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Damping and pumping of a vortex Rossby wave in a monotonic cyclone:
Critical layer stirring versus inertia—buoyancy wave emission
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This paper further examines the rate at which potential vorticity in the core of a monotonic cyclone
becomes vertically aligned and horizontally axisymmetric. We consider the case in which
symmetrization occurs by the damping of a discrete vortex Ro&#Ry wave. The damping of the

VR wave is caused by its stirring of potential vorticity at a critical radiys outside the core of the
cyclone. The decay rate generally increases with the radial gradient of potential vorticify at
Previous theories for the decay rate were based on “balance models” of the vortex dynamics. Such
models filter out inertia—buoyandyB) oscillations, i.e., gravity waves. However, if the Rossby
number is greater than unity, the core VR wave can excite a frequency-matched outward
propagating IB wave, which has positive feedback. To accurately account for this radiation, we here
develop a theory for the decay rate that is based on the hydrostatic primitive equations. Starting from
conservation of wave activityangular pseudomomentyman expression for the decay rate is
derived. This expression explicitly demonstrates a competition between the destabilizing influence
of IB wave emission, and the stabilizing influence of potential vorticity stirring atMoreover, it

shows that if the radial gradient of potential vorticityrgtexceeds a small threshold, the VR wave

will decay, and the vortex will symmetrize, even at large Rossby number20@ American
Institute of Physics.[DOI: 10.1063/1.1651485

I. INTRODUCTION model applies only if the Rossby and Froude numbers,

Vortices abound in planetary flow. Familiar examples are

the Gulf Stream rings, hurricanes, and the polar stratospheric

vortex. Many geophysical vortices tend to become symmet- Ro=_—_ and Fe L (1)

ric, that is, vertically aligned and circular in the horizontal Lnf L,N

plane. For example, numerical simulations indicate that the

vortices of planetary turbulence symmetrize on average, al-

though individual vortices may retain some degree of tilt and; e much less than unity!2 Here, V, Ly, andL, are the

ellipticity.” We should also remark that symmetrization is characteristic horizontal velocity, horizontal length scale, and

more than a geometrical curiosity. It can, in principle, con-qica) length scale of the flow. In additiohandN are the

tribute to the intensification of a swirling storm, such as anc-oriolis parameter and the buoyancy frequency of the local

incipient tropical cycloné* S atmosphere: typicallyf <N.

di Ong paradigm of symr.netnzat|on. 's the decay of a thrge— In the quasigeostrophic approximation, the cyclone sup-

imensional(3D) deformation wave in a nearly symmetric o

vortex. This paper will examine a mechanism that drives thé)orts'oinly one class.of waves. These o;c!llatlons occur due

Io a finite radial gradient of potential vorticiffpV), and are

decay of the wave, and a mechanism that frustrates the d 42
cay. We will focus on a wave in an atmospheric cyclone thafiere calledvortex Rossby waves A vortex Rossby(VR)

has strong vertical density stratification. We will assume thafvave is either barotropi€2D) or baroclinic(3D). Figure 1
the mean circular wind of the cyclone does not vary withillustrates several of both kinds. Each is excited by deform-
height. In addition, we will assume that the angular velocitying the mean PV distribution, with a specific pair of vertical
and potential vorticity of the cyclone decrease monotonically(m) and azimuthalif) wave numbers. In time, the deformed
with radiusr. PV structure spins about the vertical axis with a constant

Early studies of 3D symmetrizatiéit’ assumed that the angular phase velocityyg/n. The wave frequencywg gen-
vortex motion was quasigeostrophic. The quasigeostrophierally increases witim.

In a monotonic cyclone, a VR wave is damped by a

; ; ; " .« 9,14-20
dpresent address: Department of Atmospheric Science, Colorado State Urﬁesona_n_Ce Wlth_the ﬂu!d .rotatlon ata c.:rltlcal radlus
versity, Fort Collins, CO 80523. The critical radius satisfies the equation
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FIG. 1. Deformed PV isosurfaces corresponding to a selection of barotfigpiaow) and baroclinic(bottom row VR waves. The wave amplitudes are
exaggerated for clarity.

