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Turbulent flow in a rapidly rotating stably stratified fluiguasi-geostrophic turbulenceommonly decays
toward a stable pattern of large-scale jets or vortices. A formula for the most probable three-dimensional end
state, the maximum entropy statdlES), is derived using a form of Lynden-Bell statistical mechanics. The
MES is determined by a set of integral invariants, including energy, as opposed to a complete description of the
initial condition. A computed MES qualitatively resembles the quasistationary end state of a numerical simu-
lation that is initialized with red noise, and relaxes for a time on the order of(itittal) eddy turnovers.
However, the potential enstrophy of the end state, obtained from a coarsened potential vorticity distribution,
exceeds that of the MES by nearly a factor of 2. The estimated errors for both theory and simulation do not
account for the discrepancy. This suggests that the MES, if ever realized, requires a much longer time scale to

fully develop.
DOI: 10.1103/PhysReVvE.68.066309 PACS nuni®erd7.27.Jv, 05.20.Jj, 47.15.Ki, 47.55.Hd
[. INTRODUCTION is advected without changing value. The horizontal velocity

v is obtained from the cross gradient of tfsealed dynami-
Quasi-geostrophi€QG) turbulence loosely refers to cha- cal pressurey, which acts as a streamfunction. The vertical
otic motions within a rapidly rotating stably stratified fluid, velocity is much less thajw|, and does not appear explicitly
in particular, an atmosphere or ocefd. It is well known in Egs.(1). The dynamics is closed by a Poisson equation,
that unforced QG turbulence can decay by coalescence @fhich relatesy to g, and boundary conditions.
small-scale eddies into large-scale stationary jets or vortices. Figure 1 portrays the free decay of QG turbulence. The

This paper outlines a theory for the most probable threesjmylation occurs in a unit cube, with periodic boundary
dimensional(3D) end state, based on the statistical meChan'conditions in the horizontal coordinategndy. At z=0 and

E{ES c:;‘]lnco:nprlessglet ptote_zntlal vortlcgytpatrr::etls.fln addltlo_n, , d,¢y=0. Past simulations of decaying QG turbulence have
€ theorelical end state 1S compared to that of a numeric mployed spectrdl3] or contour dynamic$4] algorithms.

Siml\;IJl)argonr.ecisel this paper examines the inviscid decay o ere, the flow is evolved using a particle-in-céHIC) code
b Y, bap Y ], which has no explicit viscosity. The PIC code uses

lanetary turbulence that is characterized by small Rossb .
P y y oughly 10 particles, and a 128128x65 x-y-z mesh. Area

and Froude numbers, 2 . .
weighting is used to obtain the mesh values of potential vor-
Ro=V/fL,<1, and FEV/NL,<1. ticity (PV) from the particle distribution at each height
At t=0, the flow consists of red noise, truncated at wave
HereV, L, andL, are a typical horizontal velocity, hori- number 16r, with mean and root-mean-square PV equal to
zontal length scale, and vertical length scale. In addifigsm, zero and one, respectively. The ensuing turbulence appears
the Coriolis parameter and is the buoyancy frequency. For to chaotically rearrange the PV distribution. Some patches
simplicity, we use a local approximation, whdrandN are  of PV completely shear apart, and become lost in a sea of
constants. A small Rossby number means that the advectiditaments. Others violently merge with those of like-sign. Ul-
time scale is long compared to the planetary rotation periodimately, without losing energy, the flow evolves into a qua-
(a pendulum day A small Froude number indicates that the sistationary pair of counterrotating vortices. One striking fea-
phase speed of an internal buoyancy wave far exceeds there of the evolution(in this examplg is barotropization—a

horizontal flow speed. transition toward 2D flow. From beginning to end, the ratio
As Ro and Fr approach zero, the fluid motion reduces t@f total energy to that of the vertically averaged fldthe
QG dynamicq2]: barotropic energy decreases from 11.74 to approximately

