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Maximum entropy theory and the rapid relaxation of three-dimensional
quasi-geostrophic turbulence
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Turbulent flow in a rapidly rotating stably stratified fluid~quasi-geostrophic turbulence! commonly decays
toward a stable pattern of large-scale jets or vortices. A formula for the most probable three-dimensional end
state, the maximum entropy state~MES!, is derived using a form of Lynden-Bell statistical mechanics. The
MES is determined by a set of integral invariants, including energy, as opposed to a complete description of the
initial condition. A computed MES qualitatively resembles the quasistationary end state of a numerical simu-
lation that is initialized with red noise, and relaxes for a time on the order of 100~initial! eddy turnovers.
However, the potential enstrophy of the end state, obtained from a coarsened potential vorticity distribution,
exceeds that of the MES by nearly a factor of 2. The estimated errors for both theory and simulation do not
account for the discrepancy. This suggests that the MES, if ever realized, requires a much longer time scale to
fully develop.

DOI: 10.1103/PhysRevE.68.066309 PACS number~s!: 47.27.Jv, 05.20.Jj, 47.15.Ki, 47.55.Hd
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I. INTRODUCTION

Quasi-geostrophic~QG! turbulence loosely refers to cha
otic motions within a rapidly rotating stably stratified fluid
in particular, an atmosphere or ocean@1#. It is well known
that unforced QG turbulence can decay by coalescenc
small-scale eddies into large-scale stationary jets or vorti
This paper outlines a theory for the most probable thr
dimensional~3D! end state, based on the statistical mech
ics of incompressible potential vorticity parcels. In additio
the theoretical end state is compared to that of a nume
simulation.

More precisely, this paper examines the inviscid decay
planetary turbulence that is characterized by small Ros
and Froude numbers,

Ro[V/ f Lh!1, and Fr[V/NLv!1.

Here V, Lh , and Lv are a typical horizontal velocity, hori
zontal length scale, and vertical length scale. In addition,f is
the Coriolis parameter andN is the buoyancy frequency. Fo
simplicity, we use a local approximation, wheref andN are
constants. A small Rossby number means that the advec
time scale is long compared to the planetary rotation pe
~a pendulum day!. A small Froude number indicates that th
phase speed of an internal buoyancy wave far exceeds
horizontal flow speed.

As Ro and Fr approach zero, the fluid motion reduces
QG dynamics@2#:

] tq1vW •¹q50, vW 5 ẑ3¹c, q5¹2c1]zzc. ~1!

In these equations,¹[(]x ,]y ,0) is the horizontal gradien
operator,t is the time, andz is the vertical spatial coordinate
multiplied byN/ f . At each heightz, the potential vorticityq
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is advected without changing value. The horizontal veloc
vW is obtained from the cross gradient of the~scaled! dynami-
cal pressurec, which acts as a streamfunction. The vertic
velocity is much less thanuvW u, and does not appear explicitl
in Eqs. ~1!. The dynamics is closed by a Poisson equati
which relatesc to q, and boundary conditions.

Figure 1 portrays the free decay of QG turbulence. T
simulation occurs in a unit cube, with periodic bounda
conditions in the horizontal coordinatesx andy. At z50 and
1, ]zc50. Past simulations of decaying QG turbulence ha
employed spectral@3# or contour dynamics@4# algorithms.
Here, the flow is evolved using a particle-in-cell~PIC! code
@5#, which has no explicit viscosity. The PIC code us
roughly 107 particles, and a 1283128365 x-y-z mesh. Area
weighting is used to obtain the mesh values of potential v
ticity ~PV! from the particle distribution at each heightz.

At t50, the flow consists of red noise, truncated at wa
number 10p, with mean and root-mean-square PV equal
zero and one, respectively. The ensuing turbulence app
to chaotically rearrange the PV distribution. Some patc
of PV completely shear apart, and become lost in a sea
filaments. Others violently merge with those of like-sign. U
timately, without losing energy, the flow evolves into a qu
sistationary pair of counterrotating vortices. One striking fe
ture of the evolution~in this example! is barotropization—a
transition toward 2D flow. From beginning to end, the ra
of total energy to that of the vertically averaged flow~the
barotropic energy! decreases from 11.74 to approximate
1.07. However, the height-dependent integral invariants
QG dynamics, which we will describe shortly, preserve so
vertical variation.