5(r*)=wR/n, ?) Figgre 3 iIIust_rates the potential error of neglecting IB
o waves in the environment. The contour plots show the dy-

in which Q(r) is the angular velocity of the mean cyclone. namical pressure perturbatior () that is produced by a VR
Figure 2 illustrates how cat's eyes develop in the horizontavave in a Rankine cyclone, with Rol0. According to the
flow nearr, , upon excitation of a VR waven=2). The primitive equationgFig. 3@], the core VR wave emits a
perturbed flow in and near the cat's eyes efficiently redistribfrequency-matched, spiral IB wave into the environment. It
utes PV. For a monotonic cyclone, this redistribution hashas been shown that such emission has positive
negative feedback, and causes the wave to decay, expondeedback’~° In this example, there is effectively no PV
tially at early times. The decay rate is proportional to thegradient atr, to provide negative feedback. As a result, the
radial derivative of PV at, . We will often refer to this amplitude of the VR wave doubles in 5.6 eddy turnoverst
decay agritical layer (CL) damping shown. In contrast, AB theoryFig. 3(b)] permits no radia-

A recent effort was made to extend the theory of dampedion, and predicts a stable wave.
VR waves to rapidly rotating cyclones, which have Rossby  In a similar way, a VR wave can amplify by emitting a
numbers of order unity or greaThe analysis was based sound wave* Since the cyclones of interest have Mach
on an asymmetric baland&B) approximation of the wave numbers much less than unity, we need not concern our-
dynamics’~2% Overall, the AB theory of VR waves com- selves with acoustic destabilization. However, the following
pared well to numerical simulations, based on less approxitrend should be noted: VR waves tend to grow as the vortex
mate primitive equations. However, the accuracy of ABloses energy and angular momentum to the environment, by
theory declined as the Rossby number became much greater
than unity. The error arose for the following reason: at such
large Rossby numbers, baroclinic VR waves can resonantly
excite inertia-buoyancylB) oscillations in the ambient fluid.
AB theory, like any balance model, neglects the creation and
feedback of these oscillations.

balance model

ave

excitation

To 0 I
(®)
-— FIG. 3. Dynamical pressure perturbatioy’) produced by the rf,n)
critical layer damping =(2,2) VR mode of a smoothed Rankine cycldis. (37)], at an arbitrary
heightz, according tox(a) the primitive equations an¢b) the asymmetric
FIG. 2. Streamlines of the horizontal flofin a rotating framgat an arbi-  balance model. Solid and dashed contours indicate positive and negative
trary heightz. The excitation of a VR wave creates cat's eyes,at “Stir- anomalies. The contour levels are the sam@jrand(b) and have arbitrary

ring” of PV in this critical layer causes the wave to decay, and the vortex tounits. The cyclone parameters are=Rt0, I,=r,, and A=0.025. Equa-
symmetrize. In this paper, we will assume that the wave amplitude is suffitions (20) and(42) precisely define Ro and the deformation radiusEqua-
ciently small to avoid nonlinear arrest of the de¢age Refs. 14, 15, 18, and tion (37) defines the smoothness parameteand the core radius,. The
19). Froude number, given here by=FRory/l,, is 10.

Downloaded 22 Apr 2004 to 129.82.49.196. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1336 Phys. Fluids, Vol. 16, No. 5, May 2004 D. A. Schecter and M. T. Montgomery

various means. This indicates that VR waves carry negativevave emission Most notably, Papaloizou and Printflele-

energy and negative angular momenttfm. rive a growth rate formula for accretion disk waves that
In this paper, we will revise the theory of discrete VR closely resembles our E¢70).
waves in geophysical cyclones to incorporaigth critical The remainder of this paper is organized as follows: Sec-

layer stirring and IB wave emission. The revised theory willtion Il reviews the hydrostatic primitive equations. Section
be based on the linearized hydrostatic primitive equations. All presents the equations that govern 3D perturbations in a
growth rate formuldEq. (70)] will be derived as a corollary barotropic cyclone. Section IV describes the VR—-IB wave
to conservation of wave activity, i.e., angular pseudomomeninstability in the context of linear eigenmode theory. Section
tum. This formula will clearly demonstrate the negative feed-V shows how the VR—IB wave instability is quenched as the
back of critical layer stirring and the positive feedback of IB radial PV gradient increases above a threshold in the critical
wave emission. It will further show that there is a critical layer. Section VI contains the main result of this paper. In it,
value of the radial PV gradient af, , above which the VR we derive a formula for the growth rate of a VR wave, which
wave is damped, and below which the wave will grow. Bal-takes into account both CL damping and IB wave emission.
ance models are justified only if the PV gradient far exceedd his formula agrees quantitatively with the growing and
this critical value, and therefore dwarfs the influence of am-damped waves of Secs. IV and V. Section VII recapitulates
bient IB waves(cf. Refs. 28 and 38 We will verify the  our conclusions and discusses their possible relevance to
revised growth rate formula upon comparison to numerics. tropical cyclone dynamics.