1.07. However, the height-dependent integral invariants of
aq+u-Vq=0, 0=2xVy, q=V3y+d,,p. (1) QG dynamics, which we will describe shortly, preserve some
vertical variation.
In these equationsy=(dy,dy,0) is the horizontal gradient It is reasonable to suppose that the turbulence acts to
operatorf is the time, and is the vertical spatial coordinate, randomly redistribute potential vorticity, with appropriate
multiplied by N/f. At each height, the potential vorticityg ~ constraints. Then, we would expect the time-asymptotic state
to resemble the most probable random distributidfe will
calculate this “maximum entropy state” using Lynden-Bell
*Present address: Department of Atmospheric Science, Coloradstatistical mechanic§6,7]. The Lynden-Bell approach can
State University, Fort Collins, Colorado 80523. incorporate more constraints than classic point-vortex theory
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FIG. 1. (Color) Particle-in-cell(PIC) simula-
tion of the relaxation of 3D QG turbulencéa)
PV isosurfaces. Blue, redj=2.04, —2.04. (b)
Dynamical pressure isosurfaces. Blue, ref:
=4.48<10 %, —4.48< 1073, Time is in units of
one “eddy turnover,” the inverse of the root-
mean-square PV, evaluated on the mest=ad.
Length is in units of the horizontal domain size.
These units are used for all dimensional data

[8] or energy-enstrophy theofil,9]. It has been applied to over o of fractional volumes is unity; therefore,
ideal 2D hydrodynamicf7], and to low-order layer approxi-
mations of oceanic and atmospheric flojt®€,11. This ar-
ticle extends the theory to fully 3D quasi-geostrophic turbu- F(f;r)ff dof=1. 2
lence[12].

For illustrative purposes, we will compare maximum en- ST : -
tropy theory to the end-state of Fig. 1. This end state is no%l;}k;eﬂilisdtnbutlon functiorf fully describes the macrostate of
time asymptotic; rather, it corresponds to the endayid i
relaxation By t=500, various nonconservative flow inte- Le
grals have slowed their growth or decay rates by at least ong
order of magnitudgsee Appendix B, Fig. 6 Not surpris-
ingly, maximum entropy theory predicts a 3D vortex dipole
which is similar to that in Fig. 1. However, the simulated
vortex cores are more intense than predicted. The estimated
errors for both theory and simulation do not account for the S(f)= _J dx dy dz @ f In(o,f) 3)
discrepancy. This suggests that the maximum entropy state
requires a much longer time scale to fully develop, if it ever
will. A more conclusive(and perhaps acadennitest of er- for an ideal 3D QG flow. Equatiori3) ignores incidental
godicity would require increasing the time scale and spatiafdditive and(positive) multiplicative constants, anat, is an
resolution of the simulation by several orders of magnitudearbitrary PV, making the argument of the logarithm dimen-
Only then could one ascertain any slow effect of smallersionless. The spatial integral covers the entire domain of the
scale turbulence on the domain-size flow. However, such aflow, and the PV integral extends from minus to positive
extensive computational study is beyond the scope of thigfinity. These implicit limits of integration occur throughout
paper. the article.

We now define the entropyof the distribution functior.

t Sbe the logarithm of the number of ways to arrange the
icrocolumns, within all of the macrocells, keepih§xed.

By analogy to the entropy of an ideal 2D fluid, derived in
Refs.[7], we obtain

macrocell

IIl. MAXIMUM ENTROPY STATE OF 3D
QUASI-GEOSTROPHIC FLOW

To define a maximum entropy state, we first distinguish
between microscopic and macroscopic descriptions of the dz
flow. At the microscopic level, we decompose the PV distri-
bution into a set of infinitesimal fluid elemen(microcol-
umng, which advect the fine-grained PV distributigrnn the
horizontal plane. We may now imagine a small box centered
at a pointr=(x,y,z) in the fluid. This macrocell contains
many microcolumngFig. 2). Let f(F,o), timesdo, denote FIG. 2. Cartoon of a macrocell filled with microscopic carriers
the fractional volume of a macrocell that is filled by micro- of “fine-grained” PV (microcolumng. Different shades of gray rep-
columns that carry PV in the rander,oc+do]. The sum resent different values of PV.
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The statistically most probable distribution functibris  assumptions. In the following, we will consider two sets of
that which maximizesS in a subspace that conserves theassumptions, and refer to the resulting maximum entropy
invariants of QG dynamics. One such invariant is the totaktates as MES1 and MES2.

