Because the numerical solutidieqg. (10)] has only a Orthogonality can be used to derive the following ex-

finite number of continuum modes, it breaks down after apression for the coefficientgA,} in the eigenmode expan-
time 7~ 27/ A gy Here,A w4 is the maximum frequency sion[Eq. (10)]:
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_(&,80(1r,0)
KT (GG &)

Here, 5¢(r,0) is the Fourier coefficient of the vorticity per-
turbation at time=0. To evaluate the inner-products in Eq.
(16), we use trapezoidal integratidn.

We note that the inner-product in E@l4) is defined
only if {;#0 for all r<R,. Therefore, the results derived

(16)

here do not necessarily apply to nonmonotonic vortices. For

Schecter et al.

thanR,, the eigenmode equatidiq. (8)] is not singular,
and the radial eigenfunctiogy(r) of the discrete mode does
not have a singular spike.

It is possible to derive an approximate analytic expres-
sion for the the radial eigenfunction of the discrete mode.
The result is

G(rirg) 1
fdw:amﬂd|° Zo(r),

MOo(1)—wg T 20 0

example, a nonmonotonic vortex can have complex eigenfrayherea is a constant that is determined by the normalization

guencies, corresponding to unstable modes.

C. The eigenmodes of a top-hat vortex with a discrete
mode

The eigenmodes of a monotonic vortex are best de

scribed through an example. Here, we consider a vortex

where(r) slowly decreases from=0 tor=rg, and then
rapidly drops to zero in a transition layer of widén. This
vortex is shown in Fig. Qtop), and will be referred to as
Top-Hat 1 Although the exact functional form of Top-Hat 1
is not important, it is provided in the following:

Lo(r)
0.485{1—1.01tam6r_r0)Hl+0.02£{ R”_r”
or R, /|
- r<r,
0, r=R

17

where 6r=0.01, r,=0.3, and the vortex radius IR,
=0.327. Here,and throughout this paperall lengths are
given in units of the wall radiuR,, . In addition, all frequen-
cies are given in units afy(0). Thus,{y(0)=1 in Eq.(17).
The m=2 eigenmodes of Top-Hat 1 typify the eigen-
modes for allm. As is generally the case, tle=2 numeri-

cal eigenspectrum has a set of eigenfrequencies that fall in

the range

As the number of radial grid-pointd increases, this subset

of (N—1) eigenfrequencies becomes increasingly dense be-
tween the upper an lower limits; therefore, it represents the

continuum.
Figure 2 (bottom) shows the radial eigenfunction of a
generic continuum mode. The radial eigenfunctQmof each

continuum mode has a singular spike at its critical radius

rcx. defined by

MQ (1 ¢ 1) = . (19

Physically, the critical radius is where the unperturbed fluid
corotates with the eigenmode. The critical radii of the con- . . ‘ .

tinuum modes span the interval fromr=0 tor=R, .

The m=2 eigenspectrum of Top-Hat 1 also has a dis-
crete eigenfrequencyy, which lies outside the continuum
[wg=0.496<mQy(R,) ]. The critical radius of this dis-
crete mode is defined by the resonance conditf,(r )
=wy. It has the value .=0.42>R, . Because . is greater
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[e.g., Eq.(12)]. Equation(20) is obtained from the integral
eigenvalue equatiofEq. (8)] under the assumption that
£o(r) is sharply peaked a . In Fig. 2, Eq.(20) is compared

to them=2 discrete eigenfunction of Top-Hat 1. The two
are in excellent agreement.

Because Top-Hat 1 resembles a uniform circular vortex
patch(of radiusry=R,), its discrete modes resemble those
of a uniform circular vortex patch. A dispersion relation for
these modes was derived in 1880 by Kel¥he frequency

of the discrete mode with azimuthal wave-numbeis given

by

] P L " 21
@a=z| M-I+ gl | (21
and its critical radius is
1/2
i (22
r.=r
¢ U m=14(rg/R,)%™

In Eq. (21), wq is in units ofy, the constant vorticity of the
patch. Withm=2 andr,=0.3 (in units of R,), Eq. (21)
giveswy=0.504, and Eq(22) givesr.=0.42. These results
are in good agreement with the numerical valuesgfand
r. for Top-Hat 1 that were stated previously.

= === numerical solution

m=2 analytic solution
& discrete mode w d=0'496
(arbs) [ j continuum mode 0.992
' 8
0 0.2 0.4 0.6 0.8 1
r/R
w

FIG. 2. Top-Hat 1. Equilibrium profile and two radial eigenfunctions from
the m=2 spectrum. The eigenfunctions are zera &t0, but are offset for
clarity. Both are scaled arbitrarily. The markings; and r. denote the
frequency and critical radiugespectively of the discrete mode.
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tional,” because they have exceptionally large inner-
products with the original discrete mode.

The exceptional continuum modes have an important
physical significance: they combine to form a quasimode.
Consider the discrete mode of Top-Hat 1 as an initial condi-
tion on Top-Hat 2; that is§{(r,0)= &4(r). This initial con-
dition will now evolve as a superposition of continuum
modes. Figure ®) shows the expansion coefficiemg vs
wy. The distribution is sharply peaked near the eigenfre-
quencywy. A Lorentzian distribution accurately describes

(arbs) | r ] the peak,
0.520 ] 1
A~ ——m—, (23
; [ - (@ 097+
L L L with wq=0.509 andy=5x10"2. In Sec. Ill[Eq. (31)], we
0 0.2 0.4 R 0.6 0.8 1 will show that the value ofy is proportional to the vorticity
I W gradient at the critical radius; for Top-Hat 2g(r.)=6.07
X 107274(0)/R,, .
T 25 A B A B b As the continuum modes disperse, their superposition
= <— quasi-mode 7( ) behaves like an exponentially damped version of the original
103E E discrete mode. To see this, we first approximate the eigen-
(arbs) " = E mode expansiofiEq. (10)] by
10—65 Lorentzian fit :f
! 1 1 1 | 1 1 1 ‘ 1 1 1 ‘ 1 1 1 | 1 1 I' | 1 E f— *l(l)kt
0 02 04 __06 08 1 o¢(r.y §d(r)§k‘, A (24
Oy