There are four subtle issues to address before advancing
to the main text. The first issue concerns the modal classifi-
cation of a VR wave. A growing VR wave appears as an”' MODEL FOR ATMOSPHERIC FLOW

exact eigenmode of the linearized perturbation equations. A |n this paper, we will focus on vortex dynamics in a dry,
damped VR wave does not; instead, it appears as sgtably stratified atmosphere, for which the equation of state
quasimodé:®**~?° Physically, a quasimode hardly differs js approximately that of an ideal gas=pRT. Here,p(x,t)
from an eigenmode. It behaves like a single exponentiallys pressurep(xlt) is mass density‘]’(x’t) is temperatureR
damped wave over the bulk of the vortex; however, in a thinjs the gas constant,is the position vector, andis time. We
critical layer, the PV perturbation grows. will neglect frictional effects, thermal diffusivity, and spatial
The second issue concerns our restricted use of the teriariation of the Coriolis parametdt. Finally, we will em-
“VR wave.” In this paper, the term generally refers to a ploy the hydrostatic and Boussinesq approximations. The re-
discrete mode of oscillation. However, the literature also desylting model can also apply to oceanic flbvwyith an ap-
scribes sheared VR wavés}?**~*’Discrete and sheared propriate change of variabléappendix A).
VR waves differ considerably. For example, the pressure we will use the pressure-based coordinate system of
field of a sheared VR wave can decay algebraically, as opHoskins and BrethertofHB), which is a staple of dynamical
posed to exponentially, with time. Although an arbitrary PV meteorology® The HB coordinate system uses a function of
perturbation blends discrete and sheared waves, discrefessure for the vertical coordinate, rather than the actual

waves typically dominate vortex deformatigh:>*8:4243 height variablez, . This function, called “pseudoheight,” is
The third issue concerns our focus on monotonic cy-defined below:

clones, as opposed to arbitrary vortices. In this paper, we do
not discuss anticyclones, because they suffer centrifugal in- ;)| 1 (ﬁ Cp Po 3)
stabilities at large Rossby numbéfsWe further assume Po R pog’

monotonicity to ensure that stirring in the critical layer yhereg is the gravitational acceleratio,, is the isobaric

damps the VR wave. If the slopes of PV in the core andgpecific heat of the atmosphere, apgl (po) is a constant
critical layer were opposite, stirring &t would ironically | aference pressur@ensity.

: 4
amplify the wave' Assuming hydrostatic balance,ncreases§ decreases

The fourth issue concerns the limitations of linear theorY'monotonically withz, . Hydrostatic balance also implies the
Although linear theory provides useful insight, there are vari-yitferential  relation. dz= dz, 6,/6. Here, 6(x,t)

ous nonlinear processes that merit future investigation. Forz_T(polp)R/cp is the potential temperature, ar@ is the

example, nonlinear stirring in the critical layer decreases thgterence temperature. The potential temperature relates to
magnitude of the radial PV gradientgf .>**1>1819f the 4 o specific entropy bg=c, In(0/6).

R/cp

initial wave amplitude is sufficiently large, this gradient In the HB coordinate system, the equations of motion are
might eventually drop below the stability thresh8fdEur- X
thermore, finite amplitude VR waves interact with others. AU+ V-Vu+fzXu+V,¢=0, 4
This may lead to beat-wave dampiff;|emong other effects. 0= 0nd. )
: N 092$/9, €
Finally, although they do not pertain directly to geophys-
ical vortices, there are several analogous papers worth men- d;6+v-V6=0, (6)

tioning. These papers analyze waves in straight shear
flow*’=*°and in stellar accretion disk8-?In general, they V-ppv=0, @)
discuss how PV stirring in the critical layer affects wave whereV,=%Xd,+94d,, andV=V,+29,. Equation(4) is the
stability. The accretion disk papers further discuss the posimomentum equation, describing the evolution of the hori-
tive feedback of sound-wave emissidas opposed to IB zontal velocity fieldu(x,t). The 3D velocity field is given by
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v(x,t) =u+wz, wherew(x,t) is the material derivative of.

. . Z -
Note that the pressure force was transformed into the gradi- or TTe-

ent of the geopotentialp(x,t)=gz, . Equation(5) is a con-
venient expression of hydrostatic balance. Equai®ns the
adiabatic heat equation. Equatitf) is mass conservation. It
involves the pseudodensity, defined by

c, /ey
pp(Z)EPO(_) : (8

Po

In the Boussinesq approximatiop, is treated as a constant

in (7), and divided through on both sides to obtain
V.-v=0. )

Hereafter, we will use the Boussinesq approximation.