horizontal area, at any height which is filled by microcol- MESZI One approach is to posit that each microcolumn
umns with PV in the rangéo,oc+do]. This quantity is has one of only three discrete levels of RV;(2), o_(2),
directly proportional to or 0. Unless stated otherwise, we et (z) ando_(z) equal
the maximum and minimum df, at heightz. Smaller am-
F(f;z,a)zf dxdy f 4) plitudes would prohibit the observed positive and negative
extrema ofg, .

- L With only three levels of PV, the area distribution reduces
Another crucial invariant is the energy. Up to a constant fac—to

tor, the energy is given by

1 —
E(f)E_Ej dxdy dZ . ®) W20)=a(Dd0)+ 3 a(2)d0-0(2), (10
in which wherea,=A—a,—a_, Ais the area of the horizontal do-
main, andd is a Dirac distribution. If we further assume that
V2y+ gzjzazf do of. (6) the+ and— species are initially segregated, then

Here,q(r) is the PV distribution averaged over a macrocell, o (Z):J dx dy H = q,)Gy /o (11)
* — ™0 (o] *

i.e., the “coarse-grained” PV, and(r) is the corresponding
streamfunction. We interpr&f as the observable PV distri-
bution. Conceivably, the conserved enef§yhas an addi- in whichH(o)=1,0 foro>0, o<0.
tional microscopic component. However, it has been shown In the three-level model, the equatiof'(f, ;z, o)
elsewhergfor the 2D analoythat this microscopic compo- = ¥(z,0) can be satisfied only if
nent is negligibld 7]. Henceforth, we will refer to the con-
served values oE(f) andI'(f;z,0) askE, and y(z,0), re-
spectively.

Extrema ofS, in the constrained subspacefpfire found
by setting equal to zero the first variation of

e M2 =g(0)+ 27 e iDHD5(g—0y(2). (12)

=+
That is,f, must have the form of,, given by

S’(f)ES(f)—BE(f)_f dz dO'/.L(Z,O')F(f;Z,O') . 5(0_)+ 5(0__0_+)e(r+<b++5(0,_0,_)e(r,<19,
ff.o)= 1+e7+%+ 4 go--
—J dxdydz&(nF(f;r). (7) (13

Here, B, u(z,0), and &(r) are Lagrange multipliers. The in which ® . (7)=gy:(F)— u-(2). Here, i is the stream-
equationsS'/ 6t =0, in combination with Eq(2), has a so-  function of the macroscopic flow that correspondsfio
lution atf=f, , where From Egs.(9) and (13), it satisfies the nonlinear PDE

0By (N~ u(z,0) .o

f,(F,0)= g,e” P+ e

®)

VzEl"”azzEl:m: ) (14

f do’ eﬂ/ﬁg*(rﬂ)*/ﬁ(zvﬂ',) 1+e%+P+ 4 go-P-

Here, ¢, is the streamfunction of the macroscopic flow thatWith appropriate boundary conditions. The values of the
corresponds td, . It satisfies a nonlinear partial differential Lagrange multiplierss and . (z) are determined b, and
equation(PDE) @.(2).
MES2 An alternative approach is to specifyz,o) indi-
— — rectly, by givingu(z,0) a special form. For example, let us
v ¢*+‘722¢*:q*5f doof,, ©) suppose thaju(z,0) equalsoi(z) in the domaino_(2)
<o<o,(2), and is otherwise positively infinite. Theif,
with appropriate boundary conditions. To fifigl, one must  has the form off,, which is given by