for r=<r.=0.42. This simplification is possible sin¢g the
FIG. 3. Top-Hat 2(a) Equilibrium profile and radial eigenfunctions of the peak region ofA, dominates the expansion, afid) the ex-
m=2 “exceptional” continuum modes. The eigenfunctions are zero at ceptional continuum modes have eigenfunctic{l§§} that
=0, but are offset for clarity. They are also shown on the same scale. ThFou hly equal the eigenfunctiogy of the original discrete
markingswy andr . denote the frequency and critical radi(respectively gnly eq g. . . 9
of them=2 discrete mode of Top-Hat 1b) Expansion coefficientsA,} for mode,.forrs re. Substituting th? Lorent2|an_ form & [Eq.
the discrete eigenfunctiogy(r) of Top-Hat 1, expanded in the continuum (23)] into Eq. (24), we obtain the desired results{
eigenfunctions of Top-Hat 2. =¢4(r)e” rtiedt for r<r .
Note that our analysis of the quasimode was simplified
. by the way that we chose to normalize the eigenfunctions
~ Although we have focused on a monotonic vortex with a[gq. (11)]. With this normalization, the eigenmodes in the
single sharp edge ab, it is important to note that discrete peak region ofA, have eigenfunction§Fig. 3] that are
modes exist on monotonic vortices of many kinds. For ex-gpproximately equivalenté,(r)=¢&4(r) for r<r.. With a
ample, discrete modes can exist even when the vorticity gragifferent normalization, these eigenfunctions would vary in
dient ¢} is roughly constant across the entire vortex. If theresjze. As a resultA, would not have a Lorentzian form, and

are multiple peaks iy, then there can be multiple peaks in a Lorentzian fit would give inaccurate values for the fre-
the radial eigenfunction of the discrete mode. In short, diSquencywq and decay ratey of the quasimode_

crete modes can be found in a wide variety of forms. As a final remark, quasimodébke discrete modesex-
_ _ ist on vortices of many kinds. Here, we have focused on a
D. Discrete mode to quasimode top-hat vortex, in which case the radial “eigenfunction” of

Top-Hat 2in Fig. 3(a) is equivalent to Top-Hat 1, with the quasimode has a single sharp peak. However, on differ-
the addition of a low-vorticity skirt that extends radially to €Nt vortices, quasimodes can have broad “eigenfunctions”
R,=0.8. This skirt broadens the continuous spectrum ofVith multiple peaks: the variety of quasimodes is infinite,
eigenfrequencies[Eq. (18)], bringing its lower limit Justas the variety of discrete modes is infinite.
mQy(R,) below the eigenfrequencyy of the original dis-
crete mode. Consequently, all eigenmodes of Top-Hat 2 are
continuum modes. lll. LINEAR RESPONSE OF A MONOTONIC VORTEX

However, the discrete mode of Top-Hat 1 has not disapT0O AN EXTERNAL IMPULSE
peared entirely. The continuum modes of Top-Hat 2 that ar
shown in Fig. 8a) closely resemble the original discrete
mode. To begin with, they have eigenfrequencies near In the experiments, an “external impulse” is applied to
Also, their radial eigenfunctions are approximately(r), the vortex, creating an elliptical perturbation. In linear
except for minor spikes neag. We will refer to these and theory, this perturbation will evolve as a superposition of
other continuum modes with frequencies negras “excep- freely propagating eigenmod¢Eg. (10)]. In the following,

%\. Eigenmode excitability
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we derive an equation for the distribution of eigenmode amSo, the amplitude of thkth eigenmode after &(t) external
plitudes in the impulse-generated perturbation. impulse is directly proportional t&X, . The vorticity pertur-

The external impulse is a weak flow field that is briefly bation immediately after the impulse is given by
superimposed on the vortex. The stream function of this flow
field is given approximately by

. T 0= ) (30)
emtc.c., (25) v

r
Vo1, 0,1)= f(t)<R_
" This result is obtained from the expansiodl(r,0)
with m=2. The time-dependent fact(t) is assumed to be =3}_, A &(r), using Eq.(29) for A,, and then Eq(28) for
nonzero for only a brief interval. The radial factor varies like X, .
r™ inside the vortex, because the source of the impulse is at  Finally, Eq. (29) implies that the eigenmodes satisfy a
the wall (external to the vortex i.e., V2e,=0 for r<R,. reciprocity principle. Substituting Eq28) for X, into Eg.
In Sec. IV, we will explain how the external impulse is ap- (29), one finds that eigenmodes of the same weight &)
plied in practice. are excited in proportion to their multipole moments. In this
We treat the external impulse as a perturbation, and asense, the eigenmodes with the strongest influence on the
sume that the Euler equation for the evolution of vorticity external flow are also the most sensitive to a brief distur-
can be linearized during and after the impulse. Including théance that is created by an external source.
stream function of the external impulse, the linearized vor-

ticity equation is B. The excitation of a quasimode on a top-hat vortex
98¢ - We now show that an external impulse excites a quasi-
—+il[8]= f(t)rmflgé_ (26) mode on a top-hat vortex, and that this quasimode decays at
at (Ry)™ a rate given by a Landau pole.

Suppose that Top-Hat @ig. 3) is perturbed by am
S(t) external impulse. This impulse creates a vorticity
k perturbation of the formsZ(r,t)e'??+c.c. In Sec. Il A, we
6¢—1>'k(?g;()5$?§rI20EeCf]f-i((:?ea?1‘t of the vorticity perturbation can showed thatégocEl'z‘zlxkgk(r)e"“’k‘, for t>0. Here, Xy is
be expanded in th&liscretized eigenfunctions of; that is the eigenmode excitabili.ty thatis defingd by &26). Figure
3L(r ) =N a () £(r). Furthermore, Eq(26) cén be re’_ 4(a) showsXy as a function ofw,, for eigenmodes normal-

' k=1 kA ISKL ) ' =M ized by Eq.(11). This excitability spectrum is sharply peaked

B e e nc o B oo con 2 e exceptoal coninum modes of e vofzg. e
KAE/- 3 . . modes in Fig. . Moreover, the peak X, has the same
solved by standard methodlt is found that after the im- 9. @] P K

S et Lorentzian structurgsolid line) as the quasimode expansion
pulse,ay(t) =Ace ", with that was described in Sec. [[Eq. (23)]; therefore, the im-
pulse excites a quasimode.

A= — ——XF¥ (27) Figures 4b) and 5 illustrate that this quasimode behaves

(Ry)™ early on like a single exponentially damped wave. Figure
4(b) shows the vorticity perturbation dt=0 and atT=30
central rotation periods. During this time interval, the vortic-
ity perturbation(for r=0.33) decays an order of magnitude,
and rotates with a phase velocity that is independent of both

Me1 7 fRUrm+1§ (rdr time and radius; that is, the vorticity perturbation behaves
_ (& ™ Lo 0 K (28 like a single damped wave. Figure 5 verifies that the ampli-
(&) (kb tude |QA(t)| of the quadrupole momenEq. (12)] decays
exponentiallyafter the impulse. As expected, the exponential
decay rate isy=5x10"2 in units of £,(0); previously, we
obtained this value o¥ by fitting the expansion coefficients
of the quasimode to a Lorentzian function ®f [Eq. (23)].