Damping and pumping of a vortex Rossby wave 1337

oF. . .
0

FIG. 4. The relative vorticity of a smoothed Rankine cyclone. The potential
vorticity, qcf + ¢, has the same form. Equati¢87) defines the parameters

In addition to conserving entropy, our atmospheric’oanda.

model [Egs. (4)—(6), (9)] conserves Boussinesq potential

vorticity

q(x,t)=(VXu+fz)-Ve (10
along material trajectories. That is,

4q+v-Vq=0. (12)

It is possible to construct additional flux-conservative

equations from(4) to (6) and(9). One is for the evolution of
energy density

HhE=—V-Fe, (12
in which
u2
S(X!t)57+¢_¢|2201 (13)

and

Fo(X )=V

+ f "d2 udy b 22(Wa, )| o
0
(14

uz+
> T

Another is for the evolution of vertical angular momentum

density

WL=—-V-F, (15
in which

L(X,t)=2-(xXu), (16)
and

2

Fi(x,t)=v| z-(xXu)+ > +ZXX. (17
Note thatr?=(2xx)2. Finally, we have

C(q,0)=—-V-vC(q,0), (19

where C is an arbitrary function of potential vorticity and

condition 4,6>0, constantd implies zero vertical velocity
(w=0). Accordingly, the vertical energy fluxF¢-2) and
vertical angular momentum fluX=(- z2) both vanish az=0
andH. However, we will allow energy and angular momen-
tum to leave the radial boundary via waves.

Ill. PERTURBATIONS IN A CYCLONE

We now present the equations that govern 3D perturba-
tions in a barotropic cyclone. In general, we will denote the
perturbation of a fielgy(x,t) about the basic stabe(r,z) by
a prime; i.e.,x'(x,t)=x—x. In addition, we will use a cy-
lindrical coordinate systent (¢,z) (see Fig. 1, in which the
vector field (1,v,w) gives the radial, azimuthal, and vertical
velocities, in that order.

A. Unperturbed cyclone

The unperturbed cyclone is characterized by its azi-
muthal velocity profilev(r). For convenience, we define the
auxiliary fields

— v —  1ld(rv)
Q(r)=F, g(r):FT’
“n)=f+2Q, 7r)=f+¢. (19

Here,ﬁ is the angular rotation frequencﬁis the vertical

vorticity, ¢ is the modified Coriolis parameter, angdis the
absolute vorticity. The intensity of the cyclone is measured
by the central Rossby number

Ro= LO)

i (20

Figure 4 shows the vertical vortic@for a class of cyclones

potential temperature. Of course, any linear combination othat we will examine.

&, £, andC will also satisfy a flux-conservative equation.

The unperturbed vortex is stationary due to a balance of

The fluid dynamics is generally sensitive to the boundaryforces. This includes gradient balance

conditions. We will focus on flow in a horizontal layer,
bounded betweez=0 andH. For simplicity, we will as-
sume thaté is constant along the topz€H) and bottom
(z=0) surfaces. From Eq6), and the convective stability

-2

0, b=fu+ UT 21)

and hydrostatic balance
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— g— density of a perturbation. The reader may consult Refs. 22,
d,p= A 6. (22) 23, and 54-59 for more details on angular pseudomomentum
0 - and its cousins.
The positive derivative of(z) determines the buoyancy fre- The following steps lead to a flux-conservative equation
quency for L,:
— (i) differentiate Eq.(26) with respect tz;
N= 9.4do_ NES (23 (i)  multiply the new Eq(26) by rd,¢'/N?%
0o dz zz . 2
0 (iii)  multiply Eq. (27) by rd,v’IN%;
To simplify future analysis, we will assume thiitis con- (V) multiply Eq. (29) by
stant. g r .
The unperturbed PV distribution is given by GoN? dﬂdrq '
—df N>
E(r)E(fﬂ:)E: 0 (f+2). (24) (v-) .SL.Jm the new Egs(26), (27), and(29).
Simplifying the sum yields
Note thatdg/dr is proportional to, and has the same sign as, GLo=—V-Fp, (33)

dZ/dr. Therefore, the unperturbed PV and vorticity gradients,

are essentially the same. in which
Fo=fru’v’
B. Linearized dynamics
— r r
The perturbation equations are easily derived from the T+ rQL,+ W(ﬁz¢')2+ E[(v')z—(u')z]

original model (4)—(6), (9). In cylindrical coordinates, the

linearized equations for the velocity and geopotential pertur- o L
bations are +z N2Y ' +rw'v’ |, (34)
au’ +6¢9¢u’ — &' +d,¢'=0, (25)  Note that the flux of angular pseudomomentury-@2) van-
ishes at the vertical boundaries, singg’' =0=w’ atz=0
09 Tl 1 and atz=H.
dw’' +Qdu’ +qu'+ =d,¢" =0, (26) The volume integral of Eq(33) implies that
Y ’ AN dAv
0d,¢" +Q3d,0,¢"+ W' N=0, (27) Wzsrad, (35
1 1 i ;
2o, (ru") 90" +a ' =0, (2g Inwhich
r r 27 (H
. — 200,01
In addition, the linearized potential vorticity equation is Srad ti1) = fo fo (dedz)ry(u'v’)y,. (36)
. o=, ., dq FundamentallyS,,q is the rate at which wave activity enters
9’ +23,q" +u WZO’ (29) the vortex from the environment. It is also the outward flux