It is reasonable to suppose that the turbulence acts
randomly redistribute potential vorticity, with appropriat
constraints. Then, we would expect the time-asymptotic s
to resemble the most probable random distribution.We will
calculate this ‘‘maximum entropy state’’ using Lynden-Be
statistical mechanics@6,7#. The Lynden-Bell approach ca
incorporate more constraints than classic point-vortex the

do
©2003 The American Physical Society09-1
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FIG. 1. ~Color! Particle-in-cell~PIC! simula-
tion of the relaxation of 3D QG turbulence.~a!
PV isosurfaces. Blue, red:q̄52.04, 22.04. ~b!

Dynamical pressure isosurfaces. Blue, red:c̄
54.4831023, 24.4831023. Time is in units of
one ‘‘eddy turnover,’’ the inverse of the root
mean-square PV, evaluated on the mesh att50.
Length is in units of the horizontal domain size
These units are used for all dimensional data.
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@8# or energy-enstrophy theory@1,9#. It has been applied to
ideal 2D hydrodynamics@7#, and to low-order layer approxi
mations of oceanic and atmospheric flows@10,11#. This ar-
ticle extends the theory to fully 3D quasi-geostrophic turb
lence@12#.

For illustrative purposes, we will compare maximum e
tropy theory to the end-state of Fig. 1. This end state is
time asymptotic; rather, it corresponds to the end ofrapid
relaxation. By t5500, various nonconservative flow inte
grals have slowed their growth or decay rates by at least
order of magnitude~see Appendix B, Fig. 6!. Not surpris-
ingly, maximum entropy theory predicts a 3D vortex dipo
which is similar to that in Fig. 1. However, the simulate
vortex cores are more intense than predicted. The estim
errors for both theory and simulation do not account for
discrepancy. This suggests that the maximum entropy s
requires a much longer time scale to fully develop, if it ev
will. A more conclusive~and perhaps academic! test of er-
godicity would require increasing the time scale and spa
resolution of the simulation by several orders of magnitu
Only then could one ascertain any slow effect of sma
scale turbulence on the domain-size flow. However, such
extensive computational study is beyond the scope of
paper.

II. MAXIMUM ENTROPY STATE OF 3D
QUASI-GEOSTROPHIC FLOW

To define a maximum entropy state, we first distingu
between microscopic and macroscopic descriptions of
flow. At the microscopic level, we decompose the PV dis
bution into a set of infinitesimal fluid elements~microcol-
umns!, which advect the fine-grained PV distributionq in the
horizontal plane. We may now imagine a small box cente
at a pointrW5(x,y,z) in the fluid. This macrocell contain
many microcolumns~Fig. 2!. Let f (rW,s), timesds, denote
the fractional volume of a macrocell that is filled by micr
columns that carry PV in the range@s,s1ds#. The sum
06630
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over s of fractional volumes is unity; therefore,

F~ f ;rW ![E ds f 51. ~2!

The distribution functionf fully describes the macrostate o
the fluid.

We now define the entropySof the distribution functionf.
Let S be the logarithm of the number of ways to arrange
microcolumns, within all of the macrocells, keepingf fixed.
By analogy to the entropy of an ideal 2D fluid, derived
Refs.@7#, we obtain

S~ f !52E dx dy dz ds f ln~sof ! ~3!

for an ideal 3D QG flow. Equation~3! ignores incidental
additive and~positive! multiplicative constants, andso is an
arbitrary PV, making the argument of the logarithm dime
sionless. The spatial integral covers the entire domain of
flow, and the PV integral extends from minus to positi
infinity. These implicit limits of integration occur throughou
the article.