The exponential decay rate can also be obtained from a

Here, | is the linear integral operator that is defined by Ea._,
(9). Equation(26) was obtained by making the substitution :

Here,Fy is the complex conjugate of the Fourier transform
of f(t), evaluated aty, . The quantityX, is the “eigenmode
excitability,” defined by

XkE

The first equality states that, is (minug the expansion
coefficient of the functionr™ ¢). The second equality
makes use of Eq(14), which defines the inner-product: It
states that the excitabilitf, is the multipole moment of the

ﬁgdeelgenmode, divided by the weigfd, i of that eigen- | o pole of the equilibrium profifé % A “Landau

In the experiments, the external impulse is typically ap-aglfsfc')sri gcf’Q”}npqg% firsgili]er:flg&r)-qit_égy ::K‘j";h('jcr?l tr;en ';ﬁg':cii_
plied over a time interval much less than the turnover time Ofltibrium rofile. and not thg S écific perturbati()xlzee A eg-
the vortex ~2m/Q). It is therefore reasonable to approxi- b ' b b bp

i i (m)
mate f(t) with a delta function of strengtla; that is, f(t) ?c;)r(mBg*ﬁeLﬁzgél;]o%;e\/ngﬁrifgfri i;ﬁ;nc:t?é rgs)ecr?; :[e\hgom-
=¢ed(t). Then,F} =€ for all w,, and Eq.(27) yields ’ X P

plete solution to the initial value problefonlessy=0).
ime The Landau pole for a top-hat vortex was calculated ana-
Ag=— Xy . (29 lytically by Briggs, Daugherty, and Lew. This Landau
(Ry)™ pole gives the following decay rate:
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FIG. 4. The excitation and decay of am=2 quasimode on Top-Hat 2a) The sharply peaked excitability spectrum indicates the excitation of a quasimode.
(b) The vorticity perturbationA £(r, 8,t) = 2| 5(r ,t)|cogmé+¢(r,t)]. The left graph inb) shows the half-amplitudgs¢| and phasep of the perturbation as
functions of radius, alT =0 and atT=30 central rotation periodsT=t{,(0)/27]. The right figures inb) are contour plots oA ¢.

r )Zmr The evolution ofs¢ in the region of the bumgnearr )

— / ro 2m-3 c
YeoL= 7 Todo(le)| T~ -7 (31)  is obtained by integrating Eq4a), with 8¢ given by Eq.
¢ w (32). In this region, one finds that

lim|&¢]
t—o0

Here,r is the radius whergz((r)| is maximal, and . is the
critical radius of the quasimode, given approximately by Eq
(22). Figure 5 shows thaygp, gives the correct exponential
decay r_ate of the quadrupole moment after an external im- 1€l Zo(ro)(ro/Ry)™(ro/re)™ 21— (r/Ry)M]
pulse disturbs Top-Hat 2. =—— = = .

In Appendix A, we present an alternative derivation of 2 V(yeoLr ImEo(0)r2) 2+ (r—r )2
the exponential decay rate that is given by E8f). This

=TT ] . (33
derivation shows explicitly how the observed exponential o ,
damping occurs through an exchange of angular momentuf deriving Eq.(33), we used Eq(6) for the Greenzs func-
between the quasimode and corotating fluid elements.at 10N, and we assumed thély(r)=[{o(0)/2] (ro/r)* for r

It is worth emphasizing that quasimodes are not genuing "o Figure 6 shows that there is good agreement between

exponentially damped eigenmodes: such eigenmodes do nbfl- (33 and the vorticity bump that develops in the skirt of

exist on a monotonic vortex. There are two features that OP-Hat 2 o ) i

distinguish the evolution of a quasimode from the evolution ~ Equation(33) indicates that the radial width of the bump
of a damped eigenmode. First, the quadrupole moment of th& proportional to the decay rate=ygp Of the quasimode.
quasimode makes a transition toward algebraic decay; herg)ms relationship is simple to understand if the quasimode is
at approximately 100 rotation periodsee Fig. 5. Second, wewed_as a wave pgcket of continuum modes. The decay
as the original vorticity perturbation decays, a smaller perfat€ v is the peak width of the wave packet's frequency
turbation grows in a thin layer about the critical rading, ~SPeCtrumX,. The peak width defines a critical layer in the
—0.42. Eventually, the amplitude of this smaller perturba-VOrteX, where the continuum modes are resonant with the
fluid rotation and have singular spikes: The radial thickness

tion saturates, but its phase continues to evolve.

The structure of the “bump” at . can be calculated
analytically. During the growth of the bump, the stream N —
function perturbation is dominated by the vorticity perturba- (5 1= ) 3
tion in the vortex core K(<r.). In the core, 6 Q™ - k exponential ]
=pBrm1zi(r)e” (reoLtiedt wherewq is given by Eq.(21), 10t damping .
and ygp, is defined by Eq(31). The coefficients is deter- £ 3
mined by the initial conditiofEq. (30)] that is created by the
impulse;  accordingly, B=ime/(R,)". Taking ¢;

=—{0(0)5(r—ryp), and using Eq(5) for the stream func- 1030 \ e-yBDLt —=
tion perturbation, we obtain -y v 77 algebraicdecay 3

Fm 0 200 400 600 T 1000

. 0 _ i
S=—ime| = | £o(0)G(r|ry)e” (veoLtiedt, (32 _
Ry FIG. 5. Evolution of the quadrupole moment of Top-Hat 2 after an external
impulse. The dashed line indicates exponential damping, with decay rate

Here,G is the Green'’s function that is given by E®). given by Eq.(31). |Q@(t)]| is in units of|QP(0)|; T=tQ(0)/2a.
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FIG. 6. Growth of| 5| in the critical layer. The dashed line is E§3). The (P
vorticity units are the same as in Figlb} T=tQ,(0)/27.
0 -
of this critical layer is approximately/mQ(r.). As the |
continuum modes disperse, the singular spikes unravel, S I I P
forming a bump across the critical layer. 0 5