_ . _ of vertical angular momentum.
in which, to first order,

! 6ON2 ! 5 00_ !
q'= (VXu")-z+ ) 70,0 (300 |V, INSTABILITY OF A RANKINE CYCLONE:
INERTIA—BUOYANCY WAVE EMISSION
C. Wave activity A. Smoothed Rankine cyclone

To simplify future analysis of modal growth and decay, ~ We now describe the potential instability of a rapidly
we will appeal to conservation of wave activity. The wave rotating monotonic cyclone in greater detail. In particular, we
activity in a vortex of radius, is defined by consider a smoothed Rankine cyclone, defined by

27 (H (1, — 2 1— r—ro 3
Av(t;rv)z—f f f (dedzdrnL,, (3D (r)=-|1-tan roh || (37
0 0 Jo
in which Here, Z, is the central vorticity and\ is a smoothness pa-
In whic rameter. Figure 4 illustrates how the smoothness increases as
g r(g)? rop'a,b A increases.
_ N : . o
Ly(r,¢,z,t) 20,N% dgidr N2 (32 We will only consider cases in which the Rossby number

Ro=Z,/f exceeds unityOnly then can a VR wave, on the
is the “angular pseudomomentum.” Appendix B explains scale of the vortex, emit a frequency-matched IB wave into
how £, closely relates to the vertical angular momentumthe environment®®*Such emission is required for instability
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in an unbounded system. Balance models, which neglect IB In what follows, we will focus on nonaxisymmetria (
waves, generally purport that unbounded monotonic cy=1) baroclinic (n=1) modes. Other modes are either pure

clones are stab. VR waves (m=0) or pure IB wavesrf=0). Accordingly,
other modes cannot represent hybrid instabilities.
B. The eigenmode problem To find the normal modes, we must specify the radial

The VR-IB wave instability appears as an exponentiallyboun_dary COI’]dItIOI’].S. As—0, there exist two independent
growing normal mode. A normal mode of a monotonic cy- solutions to Eq(39):
clone, with isothermal boundariesat 0 andz=H, has the dM(r)y~r=" n=1,
form (44)

_ dP(r)~r", n=1,
&' (r,¢,z,t)=ad(r)cogmmz/H)e' "~ Y+ c.c., . oy _
The singular solutlorII)f ) is rejected on physical grounds,

u'(r,e,z,t)=au(r)cogmmrz/H)e' "~ “Ytc.c., leaving®(?) as the natural choice. This implies the following
v/ (F.0.z)=aV(r)cogmaz/H)e M-t cc. (39 mixed boundary condition at a point near the origin:
. d® n
W' (r,@,z,t)=aW(r)sinmmz/H)e' "¢~ D+ c.c., T (45)
’ _ i — ot
q'(r.¢.zt)=aQ(r)cogmmz/H)e' ™ I +c.c., Asr—o, i.e., in the radiation zone, there also exist two
wherea is an arbitrary constant, and c.c. denotes the comindependent solutions to E(B9); they are
plex conJL_Jga_te. o (I)I(Il)(r)MHgl)(K), <I>|(|2)(r)~H§)2)(K), (46)
Substituting the normal mode solution into EG85- _
(28), and performing some manipulation, we obtain in which
= JoZlf2-1
Ei _Li _11 _i k=——7—1r, —ml2<arg k)<=m/2, (47)
rdrlg—o?dr or dr| u—o? Im
n2 1 andH{) is the zeroth-order Hankel function of tfgh kind.
=t 2}@:0, (399  The associated mixed boundary conditions at a paift
r(u=—o% 5 >n?, andr much greater than the vortex scale, are

where dd . -1

—  ~_j4 [
wn=E7 (40) ar PR 9

The first (=1) and secondj&2) Hankel functions corre-

_ spond to radially outward and radially inward propagating
a(rN=w-nQ (41)  waves(spiral if n=1). As in related literatur&* we will
choose the outward propagating=1) wave as the “radia-
tion condition” for an unbounded medium. In Appendix D,

I =NH/m7|f] (42)  we discuss another possibility—the sponge-ring boundary

. . . . condition. The sponge ring deserves some attention, because
is themth internal Rossby deformation radius. The complex; pong g

. ; . it is often used in numerical simulations.
mode frequencies are the valueswothat permit a solution

. . ) o To compute the normal modes, we generally use a
to Eq. (39), with pres_crlbed radial boundary gondmo_ns. center-point shooting scheme. We first obtain the inner and
Once a solution is found fob, the other field variables

outer solutions of Eq(39) for a trial value ofw. The inner

is the “inertial stability,”

is the complex Doppler shifted mode frequency, and

are obtained by the following relations: solution (@,) must satisfy Eq(45) at a radiuse near zero.
i db né The outer solution ) must satisfy Eq(48) (j=1) at a
U(r)= — 2\ radr sufficiently large radius,, . The value ofw is varied until the
m Wronskian
1 dd n
V(== 7~ ], (.0 =B (1) S (1) oy (1) ot
n— O dr r Wk(w,r)=®(r) dar (r) n(r) dr (r), (49
. (43)
W(r)=— 'mqu) vanishes at an arbitrary radinsbetween zero and,, and
HNZ hence at all radif®> Wk=0 indicates thai is an eigenfre-
o quency, andb, («®,)) is an eigenfunction. The values of
Q(r)= _—IEU andr, are decreased and increased, respectively, until the
o dr ™ eigenfrequency converges to the desired accuracy.