vary the Lagrange multipliers, and solve H§) for E*,

until E(f,)=E, andI'(f, ;z,0)=y(z,0). BN~ ois(2)
Letq,(F) denote the initial form of. Although this func- fo(F,0)= o — (15
tion provides a unique value fdg,, it does not provide a f do’ e BN =o' i(2)

uniquey(z,o). The values ofy(z,o) follow from additional

066309-3



DAVID A. SCHECTER PHYSICAL REVIEW E68, 066309 (2003

1 contour plots of thex-averagedy-averaged, and-averaged

PV, respectively. Both MES1 and MES2 predict two verti-
cally aligned columns of opposite PV. The columns comprise
lenticular segments. The segments are centered at heights
whereQ(z) is positively or negatively peaked.
The contour plots show that MES1 and MES2 hardly dif-
fer, despite distinct assumptions foz,o) [Eg. (10) and
Fig. 3b), respectively. In both cases, the ratio of total en-
ergy to barotropic energy is in the range 1:IB01. In both
cases, the potential enstrophy, normalized to the initial value
of the simulation, is in the range 0.089.001. The reader
may consult Appendix B for the specific definitions of baro-
tropic energy(B1) and potential enstroph¢B2) used here.
To further examine theoretical uncertainty, we increased the
FIG. 3. (a) Height-dependent integrals of the initial PV of a PIC parameterso.(z) of MES1 and MES2 by two orders of
simulation (Fig. 1). These integrals are used with the enefly =~ magnitude from the values that are shown in Fi@)3The
=8.5x10"* to calculate MES1 and MESZDots on theQ-curve ~ measures of MES1 and MES2 did not change beyond the
show the discrete heights of the simulatiafib) Implicit y(z,0) for ~ errors given above.
MES?2. Solid black curves indicate the borders of the PV domain Figure 4 also shows the final state=500) of the PIC
o_(2)<o<o.(2). simulation. Evidently, the simulated end state of rapid relax-
ation agrees qualitatively with both MES1 and MES2. Fur-
for o_(z2)<o<o.(2), and is zero otherwise. In Eq15), thermor_e, its rati_o of total energy to bar(_)tropic energy, 1.07
5 is the streamfunction of the macroscopic flow that corre-i.o'03' is only slightly greater than predicted. However, the

: e . simulated vortex cores have PV levels that are appreciably
sponds tof ,. From Eqs.(9) and(15), it satisfies the nonlin higher than maximum entropy theory would foretell. This

005 0 005 01 015 02 =4
(a)

0 ‘ 0

ear PDE fact is reflected by a normalized potential enstrophy of 0.14
— _ 1 o,e"%—g_eg’-? +0.02, which exceeds theory by almost a factor of two, with
Voot dzghy=0=— g + T (16)  a strong degree of certainty. Appendix B shows that the dis-

crepancy is not an artifact of the PIC methsee Figs. 5 and

. ) . — 6). Appendix B also explains the estimated error bars for the
with appropriate boundary conditions. Hef(r)= B/,(r) simulation.

—(2). The Lagrange multipliersi(z) and g are deter- Our 3D result is similar to many past studies of 2D rapid
mined fromq, by the constraints relaxation [13]. Maximum entropy theory seems qualita-
tively accurate, but quantitatively imprecise. One possible
J dxdy = j dx dy ,=0Q(2) (170 reason for the discrepancy is that violent mergers are unable

to efficiently redistribute PV within the cores of the partici-
pant vorticeq 14]. Another possibility is that the maximum
entropy state requires a much longer time scale to fully de-
velop. As explained in the Introduction, testing ergodicity
beyond rapid relaxation would require vast computational
Ill. COMPARISON OF MAXIMUM ENTROPY THEORY resources, and is not pursued here.