We now briefly discuss the response of Top-HAFIg.
2) to a §(t) external impulse. Top-Hat 1 supports an un-FIG. 8. Evolution of the quadrupole mome®@2(t)=|Q@(t)|e'*®, of a
damped discrete mode, since it has zero vorticity gradient gaussian \_/orte[<Eq.(34)] after an external impulse. The solid lines give the
re. Figure 7 shows then=2 excitability spectrun{xk} of completg)lLrleftrte\!?ul)uttlon. The dashed lines give pure _“Lan_dau damping”;

. . . that isQ'”/=e~”"e '“a', wherew, andy are the real and imaginary parts of

Top-Hat 1. It is apparent that the discrete mode dominateg | yngay polejQ®@(t)| is in units of|Q@(0)[; T=tQy(0)/2.
the impulse generated perturbation. This is because the
eigenfunction¢y of the discrete mode, given by EQO),
roughly equals the initial perturbatiofEq. (30)]; that is,
Eq(r)=06¢(r,0)=rm 1z((r). Since the continuum eigen-
functions are orthogonal tg,, they must have negligible
overlaps with the initial perturbation.

We have found thagy(r)=r™"1¢/(r) for most vortices
that have discrete modes. It follows that discrete modes
(when they exist generally dominate the excitation that is by

nentially, and the decay rate is given by a Landau pole. How-
ever, the vorticity perturbation does not resemble a quasi-
mode; rather, it becomes dominated by spiral filaments in a
few vortex rotation periods.

The specific Gaussian vortex that we will study is given

cr.eated by a5_(t) extern.al impulse. Qf course, #i(rc) is go(r)=exp*[(5”Rw)2], (34)
slightly negative, the impulse excites a weakly damped _ )
quasimode instead. for r<R,=0.97R,,. Forr=R,, { is constant. This con-
stant value off, can be made zero by working in a rotating
C. The response of a Gaussian vortex frame; in this sense;y(r) still fits our definition of a mono-

. tonic profile[Eqg. (13)]. The Gaussian vortex that is defined

In this section we examine the response of a Gaussiagy gq (34) does not have a discrete mode. Instead, all of its
vortex to ad(t) external impulse. As for top-hat vortices, the eigenmodes are continuum modes.

guadrupole moment of the perturbed Gaussian decays expo- Figure 8 shows how the quadrupole momeqf?)

evolves after am=2, §(t) external impulse is applied to the
o Gaussian vortex. Before ten rotation periods, the phase of the
1 , « quadrupole moment changes at a constant rate, and the am-
X 2 AN plitude |Q®| decays exponentially; that is,Q®?
L discrete mode =e e '“d!, Atten rotation periods, the decay slows down.
(arbs) [ Figure 8 also shows thai, and y are accurately given
10“% by a Landau pole of the Gaussian vortex. For a Gaussian
3 continuum vortex, Egs.(21) and (31) are poor approximations of the
real part @y) and imaginary party) of the Landau pole. A
more precise value for the Landau pole was calculated nu-
merically (see Appendix B using the method of Spencer
L and Rasban This numerical calculation gave,=0.226
0 02 04 06 08 1 andy=0.079.
® Although “Landau damping” seems to dominate the
k initial decay, the excitation does not fit our definition of a
FIG. 7. Them=2 excitability spectrum for Top-Hat 1. quasimode. Theorticity perturbation is poorly described as
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amplitude
o —

O

FIG. 9. Response of the Gaussian vorftEx. (34)] to an external impuls€a) The excitability spectrum has a broad peak, in contrast to the sharply peaked
frequency spectrum of a quasimofieg., Fig. 4a)]. (b) The vorticity perturbationA{(r, 6,t) =2|5¢(r,t)|cogmé+¢(r,t)]. The left graph in(b) shows the
half-amplitude §¢| and phase of the perturbation as functions of the radiusTat0 and aff =5 central rotation periodsT=tQ,(0)/27). The right figures

in (b) are contour plots oA ¢.

a single damped wave, which has the formcay is approximately the undamped discrete mode of a
£(rye” e (MP=eq) + ¢ c. Rather, as shown in Fig(l9), the  vortex similar to the original, but flattened igt. It has been
vorticity perturbation is rapidly dominated by spiral fila- proposed that asymmetries in hurricanes may also develop
ments. This behavior is characteristic of a vortex that has ato discrete modes during their nonlinear evolution, through
broad excitability spectrurfFig. 9a)], i.e., a vortex that has a similar flattening of mean-flow vorticit§?2*

a Landau pole with a large imaginary pagf,oq~ 1. As a final note, the excitabilit¥, in Fig. 10b) was not

The mechanism for exponential damping can be re-obtained from Eq(28). The inner-product in Eg28) is not
moved on any vortex, including a Gaussian, by setfyg defined when{; vanishes anywhere inside the vortex. In-
equal to zero near the critical radiug of the Landau pole stead, we used the formub = — (&}, r™ 20V /(€L €5,
[MQq(rc)=wq]. Figure 1@a) shows the Gaussian vortex of
Eqg. (34), with a plateau at.. The quadrupole moment of
this modified Gaussian vortex does not decay exponentially
after a brief external impulse. This is because the vortex
supports an undamped discrete mode.

The discrete mode is shown directly below the equilib-
rium profile in Fig. 1@a). This mode has an eigenfrequency
wq that is between the upper and lower limits of the con-
tinuum[Eq. (18)]; however, it is easily distinguished from a _ ]
continuum mode. To begin with, the discrete mode does not " ® =.296 ]
have a singular spike at its critical radius. Furthermore, an 0: T :
external impulse will excite the discrete mode, but not the L A
continuum modes with eigenfrequencies negy [see Fig. 0 't 05 r/R 1
10(b)]. These continuum modes are not excited, because they
would create a vorticity perturbation in the plateau region of
{o, and an external impulse leaves this region unperturbed. T

The discrete mode in Fig. 10 was createddoiificially (b)
flattening the vorticity distribution at the critical radiug of Xk discrete mode R
the Landau pole; however, this process can also occur natu, ) . £
rally during the nonlinear evolution of a vortex. For example, 3 contmuum 3:(
in the electron plasma experiments, vorticity flaments are T M
wrapped into “cat’s eyes” in the vicinity of . [Fig. 1(a), far 022 024 026 028 03 032
right]. If the vorticity distribution isé averaged, these cat's O
eyes correspond to an annulus of uniform vorticity. Since

. . . .. . FIG. 10. Gaussian vortex with a flat intervéd) Equilibrium profile and the
damping requires a finite vorticity gradientrat, the forma m=2 discrete moder, and wy denote the critical radius and the eigenfre-

tion Of cat's eyes p.reV?mS further decay. The e”ip_ti??-l P€rquency of the discrete modgh) Excitability of them=2 eigenmodes with
turbation that remains in the vortex core after the initial de-frequencies nean,.