FIG. 2. Cartoon of a macrocell filled with microscopic carrie
of ‘‘fine-grained’’ PV ~microcolumns!. Different shades of gray rep
resent different values of PV.
9-2
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The statistically most probable distribution functionf is
that which maximizesS in a subspace that conserves t
invariants of QG dynamics. One such invariant is the to
horizontal area, at any heightz, which is filled by microcol-
umns with PV in the range@s,s1ds#. This quantity is
directly proportional to

G~ f ;z,s![E dx dy f. ~4!

Another crucial invariant is the energy. Up to a constant f
tor, the energy is given by

E~ f ![2
1

2E dx dy dz q̄c̄, ~5!

in which

¹2c̄1]zzc̄5q̄[E ds s f . ~6!

Here,q̄(rW) is the PV distribution averaged over a macroce
i.e., the ‘‘coarse-grained’’ PV, andc̄(rW) is the corresponding
streamfunction. We interpretq̄ as the observable PV distr
bution. Conceivably, the conserved energyE has an addi-
tional microscopic component. However, it has been sho
elsewhere~for the 2D analog! that this microscopic compo
nent is negligible@7#. Henceforth, we will refer to the con
served values ofE( f ) andG( f ;z,s) asEo andg(z,s), re-
spectively.

Extrema ofS, in the constrained subspace off, are found
by setting equal to zero the first variation of

S8~ f ![S~ f !2bE~ f !2E dz ds m~z,s!G~ f ;z,s!

2E dxdydzj~rW !F~ f ;rW !. ~7!

Here, b, m(z,s), and j(rW) are Lagrange multipliers. The
equationdS8/d f 50, in combination with Eq.~2!, has a so-
lution at f 5 f * , where

f * ~rW,s!5
esbc̄

*
(rW)2m(z,s)

E ds8 es8bc̄
*

(rW)2m(z,s8)

. ~8!

Here,c̄* is the streamfunction of the macroscopic flow th
corresponds tof * . It satisfies a nonlinear partial differentia
equation~PDE!

¹2c̄* 1]zzc̄* 5q̄* [E ds s f * , ~9!

with appropriate boundary conditions. To findf * , one must
vary the Lagrange multipliers, and solve Eq.~9! for c̄* ,
until E( f * )5Eo andG( f * ;z,s)5g(z,s).

Let q̄o(rW) denote the initial form ofq̄. Although this func-
tion provides a unique value forEo , it does not provide a
uniqueg(z,s). The values ofg(z,s) follow from additional
06630
l
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assumptions. In the following, we will consider two sets
assumptions, and refer to the resulting maximum entro
states as MES1 and MES2.

MES1: One approach is to posit that each microcolum
has one of only three discrete levels of PV:s1(z), s2(z),
or 0. Unless stated otherwise, we lets1(z) ands2(z) equal
the maximum and minimum ofq̄o at heightz. Smaller am-
plitudes would prohibit the observed positive and negat
extrema ofq̄o .

With only three levels of PV, the area distribution reduc
to

g~z,s!5ao~z!d~s!1 (
j 51,2

a j~z!d„s2s j~z!…, ~10!

whereao5A2a12a2 , A is the area of the horizontal do
main, andd is a Dirac distribution. If we further assume th
the 1 and2 species are initially segregated, then

a6~z!5E dx dy H~6q̄o!q̄o /s6 , ~11!

in which H(s)51,0 for s.0, s,0.
In the three-level model, the equationG( f * ;z,s)

5g(z,s) can be satisfied only if

e2m(z,s)5d~s!1 (
j 51,2

e2s j (z)m j (z)d„s2s j~z!…. ~12!

That is, f * must have the form off 1, given by

f 1~rW,s!5
d~s!1d~s2s1!es1F11d~s2s2!es2F2

11es1F11es2F2
,

~13!

in which F6(rW)[bc̄1(rW)2m6(z). Here,c̄1 is the stream-
function of the macroscopic flow that corresponds tof 1.
From Eqs.~9! and ~13!, it satisfies the nonlinear PDE

¹2c̄11]zzc̄15q̄15
s1es1F11s2es2F2

11es1F11es2F2
, ~14!

with appropriate boundary conditions. The values of t
Lagrange multipliersb andm6(z) are determined byEo and
a6(z).