In general,o is complex, and the resonant denominators in
Egs. (43) are nonzero for alk. Appendix C analyzes the
modal solution near the resonances. It turns out that the in- We now examine the dominant modes of a smoothed
ertial resonances, wheje= o2, are spurious singularities. Rankine cyclone, with parameters=0.025, |,=r,, and

C. Dominant modes
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FIG. 5. Geopotential eigenfunctions for the=2 dominant modes of a smoothed Rankine cyclone. The cyclone parameters=ai®,R¢e=r,, andA
=0.025. Then=2 dominant mode was shown previously, in Figa)3

Ro=10. By definition, adominant modés the fastest grow- domain***® These modes are stable because they represent
ing eigenmode for a given wave vectan,n). pure VR waves.

Figure 5 shows the geopotential perturbatibir) for We may view each dominant mode as having inner and
several dominant modes. Each mode has the same verticaliter parts. As in Sec. |, we identify the inner part as a VR
wave numberm= 2. The azimuthal wave numbers vary from wave. It is peaked approximately whefég/dr| is maxi-
n=1 ton=4. Extended tick marks indicate the locations of mum, and is retrogradewz/n<()) at that location. As the
the critical radii. In each case, is greater thamy. radiusr increases, the mean cyclonic flow becomes negli-

Figure 6 shows the complex frequeney= wg+iw, of gible. In this outer region, the eigenmode is a spiral wave
the dominant mode for eaaly asm increases from O to 4. that propagates away from the vortex. There is no local PV
The shortese-folding time (w; ') in this sample is about gradient to support this propagation. Accordingly, we iden-
four central rotation periods. The=0 frequencies were cal- tify the outer part of the dominant mode as an 1B wave.
culated analytically, assuming a radially unbounded \We note that a shooting code does not necessarily find
the dominant mode. However, we have checkied many
casep that the modes in Figs. 5—7 dominate numerical inte-
grations of the initial value problem, after short transition
periods. Our numerical simulations employed a sponge-ring
boundary condition, with absorption coefficiebt= 20, and
ro=7.5 (see Appendix I The initial conditions were
simple vortex deformations as in Ref. 20.

0.02

@, o001

V. STABILIZATION OF A SMOOTHED RANKINE
CYCLONE: A HINT OF CRITICAL LAYER DAMPING

Figure 7 illustrates how smoothing the edge of the vor-
[ ] tex (increasing)) decreases the growth ratg of a dominant
o os 115 T, mode. It is crucial to realize that smoothing the edge actually
Q) steepenshe unperturbed PV profile at the critical radiys.
As a result, CL damping intensifies. This would explain the
FIG. 6. Complex frequencies of the dominant modes of a smoothed Rankinebserved decay ab, .
cyclone. w, is the growth rate andpg is the oscillation frequency. Solid As A surpasses a threshold, becomes negative. As,

curves connect the data for a single azimuthal wave numbérrows are . . 19,14-20
in the direction of increasing vertical wave numbere{0,1,2,3,4. The becomes negative, the wave becomequaSImOdé

cyclone parameters are RAO, |,=r,, andA=0.025.w, andwg are nor-  OVer most of the cyclone, a quasimode behaves like a single
malized to the central vorticit¥,, . damped wave. In contrast, the PV perturbation grows in the
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ooz [T T T T A. Decomposition of wave activity
0.0024 £ (1) = (22): Rod ] We assume that the perturbation within the cyclone is
00016 | ] dominated by a single VR wave, with a critical radius at
T um =1y Rool0 ] Furthermore, we divide the wave activity into bulk)(and
@, 00008 - ] critical layer(cl) components:
[ 3 N o]
2000 ; ] A (tr,)=Ap(tr, ro) AT L), (50
00016 F ] in which
: | PRI B | PSS I S ST R S N S S T ]

0.02 0.03 0.04 0.05 0.06 0.07 0.08 o (HIT
v
A Ay=— fo fo J/ (dedzdrnL,, (51)
FIG. 7. Growth rate of two VR waves as a function of the smoothness 0
parameterA. IncreasingA corresponds to increasing the PV gradient at the
critical radiusr, . Filled or empty symbols indicate that the VR wave is a &N

normal mode or quasimode, respectively. The cross-hairs correspond to Eq.
(70). The solid curves are to aid the eye. The fixed cyclone parameter is