1)
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CCD Camera “instantaneous’r—6 velocity of an electron can be approxi-
Viex El B , mated by its average over a bounce period. The 2-D fluid
?\ o — I z Nin equations obtained from this bounce-averaging scheme are
) known as the 2-D drift-Poisson equatiofis:

Ry
an -
_|:||_'| —= I-—|_ Phosphor E+V'Vn=0, v=zxcV¢/B, V2¢p=4men (35

FIG. 11. Side view of a “Penning—Malmberg” apparatus that is used forAbove V(r P t) is the EX B drift velocity field n(r 0 t) is
studying 2-D Euler dynamics with a magnetized electron plasma. ’ ' . y ] Y
the z-averaged electron density, agdr, 6,t) is the electro-
static potential. The boundary conditiong¢s=0 atR,,, since

and changed the normalization from Ed.1) to (£&!,£)s  the wall of the trap is grounded.

=h. Here,] is the standard adjoint of the eigenfunctign The equations for the vorticity of the-¢ flow can be
and <f,h>SEJ‘§vdrf*(r)h(r)_ A derivation of this more obtain_ed directly from Eq(35). The_y are the 2-D Euler
general expression for excitability is straightforward, and is2duationsEq. (1)]. The stream function relates to the elec-

given in Ref. 35: it uses a “dual-space” formalism analo- frostatic potential by the equatiof=c¢/B, and the vortic-
gous to that found in Ref. 31. ity relates to the electron density by the equatign

=4mecn/B. The vacuum between the electron column and
the conducting wall corresponds to a region of zero vorticity.
The boundary conditiorp=0 at the conducting wall corre-
sponds to free slip at the wall of a circular container.

We now directly compare linear response theory to the  Because/ is proportional ton, vorticity measurements
evolution of elliptical perturbations on two experimental vor- gre equivalent to density measurements. Thus, vorticity is
tices [Fig. 12]. We find that the initial exponential decay measured by dumping the electrons onto a phosphor screen,
predicted by linear response theory is in good agreemerind recording the densitgvorticity) image with a charge-
with the experiments. Over longer times, the ellipticity ex- coupled device camera. Although this imaging is destructive,
hibits nonlinear “trapping” oscillations, and then equili- the initial conditions are reproducible, so that the time evo-
brates at a finite amplitude. lution of flows (e.g., Fig. 1 can be studied.

IV. EXPERIMENTAL RESPONSE OF A MONOTONIC
VORTEX TO AN EXTERNAL IMPULSE

A. Apparatus B. Evolution of elliptical perturbations

Figure 11 is a schematic diagram of the experimental  We now consider the evolution of elliptical perturbations
setup®”*® A long column of electrons is confined in a hol- on the two experimental vortices that are shown in Fig. 12.
low cylindrical conductor. Large dc voltages are applied onat t=0, these vortices are perturbed by an external impulse.
rings at both ends of the cylinder to keep the electrons fronThe impulse is created by briefly applying voltages to iso-
escaping in the axialz) direction. In addition, a unifornil  lated 60° sections of the conducting w&liThe voltages are
T) magnetic fieldB is applied parallel to the trap axis. This phased spatially so as to mainly producermas 2 electro-
magnetic field counters the outward radial force of the elecstatic potentialstream functiop This potential deforms the
tric field (E) that is produced by the electron column, andinitially circular vortex into an ellipse.
thereby prevents the electrons from escaping to the wall. Figure 13 shows how the quadrupole moments of the

The time period over which the electrons bounce fromtwo experimental vortices evolve after the impulse. In both
one end of the trap to the oth@long thez axis) is much less  experiments, the quadrupole mome@t?)(t) exhibits an
than the characteristic time scale for the flow of electrons irearly stage of decay that is approximately exponential
ther—6 plane(i.e., a vortex rotation perigdAs a result, the (e~ ”"). Furthermore, in both cases, the phasef the quad-

(a) | (b)

+ experiment |
—  analytic fit ]

FIG. 12. Equilibrium vorticity profiles for two experimental vortices. The profilgbh corresponds to the vortex in Fig. 1.
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FIG. 13. Evolution of the quadrupole mome@?(t)=|Q®)(t)|e'*®, in two typical experiments. Th¥’s are experimental data, whereas the diamonds and
dashed lines are theoretical predictions. The diamonds give the complete linear response of the vortex to an external impulse. The dashechénes show t
contributions toQ® from the Landau poles, which dominate the early response in both cases. The equilibrium profiles for exp&iraedts) are shown

in Figs. 12a) and 12b), respectively]Q?(t)| is in units of|Q(0)|; T=tQ(0)/21r.

rupole moment changes at a constant rage i.e., the ellip- The dashed lines in Fig. 13 are the Landau pole contri-
tical perturbation rotates with a constant angular velocity. butions toQ(®)(t). It is evident from Fig. 13 that the Landau
Figure 13 also compares the experimental data to linegpole contribution accurately describes the initial evolution of
response theory. Here, linear response theory assumes ti@#?) for experimeni(a). For experimentb), the Landau pole
the elliptical perturbation is created byd&gt) impulse, and  contribution gives an accurate value fgy but gives a value
therefore that the initial vorticity perturbation is given by Eq. for wq that is less than the experimental value, as did the
(30). In experiment(@) [Fig. 13a)], there is good agreement complete linear response.
between the early evolution oR® and linear response We now discuss the behavior of therticity perturba-
theory. In experimentb) [Fig. 13b)], there is a noticeable tion. The vorticity perturbation in experimefi) is heavily
(~20%) discrepancy between the experimental valuepf damped in the core, and is rapidly dominated by filaments.
and linear theory. This frequency difference probably indi-On the other hand, the vorticity perturbation in experiment
cates that the initial experimental excitation is slightly non-(g) behaves like a single damped wategiasimodg for sev-
linear. eral cycles. Specifically, thev=2 component of vorticity is
In Sec. lll, we showed that the initial linear evolution of we|| described by a fit*® of the form, &¢(r,t)
e quactupol mament s generaly dominaled ) 8 LA (e e i, for T<5. From the . we obiai,
IFi)ke e Meiwgt wherew, andy are the real and imaginaryy =0:37t 0.91 andy= 0.013?: 0.003. Figure 1¢4) §hows the
parts of the Landau pole. To calculate a Landau pole requiré@dial parté(r) of the quasimode that was obtained from the
analytic continuations of bottip(r) andQ,(r) in the com-  fit: it is roughly proportional tor™ *£4(r), like the quasi-
plex r plane(see Appendix B, and Refs. 14160 obtain ~mode of a top-hat vortex.
these continuations for an experimental vortex, we approxi- Of course,a, and y are consistent with the observed
mate the measured vorticity profilg(r) with a combination ~ frequency and decay rate of the quadrupole mon@#t.
of analytic functions, such as Gaussians, hyperbolic tangentéccordingly, they are in reasonable agreement with the cal-
and polynomials. The analytic continuation@f(r) is then  culated Landau pole, which hag,=0.36 andy=0.018. We
obtained  from its  integral  solution, Qg(r) now show that the radial paé(r) of the measured quasi-
=r=2f0dr' r'{y(r"), wherer is complex. The solid lines in mode is also in good agreement with linear theory.
Fig. 12 show our analytic approximations &§(r) [evalu- Figure 14b) shows them=2 excitability spectrum of
ated along the real axis| for both experiments. Using these the vortex in experimerg). The excitabilityX, [Eq. (28)] is
approximations, we calculated the Landau poles numericallygshown as a function of the critical radiugy [Eq. (19)] of
as described in Appendix B. For experiméat, we obtained each continuum mode. The excitability has a moderately
a Landau pole withoy=0.36 andy=0.018 in units of sharp peak, indicating that a brief external impulse excites a