TO THE END STATE OF A SIMULATION Of note, some studies have actually challenged the quali-

We now return to the PIC simulation of Fig. 1, which tative accuracy of 2D maximum entropy theory, over the
exemplifies the rapid relaxation of QG turbulence to a qualime s_cale of rapid relaxation. In a special parameter regime,
sistationary state. To reiterate, during this simulation, decayd€caying 2D turbulence seems to freeze due to the spontane-
ing turbulence appears to randomly redistribute PV. Accord®US forrr:anon of a vortex crystal equilibriuffl5]. Such
ingly, one may expect the end state of the simulation to crysta,ls may contain dozens of unme_\rged vortices. To thg
resemble a maximum entropy stafdES). The following author’s knowledge., the parameter regime for this to occur in
examines the merits and faults of this hypothesis. 3D QG turbulence is yet to be explored.

To calculate the MES in part requires that we specify the
area distributiony(z,o). In practice, we must approximate
¥. We have discussed two methods for doing so, which pro- The author thanks Professor D.H.E. Dubin, Professor B.F.
duce MES1 and MESgsee Sec. )l For MES1, we obtairy  Farrell, Dr. D.Z. Jin and Professor M.T. Montgomery for
directly from the integralsy.. (z) [Eq. (11)]. For MES2, we  helpful comments on this research. The author also thanks
obtain y indirectly from the integraQ(z) [Eq. (17)]. Figure  Dr. J. Tribbia for providing his spectral-grid simulation for
3(a) plots . andQ for the PIC simulation of Fig. 1. the error analysis in Appendix B. This work was done pri-

Appendix A describes iterative schemes for computingmarily at the National Center for Atmospheric Research,
both MES1 and MES2, given the parameters that appear iwhich is funded by the National Science Foundation. Revi-
Fig. 3. Figure 4(far right) juxtaposes the resulting PV distri- sions were made under the financial support of the Depart-
butionsq; andq,. The top, middle, and bottom rows show ment of Earth and Planetary Sciences, Harvard University.

andE(f,)=E,. The values ofy(z,o) implied by this solu-
tion are given byl'(f,;z,0).
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t=0 100 500

(b)

FIG. 5. Evolution of potential vorticity in PIC and SG simulations of comparable resolut@rx-averaged PV distributions an@)
z-averaged PV distributions. The contours are evenly spaced in PV, by amounts shown at the farriglt) ( This spacing differs from
Fig. 4. Lighter(darke) shades represent great@ssey values of PV.

APPENDIX A of f; and the Lagrange multipliers at iteratienTheir values

This appendix describes the iterative schemes that wer@t iterationk+1 are solutions to
used to find MES1 and MES2. Both algorithms have the B o, oKL _ o oK+
generic form that has been shown, in the context of 2D hy- ¢k+1_ do)+do—o.)e +k+1 + 5(‘T(+10—)e ,
drodynamics, to produce a maximum entropy sfaf. 1+e7+P+ "+ er-P-

MESt Let f¥(F,o), B, anduX (z) denote the estimates (Ala)
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L L B L L L k+1 k+1
Gt +U+eg+¢ e (A2a)
q2 o (I)k+1 e(r+<I)k+l_e(r,(I)k+1 !

| axayd -, (A2b)

e
—

—fdxdy dz ¢ tyk=E,+E(fY), (A2¢)

normalized integrals

in which ®**1(F)=g"1yk(r)— 2" 1(z2) and Vg%
+a,0%5=0%. Note thatE(f§) in (A2c) can be viewed as a
functional ofgf alone.

SequenceA2) requires a seegy. For this articleg was
chosen to resemble the simulated PV distributiot=a50 or
500. Both sequences converged to the same coarse-grained
PV, up to an arbitrary horizontal translation. The sequences
were stopped whenE(f¥)—E,|/E,<10 . The ultimate
values of the Lagrange multipliers satisfigd=—13.9 and

FIG. 6. Evolution of energy and potential enstrophy integrals.— 0.26< 1(z)<0.14.
The energy integrals are normalized to the initial valudoZ, is In principle, there can be many discrdteal maximum
divided by 20 times its initial value. Solid curves: “high” resolution entropy states. Some local maxima may have a large number
PIC simulation. Dotted curves: high resolution SG simulation. o vortices, whereas others, such as zonal jets, may have
Dashed curves: “low” resolution PIC simulation. All simulations none. However, there are likely no other vortex-dipole solu-