. > lived tZ. 2@ (H [ry+or
,=Tg. w, is normalized tazZ, Aclg_f J J (dedzdrnL,. (52
0 0 Jry—or

Here, &r is the half width of the critical layer, anddenotes
critical layer. Consequently, the disturbance is not a solutiorintegration outside the critical layer, i.e., over the bulk of the
to the eigenmode problem. Appendix E describes a methodortex. Ultimately, we will consider the limiér — 0. With
for computing the complex frequencies of quasimodes. Théhe present decomposition, conservation of wave activity
resulting values fow, appear as empty symbols in Fig. 7. [Eq. (35] becomes

The data in Fig. 6 also reflect the stabilizing influence of
a steepened PV profile g} . As the vertical wave numben d
increases, the critical radius decreases to a region of larger —A =S_— —A,. (53
dg/dr.%2?° Accordingly, w, eventually diminishes. dt dt

In principle, the vortex radius, is arbitrary, insofar as it
is greater tham, + or. Choosing , near its lower limit typi-
cally ensures thaf\, represents the VR wave activity, with

VI. CRITICAL LAYER DAMPING VERSUS IB WAVE only a small contribution from the emitted 1B wave.

EMISSION . L
B. Growth rate formula: A physical derivation
_ Figure 8 illustrates the interaction of a VR wave with its |y thjs subsection, we derive an analytical expression for
critical layer and the environment. A VR wave acts on theyne growth rate of a VR wave. Our presentation aims to
environment by emitting an 1B wave. It acts on the critical g|cidate the dynamics, at the expense of mathematical rigor.
layer by resonantly disturbing PV in that region. The resultsapnendix F outlines a more formal derivation.

of Sec. IV indicated that IB wave emission has positive  pgecause a single wave dominates the perturbation, we

feedback*~3C The results of Sec. V indicated that PV stir- may write
ring in the critical layer has negative feedbac®-2°In what

follows, we will use conservation of wave activity to quan- .
tify the competition between both feedbacks. ¢'(r,¢,z,)=a(t)®(r)cogmmz/H)e/ "¢~ R +c.c.,

u'(r,e,z,t)=a(t)u(r)cogmmz/H)e' "¢~ “rY+¢c.c.,

IB wave emission v'(r,¢,z,t)=a(t)V(r)cogmmz/H)e' "~ +c.c.,
” . .
fggjfbl;]:k W' (r,¢,z,t)=a(t)W(r)sinmmz/H)e' ("¢~ *rRY+ ¢ c.
loop (54

Here, as opposed t@®8), the frequencywg in the exponen-

VR wave > tial is real, and the amplitude is a complex valued function
activity one-way of time. In the critical layer, we permit a small correction to

loss the single wave model. To emphasize its potential deviance,

FIG. 8. Diagram showing the source and sink of VR wave acti@ypli- W€ separate the critical layer disturbancc_e from the bulk dis-
tude, according to linearized dynamics. turbance. For example, the PV perturbation becomes
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, a(t)Q(r)cogmmz/H)e M~ “rR+cc. |r—r,|>6r
arez= fo(r,t)cogmmz/H)e"¢+c.c. [r—r,|<or ©9
|
In the single wave modetl A, /dt is proportional to the . )
rate of change ofa|. In particular, 31(8a0e) = 2|V 1 f dt’a*(t’)
dla| o
giAo=Mlal (56) X gl (M= wr)(t—t') | (65)
Here, we have introduced the weight For t<|a|/(d|al/dt), we may substitute the approximation
r a*(t')=a*(t) into the right-hand-side of Eq(65). With
M E! drlay(r)+ay(r)], (57)  some additional reduction, we find that the PV perturbation
0 develops a sharp peak at the critical radius, i.e.,
in which
sw{(nﬂ wp)t]
2mHg r2 |Q|2 58 at(qclqcl) 2|U|2< d:) - | |2(t)
ay(r)= " 9,N? " dgiar’ (58) nQ— wg
and o(r —
=2m|U|? 7 0 o, (66)
4mH dr/ nldQ/dr|
ay(r)=— 575 I*R[VO*]. 69 . o .
15 in which & is the Dirac distribution. The second approxima-

In Eq. (59), R[...] denotes the real part of the quantity in

square brackets.

We may also relat&,, andd A /dt to the wave ampli-
tude|a|. Substituting the single wave solution into the righ
hand-side of Eq(36) yields

Stad™ éraJ a|21 (60)
in which
€ra=2mHISR[UV* ], . (61)

Substituting a generic critical layer perturbation into the defi-

nition of A, and taking the time derivative, yields

d mHg (et r? .
aAcI:_W r _ﬁrdrmﬁt(qcl%)
aH [rytor > n Aw
_Wﬁ drrZaoadh o). (62)
m *

In the critical layer, the linearized PV equati(2b) takes
the form
- ot 40
G +inQy= —aUe"“’R‘m.