£0(0). Forexperiment(b), we obtained a Landau pole with quasimode.
wq=0.077 andy=0.030. The radial part of the theoretical quasimode is approxi-
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' ' ' Appendix A). One expects thab, is approximately the or-
i (@) - bital frequency of a fluid particle that is “trapped” on a
closed streamline. This frequency was estimated in Ref. 14:
2

m
w§=r—0|25w<rc>ﬂa<rc>|. (36)

Here, | 5y(r.)| is the amplitude of themth Fourier coeffi-
i cient of the stream function perturbation evaluated at the
+ experiment critical radiusr., and averaged over a bounce period.

. — exceptional mode For experimenta), Eq. (36) yields w,=0.056 in units of

. £0(0). Forexperiment(b), Eq. (36) yields w,=0.016. The
— T (:o bounce periods (2/wy) corresponding to these estimates
1 (b) are marked in Fig. 13. It is evident that the estimated bounce
periods accurately give the oscillation periods|@?)| in
both experiments.
(arbs) Further details of the nonlinear stages of the vortex evo-
| lution are beyond the scope of this paper, but are quantita-
tively addressed elsewhet&!1?>Here, we note that in prin-
‘ : ciple the linear stage can be made arbitrarily long by

0 0.1 0.2 0.3 L 0.5 decreasing the amplitude of the initial perturbation.
/R

W

=)
|

V. SUMMARY

FIG. 14. Them=2 quasimode of an experimental vortgig. 12a)]. (a) . . L .
The radial parté(r) of the observed quasimode compared to thedy. In thl; paper we ex_amlned the inviscid damping of
Eigenmode excitability vs the critical radiug  of the eigenmode. The ~asymmetries on a 2-D circular vortex. We focused on the

moderately sharp peak indicates that a brief external impulse excites a quagtamping of elliptical perturbations that are created byran
mode. =2 §(t) external impulse. In linear theory, after the impulse,
the phase of the quadrupole moment of the perturbed vortex
changes at a constant ratg, and the amplitud¢Q‘®)| of
mately proportional to the radial eigenfunction of an “excep-the quadrupole moment decays at an exponentialyai&'e
tional” continuum mode(for r=<r ), which has its critical ~showed that botln, andy are given by a Landau pole of the
radius in the peak region of excitability. In Fig. (& the  equilibrium profile. After this initial period of exponential
eigenfunction of an exceptional continuum mode is superdecay, linear theory predicts that there is a transition toward
posed(after being rescalgdn the radial part of the experi- algebraic {” ) decay.
mental quasimode. The two are in excellent agreement, for We also showed that during the exponential decay of
r=<rey. |Q@)|, the linearvorticity perturbation behaves in two dis-
After about five rotation periods, both experiments di-tinct ways, depending on the order of magnitudeyofFor
verge from linear theory, and themplitudeof Q(®) slowly ¥l wg<<1, the vorticity perturbation is a quasimode, i.e., it
oscillates(Fig. 13. A critical eye will notice secondary os- behaves like a single exponentially damped wave in the vor-
cillations, with frequencywg, in the experimental data. tex core (=r). For y/wy,~1, the vorticity perturbation
These small rapid oscillations should be ignored, since thegoes not resemble a damped wave; rather, it becomes domi-
are artifacts of inhomogeneities in the phosphor. We nownated by spiral filaments in a few vortex rotation periods.

compare the observed slow oscillation frequency@®)| to The linear quasimode was analyzed as a packet of neu-
a theoretical estimat¥,which assumes that the perturbation trally stable continuum modes. From this perspective, the
is dominated by a single wave, i.e., a quasimode. quasimode decays through destructive interference as the

The amplitude of the quasimode changes with time tacontinuum modes disperse. The exponential decay yase
conserve the flow's energy and angular momentum, as vomproportional to)(r.), the vorticity gradient at the critical
ticity is phase mixed in the critical layer af (see Appendix radius. Physically, the quasimode is damped by a resonant
A). Early on, this phase-mixing causes the amplitude to deinteraction with corotating fluidgsee Appendix A This reso-
cay at the exponential ratg, given by linear theory. Over nant wave—fluid interaction is analogous to the well-known
longer times, the vorticity perturbation becomes nonlinear iresonant wave—particle interaction in plasma phyic&3°
the critical layer, and the amplitude of the quasimode oscilwhich can cause the exponential damping of Langmuir os-
lates(“bounces”). Ast— o, the phase-mixing in the critical cillations (for example.
layer completes, and the amplitude of the quasimode equili- The initial exponential decay predicted by linear theory
brates at a finite level. was shown to agree with electron plasma experiments. How-

The bounce frequenay,, of the quasimode amplitude is ever, the algebraid{ %) decay predicted for late tim¥s?®2°
estimated by considering the flow in the critical layer. In awas not observed experimentally. Instead, the amplitude of
frame that corotates with the quasimode, the streamlines ithe quadrupole moment was found to equilibrate at a finite
the critical layer are closed, forming “cat’'s eyegFig. 16,  fraction of its initial value(Figs. 1 and 1B As discussed at
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>
impulse

Ip= I+ 81, + a c0s(20+)

FIG. 15. Elliptical deformation of a uniform circular vortex patch.
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FIG. 16. Kelvin's cat’s eyes at the critical radiug.