MES2: An alternative approach is to specifyg(z,s) indi-
rectly, by givingm(z,s) a special form. For example, let u
suppose thatm(z,s) equalssm̂(z) in the domains2(z)
,s,s1(z), and is otherwise positively infinite. Then,f *
has the form off 2, which is given by

f 2~rW,s!5
esbc̄2(rW)2sm̂(z)

E
s2

s1

ds8 es8bc̄2(rW)2s8m̂(z)

~15!
9-3
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DAVID A. SCHECTER PHYSICAL REVIEW E68, 066309 ~2003!
for s2(z),s,s1(z), and is zero otherwise. In Eq.~15!,
c̄2 is the streamfunction of the macroscopic flow that corr
sponds tof 2. From Eqs.~9! and~15!, it satisfies the nonlin-
ear PDE

¹2c̄21]zzc̄25q̄252
1

F
1

s1es1F2s2es2F

es1F2es2F
, ~16!

with appropriate boundary conditions. Here,F(rW)[bc̄2(rW)
2m̂(z). The Lagrange multipliersm̂(z) and b are deter-
mined fromq̄o by the constraints

E dx dy q̄25E dx dy q̄o[Q~z! ~17!

andE( f 2)5Eo . The values ofg(z,s) implied by this solu-
tion are given byG( f 2 ;z,s).

III. COMPARISON OF MAXIMUM ENTROPY THEORY
TO THE END STATE OF A SIMULATION

We now return to the PIC simulation of Fig. 1, which
exemplifies the rapid relaxation of QG turbulence to a qu
sistationary state. To reiterate, during this simulation, deca
ing turbulence appears to randomly redistribute PV. Accor
ingly, one may expect the end state of the simulation
resemble a maximum entropy state~MES!. The following
examines the merits and faults of this hypothesis.

To calculate the MES in part requires that we specify th
area distributiong(z,s). In practice, we must approximate
g. We have discussed two methods for doing so, which p
duce MES1 and MES2~see Sec. II!. For MES1, we obtaing
directly from the integralsa6(z) @Eq. ~11!#. For MES2, we
obtaing indirectly from the integralQ(z) @Eq. ~17!#. Figure
3~a! plots a6 andQ for the PIC simulation of Fig. 1.

Appendix A describes iterative schemes for computin
both MES1 and MES2, given the parameters that appea
Fig. 3. Figure 4~far right! juxtaposes the resulting PV distri-
butionsq̄1 and q̄2. The top, middle, and bottom rows show

FIG. 3. ~a! Height-dependent integrals of the initial PV of a PIC
simulation ~Fig. 1!. These integrals are used with the energyEo

58.531024 to calculate MES1 and MES2.~Dots on theQ-curve
show the discrete heights of the simulation.! ~b! Implicit g(z,s) for
MES2. Solid black curves indicate the borders of the PV doma
s2(z),s,s1(z).
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contour plots of thex-averaged,y-averaged, andz-averaged
PV, respectively. Both MES1 and MES2 predict two ver
cally aligned columns of opposite PV. The columns compr
lenticular segments. The segments are centered at he
whereQ(z) is positively or negatively peaked.

The contour plots show that MES1 and MES2 hardly d
fer, despite distinct assumptions forg(z,s) @Eq. ~10! and
Fig. 3~b!, respectively#. In both cases, the ratio of total en
ergy to barotropic energy is in the range 1.0360.01. In both
cases, the potential enstrophy, normalized to the initial va
of the simulation, is in the range 0.08460.001. The reader
may consult Appendix B for the specific definitions of bar
tropic energy~B1! and potential enstrophy~B2! used here.
To further examine theoretical uncertainty, we increased
parameterss6(z) of MES1 and MES2 by two orders o
magnitude from the values that are shown in Fig. 3~b!. The
measures of MES1 and MES2 did not change beyond
errors given above.