0.01

0 100 200 300 400 500 600

are described in the text, tions for MES1 and MES2 than those in Fig. 4. This is be-
1 cause the dipoles emerging from the two optimization algo-
e”=P= rithms, (A1) and (A2), are robust to large changes in the
f dx dy1+ eﬁq)k:l_'_ ea__q)k+l =a+(z), (Alb) seeds.
APPENDIX B
—f dx dy dz §* 1 yk=E,+E(f5) (Alc) . . .
1o v This appendix addresses the systematic error of the PIC

simulation. We first show that a spectral-g(8iG) simulation
of comparable resolution produces approximately the same
in which ®X"Y(F)=g1yX(")—u "Y(z) and VZyX  end state, despite possible concerns to the contrary. We then

+&zﬂ1=€i=fdwf§. In practice, (Alb) represents estimate the error of f[he PIC simulation, by comparing it to
one of half its resolution.

2N, equations, in whichN, is the number of discrete values . . . L
Figure 5 compares the evolution of potential vorticity in

for z. Equations(Alb) and (Alc) may be solved for the ! . ) :
Z =quation ( ) : (Alo ,y v the PIC and SG simulations. The SG simulation uses a 128
Lagrange multipliers using Broyden's methpit/ X128%x65 grid, two-thirds dealiasing, and hyperviscosity of
. 0 - . 1 - 1
f Sequencé¢Al) requires a seefl;. This seed will have the the form 1(V2+44,)%q. The coefficienty was chosen to
orm L .
dissipate the highest wave number spectral components over
the time scalelt=0.05. The chaotic flows of the PIC and SG

f (1): 70(F) () + 5,.(F) (o —04(2)) simulations start to diverge afté=25, due to slightly dif-
ferent discretization errors. Nonetheless, both simulations re-
+7_(MNd(c—0o_(2)), lax to vortex dipoles, with similar vertical variations, hori-

zontal length scales, and intensities.

Figure 6 demonstrates that the PIC and SG simulations
in which #5y=1-%,—7n_. For this paper, 7 become nearly barotropic at the same rate. One set of curves
=H(=q°%)q%o-, in which q°(F) resembles the simulated shows the temporal growth of barotropic energy
coarse-grained PV distribution &0, 50, or 500. All three
sequences converged to the same state, up to arbitrary hori- 1
zontal translations. The sequences were stopped when _ = —
|[E(fX) —E,|/E,=10 5. The ultimate values of the Lagrange Eo= 2f dx dy dz4)()=, BD
multipliers satisfieg3=—17.6 and 0.4% |- (2)|<0.89.

MES2 Let G5(F), 8%, andi(z) denote the estimates of in which ( ), denotes the average. A second set of curves
q,, and the Lagrange multipliers at iterati@nTheir values shows the complimentary decay of baroclinic enetgy.
at iterationk+ 1 are solutions to =E—E,;. Figure 6 also shows that the potential enstrophy
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We now estimate the error of the PIC simulation by com-
ZZEJ dx dy dz ¢ (B2)  paring it to one of lower resolution, which relaxes to a simi-
lar vortex dipole. Figure 6 includes curves for a PIC simula-
tion that uses a 6464%x33 x-y-z mesh, and roughly 2.5
x 10P particles. The finalt=500) barotropic energies of the
exhibits similar decay in the PIC and SG simulations. Tolower and higher resolutiofHR) simulations differ by less
evaluateZ, numerically,q was first coarsened onto a 64 than 3% ofEﬂtR. The final values oZ, differ by less than
X64x33 x-y-z mesh, using the method of volume weight- 12% ofZ,'R. The error bars foE/E[R and 'R in the main
ing. This convention foiZ, is used throughout the article. text reflect these percentages.
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