Herea(t) and¢(t) are the amplitude and phase of the asym-

the ends of Secs. Il and IV, this equilibration is due to themetric part of the ripple. The symmetric padty(t) is re-

wrapping of vorticity filaments at the critical radius. Such
wrapping causes thé-averaged radial vorticity gradient to

vanish atr., and thereby removes the mechanism for reso-

nant dampingsee Appendix A

Under the right conditions, algebraic decay might occur

quired to conserve the area of the vortex patch. To lowest
order, or is related toa by

a2
4ry’

(A2)

in the experiments with magnetized electron plasmas. FONote that Eq(A1) neglects the growth of other asymmetries

example, we expect to observe algebraic decay at late tim%

if the initial perturbation is sufficiently weak. Then, linear
theory would apply for longer times, allowing a transition to

ith wave numbersn’#m. This “single-wave model” is
good, provided tha is small.
When the vortex patch is isolated, the ripple behaves like

algebraic decay, as in Fig. 5. Another possibility is to create, | undamped mod¥. Specifically, a(t) is constant and

an asymmetry by means other than an external impulse. F%(t):

example, one could add onto the vortex a low-amplitud
cloud of vorticity (electron cloudl If this cloud does not
overlap strongly with a quasimode, the multipole mon@®nt
of the vortex can relax to time-asymptotic algebraic decay
less than one rotation period.
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q‘requency that is defined in EQ1).

The angular momenturR, \, of the mode is defined as

. the difference inP, between the vortex patch with and with-
"but the mode; that is,

2 "o 2w ro
P(,,MEJ deJ drr3cr—J daJ drric.  (A3)
0 0 0 0
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APPENDIX A: DAMPING OF A QUASIMODE BY A
RESONANT WAVE—FLUID INTERACTION

In this appendix, we explain how exponential damping
results from a resonant wave—fluid interactféri® We make

explicit use of conservation of canonical angular momentum,

P,=/d?rr2{. Note thatP, is a convenient simplification of
the actual angular momentum per unit length which is
given by the equationﬁzif d?rrXpv= %p(FRfV— Pa).
Here,p is the uniform mass density of the fluid, ahds the
total circulation of the flow.

1. Angular momentum of the mode

For simplicity, we consider a uniform circular vortex
patch of radiugy and vorticity c>0. Suppose that a ripple
of azimuthal wave numbem is created on the edge of the
vortex patch, in such a way that the area of imeompress-
ible) vortex patch is conserved. Figure 15 illustrates this per
turbation for the case ah=2. Here, the ripple corresponds
to an elliptical deformation.

Let r,(6,t) describe the radius of the perturbed vortex
patch. With the ripple,

rp(0,0)=ro+dro(t) +a(t)cog mo+o(t)]. (A1)
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(to lowest order ina) for the angular momentum of the
mode:

P(},M: 7T(Trga2. (A4)

2. Exponential damping of the mode

Now suppose that there is a low levek ¢r) of vorticity
outside the vortex patch, extending to the wall rad®ys If
this low level of vorticity decreases monotonically withit
will cause the mode to decay.

To see this, we examine the flow at the critical radiys
(>rg), where the fluid rotation is resonant with the mode
[MQy(r.)=w]. In a frame that rotates with the mode, the
streamlines near, form cat’s eyed® These cat's eyegyray)
are illustrated in Fig. 16, for the case = 2.

In time, the vorticity in the cat's eyes is mixdghase
mixed). Since {,(r)<0, this mixing increases the mean-
square-radius of the flowi.e., Py). The only way for the
system to conserve tot&, is for the mode amplituda to

decay.

The rate of change of the mode angular momentum is
equal and opposite to the rate of changdgfin the skirt of
low-level vorticity that is outside the vortex patch. L ¢
denote the angular momentum in the skirt. The time deriva-
tive of P, s can be expressed as the following integral:
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() By conservation of angular momentum, the time deriva-
P 27TJ' drr? —5§ : (A5) tive of the mode angular momentum must balance the time
derivative of the angular momentum in the skirt; that is,

Here, 5.9(r 1) is the axisymmetric h=0) component of d d
the vorticity perturbation in the skirt. From the Euler equa- &Pg,,\ﬁ — ape,s- (A13)
tion for the evolution of vorticity, we obtaifto lowest order

) We will use Eq.(A12) for the time derivative oP, ¢, with

(0)_ _ (m) o #(m)* a now a function of time. This approximation is good, pro-
5§ m (51// 24| (A6) vided that the mode amplitude varies slowly compared to

the rate at whicldP, ;/dt equilibrates, under the condition

wherem is the azimuthal wave number of the mode, and ImOf fixed a. That s, the decay rate of the mode must satisfy

denotes the imaginary part of the function in square brackets

As in the main textpy(™(r,t) is themth Fourier coefficient Yio<l. - .
of the stream function perturbation; similarlﬁg(sm)(r,t) is Obta?#bstltutlng Egs(A4) and (A12) into Eq. (A13), we
themth Fourier coefficient of the vorticity perturbation in the
skirt. Substituting Eq(A6) into Eq. (A5), and integrating by d , ro\m3 re\ "%,
parts, we obtain at? meoio( c) T 1- R, a’. (A14)
d Ry Here, we have usef)j= —zrrS/r3 (r>rg), and Eq.(6) for
apo,s=877mfo drrIm[ oy™ sg{™*]. (A7) the Green’s functiorG. The solution to Eq(A14) is a(t)
=a(0)e ", where the decay ratg is given as follows:
We will assume that the stream function perturbation is _ ro\2m-3 r o\ 2m2
dominated by the mode; that3$, y= rogo(r )( ) 1—(—C) (A15)
4m le Ry
(m) ~ it) —iot This decay rate is the imaginary part of the Landau pBkp
o= oroG(riroe " (A8) (31)] that was calculated by Briggs, Daugherty and Lé&by.

Note that wher,(r.)>0, mixing atr. decrease®, in
the skirt. In this case, the amplitude of the mode must
increase to conserve angular momentum. In other words,
positive vorticity gradient at leads to an instability. This
instability is evident in Eq.(A15), which gives a positive
growth rate(negativey) when ((r.)>0.