Figure 4 also shows the final state (t5500) of the PIC
simulation. Evidently, the simulated end state of rapid rel
ation agrees qualitatively with both MES1 and MES2. F
thermore, its ratio of total energy to barotropic energy, 1
60.03, is only slightly greater than predicted. However, t
simulated vortex cores have PV levels that are apprecia
higher than maximum entropy theory would foretell. Th
fact is reflected by a normalized potential enstrophy of 0
60.02, which exceeds theory by almost a factor of two, w
a strong degree of certainty. Appendix B shows that the d
crepancy is not an artifact of the PIC method~see Figs. 5 and
6!. Appendix B also explains the estimated error bars for
simulation.

Our 3D result is similar to many past studies of 2D rap
relaxation @13#. Maximum entropy theory seems qualita
tively accurate, but quantitatively imprecise. One possi
reason for the discrepancy is that violent mergers are un
to efficiently redistribute PV within the cores of the partic
pant vortices@14#. Another possibility is that the maximum
entropy state requires a much longer time scale to fully
velop. As explained in the Introduction, testing ergodic
beyond rapid relaxation would require vast computatio
resources, and is not pursued here.

Of note, some studies have actually challenged the qu
tative accuracy of 2D maximum entropy theory, over t
time scale of rapid relaxation. In a special parameter regi
decaying 2D turbulence seems to freeze due to the spont
ous formation of a vortex crystal equilibrium@15#. Such
‘‘crystals’’ may contain dozens of unmerged vortices. To t
author’s knowledge, the parameter regime for this to occu
3D QG turbulence is yet to be explored.
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Top:veraged PV distributions. Middle:y-averaged
d~dashed! contours indicate positive~negative!
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FIG. 4. The end state (t5500) of decaying turbulence in the PIC simulation compares favorably to maximum entropy theory.x-a
PV distributions. Bottom:z-averaged PV distributions. The contours are evenly spaced in PV. The spacings att50 and att5500 differ. Soli
PV levels, which increase~decrease! monotonically from the perimeter to the interior of a closed region.
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FIG. 5. Evolution of potential vorticity in PIC and SG simulations of comparable resolution:~a! x-averaged PV distributions and~b!
z-averaged PV distributions. The contours are evenly spaced in PV, by amounts shown at the far right (t5500). This spacing differs from
Fig. 4. Lighter~darker! shades represent greater~lesser! values of PV.
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APPENDIX A

This appendix describes the iterative schemes that w
used to find MES1 and MES2. Both algorithms have
generic form that has been shown, in the context of 2D
drodynamics, to produce a maximum entropy state@16#.

MES1: Let f 1
k(rW,s), bk, andm6

k (z) denote the estimate
06630
re
e
-

of f 1 and the Lagrange multipliers at iterationk. Their values
at iterationk11 are solutions to

f 1
k115

d~s!1d~s2s1!es1F1
k11

1d~s2s2!es2F2
k11

11es1F1
k11

1es2F2
k11 ,

~A1a!
9-6
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E dx dy
es6F6

k11

11es1F1
k11

1es2F2
k11 5a6~z!, ~A1b!

2E dx dy dz q̄1
k11c̄1

k5Eo1E~ f 1
k!, ~A1c!

in which F6
k11(rW)[bk11c̄1

k(rW)2m6
k11(z) and ¹2c̄1

k

1]zzc̄1
k5q̄1

k5*ds s f 1
k . In practice, ~A1b! represents

2Nz equations, in whichNz is the number of discrete value
for z. Equations~A1b! and ~A1c! may be solved for the
Lagrange multipliers using Broyden’s method@17#.

Sequence~A1! requires a seedf 1
0. This seed will have the

form

f 1
05h0~rW !d~s!1h1~rW !d„s2s1~z!…

1h2~rW !d„s2s2~z!…,

in which h0512h12h2 . For this paper, h6

5H(6q̄0)q̄0/s6 , in which q̄0(rW) resembles the simulate
coarse-grained PV distribution att50, 50, or 500. All three
sequences converged to the same state, up to arbitrary
zontal translations. The sequences were stopped w
uE( f k)2Eou/Eo&1025. The ultimate values of the Lagrang
multipliers satisfiedb5217.6 and 0.41,um6(z)u,0.89.