Here,G is the Green’s function that is defined by Ef). In

Eq. (A8), the phasep(t) of the mode is simply— wt. This

neglects any phase perturbation due to the low-vorticity skirt.
To sufficient accuracy, the evolution 6¢{™ is obtained

from the linearized Euler equation,

P m
— M +imQo(r) 8™ —i— ¢4 (r)syp™=0. A9
at %% ol 1) 9L r Lo oY (A9) APPENDIX B: LANDAU POLES

Here, 5™ is given by Eq.(A8), and is proportional to the In this appendix, we review how to calculate numeri-
mode amplitudea. The solution to Eq(A9) is given by cally the Landau poles of a monotonic vortex. We present a
brief summary(without derivationg of the main points in

martg £o(r)G(rirg)

(m) —
om(ry=a 2r mQy(r)—w

e 1ot g Imlo(Nt] Refs. 14—16, and refer the reader to these articles for greater
detail, and a more precise treatment.

(A10) Note that Refs. 14-16 discuss the evolution of the
provided thatéggm) is initially zero, and that is approxi-  stream function perturbation and its derivatives. In this pa-
mately constant over the integration period per, we examine the evolution of the multipole moment

Substituting Eqs(A8) and(A10) into Eq.(A7) gives the  Q(t), which is defined by Eq12). The multipole moment is
following expression for the time derivative of the angular related to the stream function perturbation by the following:
momentum in the skirt: o

.98
Q)= (Ry)™  —=(Ry.1).

d R
giPos=— 2wa2m2(r2r§f dr G2(r|ro) £4(r)
1. The Laplace transform of the multipole moment
sim (mQg(r)— w)t]

] (A11) The multipole momenQ(t), of a perturbation that var-
mMQo(r) — o ies likee'™? can be written formally as a contour integral in
After a few cyclegi.e., mQqt=wt>1), the integrand in Eq. e complexw plane:
(A11) becomes sharply peaked at the critical radigs de- 1 (—etie it
fined bymQq(r.)=w, and the integral asymptotes to a con- Q=- 27 ) viin dwQ(w)e ', (B1)
stant value. This time-asymptotic value is given in the fol-
lowing: wheree is a positive real number. We will refer to the con-
) tour of integration in Eq(B1) as the “inversion contour.”
— P, = —2772a2m0'2r(2)G2(l’ Iro) fo(re) (A12 The functionQ(w) is the usual Laplace transform, defined
,S C [ . ~ © .
dt [Qq(ro)] by Q(w)=[Zdt Q(t)e'“!.
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(a) Imfr] (b) [mlw]
o~ 1 inversion contour
contour defining Q(w) - FIG. 17. When(a) the radial integra-
- tion contour is along the real axis,
0 - li Re[r] \ Re[®] (b) there are no p_oles iQ(w) that
w correspond to discrete zeros of
branch cut
~ V. (Ry, ).
for Q(w)
No Landau poles!

A solution for Q(w), in terms of the initial vorticity ~18(@], and not the reat axis. So, the Landau pole can be
perturbation &(r,0), can be extracted from the calculated by finding a discrete mode of EB3), along the
literature4-16 deformed radial contour. The boundary conditions on this
unphysical discrete mode a#,(0,0)=Y (R, ,w)=0.

H m+1
O(w)= MJRW rL w The inversion integral[Eq. (B1)] can be deformed
Wi(Ry,@) Jo Ry @=m&o(r) around the Landau pole and the branch cut, as illustrated in
M) Fig. 19. The contribution from the Landau pole gives a term
=, (B2) in Q(t) that is proportional t@~ "'e”'“d'. As we have seen,
V1(Ry, @) this term dominates the early evolution Qf(t), when the
Here, the function? ,(r,) is a solution to initial perturbation is caused by an external impulse.

Note that the locations of Landau poles in the complex
¥, (r,0)=0, (B3 o plane are determined solely by the equilibrium profile
Lo(r), and have no relation to the initial perturbation.

10 9 m m )

r —t -
ror oar 2 1 o—mQgyr)

which also satisfie®¥ ;(0,0) =0. Equation(B3) is the same
ordinary differential equation that must be satisfied by the?- Numerical computation of a Landau pole

stream function¥ (r,w)e' (M~ «Y of an eigenmode of the In Sec. lll, we examined the response of a Gaussian
vortex. However¥; need not vanish at=R,,, as does the yortex to an externam=2 impulse. We showed that the
stream function of an eigenmode. initial evolution of the quadrupole moment was dominated

Suppose that the vortex extends to the wak., R,  py the Landau pole. In this section, we discuss specifically
=Ry), S0 that there are no discrete eigenmodes of th@ow this pole was computed. A similar procedure was used
vortex* Then, there are no discrete valuesef for which  tg calculate the Landau poles of the experimental profiles in

¥, (R, ,w)=0. The analytic properties €(w) for this case  Sec. IV.
are shown schematically in Fig. 17. There are no poles in  As mentioned previously, a Landau pole is a solution to
Q(w) that correspond to discrete zerosWf (R, ,w), but the mode equatiofiEq. (B3)] along a deformed contour in
there is a branch cut along the realaxis, in the interval the complexr plane. The specific contour that we used to
mQo(R,) <w<my(0). 14-1° calculate the Landau pole of the Gaussian vofteg. (34)]

It is possible to deform the branch cut below the real is the following parabola:
axis by deforming the radial contour of integration in Eq.

(B2) above the reat axis}*~*The new branch cut, defined r(s)=Ry[s+i(s—s)], (B4)
by mQo(Rer]+iIm[r])=w, is sketched in Fig. 18. If the . . o

branch cut in the complex» plane bends sufficiently far Wheresis a real parameter, which satisfies:6<1. .
below the real axis, a Landau pole ¢ wq—i ) will appear The mode equatiofEq. (B3)] can be rewritten as a dif-

in the analytic continuation d(w), between the branch cut ferential equation irs,
and the reab» axis.

’ 2
The Landau pole corresponds to a discrete zero of ¢ '(8) ¢ r'(sm* mr’ s)go[r(s)] 5.0)=0,
¥,(R,,w). This discrete zero is now possible, since|dsr’(s)ds  r(s) 0= on[f(S)]
V¥, (r,w) is defined along the deformed radial contfBig. (B5)
(a) Im[r] contour defining (N)(w) (b) Im[w]
¥ - inversion contour

FIG. 18. When(a) the radial integra-
tion contour is deformed into the up-

bt

=
=

=~
)
=
g

- x ; Re[w] per half-plane(b) a Landau pole ap-
"uﬁ _’.{; pears inQ(w).
Landau pole brangh cut
| for Q(w)
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