MES2: Let q̄2
k(rW), bk, andm̂k(z) denote the estimates o

q̄2, and the Lagrange multipliers at iterationk. Their values
at iterationk11 are solutions to

FIG. 6. Evolution of energy and potential enstrophy integra
The energy integrals are normalized to the initial value ofE. Z2 is
divided by 20 times its initial value. Solid curves: ‘‘high’’ resolutio
PIC simulation. Dotted curves: high resolution SG simulatio
Dashed curves: ‘‘low’’ resolution PIC simulation. All simulation
are described in the text.
06630
ri-
en

q̄2
k1152

1

Fk11
1

s1es1Fk11
2s2es2Fk11

es1Fk11
2es2Fk11 , ~A2a!

E dx dy q̄2
k115Q~z!, ~A2b!

2E dx dy dz q̄2
k11c̄2

k5Eo1E~ f 2
k!, ~A2c!

in which Fk11(rW)[bk11c̄2
k(rW)2m̂k11(z) and ¹2c̄2

k

1]zzc̄2
k5q̄2

k . Note thatE( f 2
k) in ~A2c! can be viewed as a

functional of q̄2
k alone.

Sequence~A2! requires a seedq̄2
0. For this article,q̄2

0 was
chosen to resemble the simulated PV distribution att550 or
500. Both sequences converged to the same coarse-gra
PV, up to an arbitrary horizontal translation. The sequen
were stopped whenuE( f k)2Eou/Eo&1026. The ultimate
values of the Lagrange multipliers satisfiedb5213.9 and
20.26,m̂(z),0.14.

In principle, there can be many discretelocal maximum
entropy states. Some local maxima may have a large num
of vortices, whereas others, such as zonal jets, may h
none. However, there are likely no other vortex-dipole so
tions for MES1 and MES2 than those in Fig. 4. This is b
cause the dipoles emerging from the two optimization al
rithms, ~A1! and ~A2!, are robust to large changes in th
seeds.

APPENDIX B

This appendix addresses the systematic error of the
simulation. We first show that a spectral-grid~SG! simulation
of comparable resolution produces approximately the sa
end state, despite possible concerns to the contrary. We
estimate the error of the PIC simulation, by comparing it
one of half its resolution.

Figure 5 compares the evolution of potential vorticity
the PIC and SG simulations. The SG simulation uses a
3128365 grid, two-thirds dealiasing, and hyperviscosity
the form n(¹214]zz)

8q̄. The coefficientn was chosen to
dissipate the highest wave number spectral components
the time scaledt50.05. The chaotic flows of the PIC and S
simulations start to diverge aftert525, due to slightly dif-
ferent discretization errors. Nonetheless, both simulations
lax to vortex dipoles, with similar vertical variations, hor
zontal length scales, and intensities.

Figure 6 demonstrates that the PIC and SG simulati
become nearly barotropic at the same rate. One set of cu
shows the temporal growth of barotropic energy

Ebt[2
1

2E dx dy dẑ c̄&z^q̄&z , ~B1!

in which ^ &z denotes thez average. A second set of curve
shows the complimentary decay of baroclinic energyEbc
[E2Ebt . Figure 6 also shows that the potential enstrop

.

.
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Z2[E dx dy dz q̄2 ~B2!

exhibits similar decay in the PIC and SG simulations.
evaluateZ2 numerically, q̄ was first coarsened onto a 6
364333 x-y-z mesh, using the method of volume weigh
ing. This convention forZ2 is used throughout the article
0,
iz

id

f
he

06630
We now estimate the error of the PIC simulation by co
paring it to one of lower resolution, which relaxes to a sim
lar vortex dipole. Figure 6 includes curves for a PIC simu
tion that uses a 64364333 x-y-z mesh, and roughly 2.5
3106 particles. The final (t5500) barotropic energies of th
lower and higher resolution~HR! simulations differ by less
than 3% ofEbt

HR . The final values ofZ2 differ by less than
12% ofZ2

HR . The error bars forE/Ebt
HR andZ2

HR in the main
text reflect these percentages.
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