(63

Here, we have approximated by its dominant single wave

component, since it is multiplied by a small parameter

(dg/dr nearr,). Integrating Eq(63) yields

dg . = [t = ,
qcl: -U _qe—mmf dt’a(t’)e'(”ﬂ"”R)‘ , (64)
dr 0
provided that,=0 att=0. Other initial conditions lead to
the same growth rate formul&O0).
Equation(64) implies that

t. near the critical radius,

tion is valid fort>wg?*.

A Frobenius analysigsAppendix Q of normal modes
suggests thaﬂt(ﬁd&ﬁg) is at worst logarithmically singular
. Accordingly, the second term in
Eq. (62) vanishes as the critical layer becomes infinitesimally
thin.

Substituting Eq.{66) into (62), and taking the limitér
—07, yields

d 2
&Aclzecllm ) (67)
in which
2w2Hg| r?|U|2dg/dr
e‘ClE_ 2 JR— (68)
6oN® | n|dQ/dr|

Using Eqgs.(56), (60), and(67), we may convert conser-
vation of wave activity(53) into an amplitude equation

d|al

dt = (€raq— €c)|al. (69
The solution to Eq(69) is |a|=a.e®", where
€rad— €
o= rat'JVI cl ' (70)

anda, is a constant coefficientf. Ref. 50.

For all cases considered here, the weilyhtof the VR
wave is positive. As a result, the sign gf,;— € gives the
sign of ;. Assuming thatdg/dr is negative at, , €y is
positive. Therefore, stirring of PV in the critical layer damps
the VR wave. Assuming that the 1B wave component of the
mode transports angular momentum outward at the bound-
ary, €,,qis positive. Therefore, IB wave emission induces the
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FIG. 9. Wave activity densities for the
(m,n)=(2,1) dominant mode of a
smoothed Rankine cyclone, with fixed
parameters Re 10, I,=r,, and vari-
ableA as indicated(d) corresponds to
a damped quasimode. In a given plot,
a; and a, have the same arbitrary
units.

15 B

05 -

bulk wave to grow. This competition between PV stirring in PV gradient. By definition, the integrdd excludes this criti-
the critical layer and 1B wave emission was discussed earliecal layer contribution. Accordingly, we make the approxima-

in connection to Fig. 8. tion

We emphasize that the analysis leading to &§) re- ) .
quires that the amplitude of the wave grows or decays on a M:f “dr al(r)+f “dr ay(r), (73)
slower time scale than its oscillation period, i.e., 0 0

in which r is between the spike ok, atr, and the core

W)
w_R<1' (71)  region in whicha, is otherwise concentrated. For all cases
_ _ . considered, we specifically set=1.2r.
That is, the wave must be near marginal stability. For quasimodesd«,<0) there is a more subtle iss(ee

Appendix B. Here the eigenvalue problefiEq. (39)] is

C. Verification solved along a contour of the form

We now verify the growth rate formuldq. (70)] of the
previous subsection. In particular, we consider the normal
modes of Fig. 7, which meet the requirement of weak growthin which O<rg=<r,. The imaginary part, satisfiesr(0)

© =0=r(rp). In addition, the contour must arc above the

2 5% 10 3«1, (72) complex critical radius. By choice, we keep uniformly

WR positive and small, such that

To evaluate the growth rate form_ula, we _must extract values 0<r,<0.015,. (75)
for M, €49, @nd ey from the critical radiusr, and wave
form ®(r) of a computed mode. Fa,qandeg, the proce- The eigenfunctiond(rg) that emerges from this problem
dure is straightforward. The procedure fdrrequires further only approximates the form of the physical quasimode.
explanation. Nonetheless, it is used here to evaluate the analytical growth
Figure 9 plots the primary and secondary densities of theate [Eq. (70)]. The procedure for quasimodes and normal
wave activity,a41(r) and a,(r), for four of the modes. Fig- modes is otherwise equivalent. Figur@lPplots the primary
ure 9a) corresponds to the case in which the smoothnesand secondary densities of modal wave activity, from which
parameter of the cyclone is smallest, i£50.025. In this we calculateM, for a quasimode in a cyclone with
example, the PV gradient at the critical radiys is negli-  =0.07. Note that by smoothing the cyclone, the distinction
gible, anda, has no visible amplitude there. Rather, is  between the critical layer and bulk wave activity has become
concentrated neayg , where the PV gradient is maximal. The less obvious; yet, we have kept the separation.atl.2r.
secondary density, extends over a broader region. Figures  The cross-hairé+) in Fig. 7 correspond te,, given by
9(b) and 9c) correspond to cases in which=0.0375 and Egq. (70), as explained. Apparently, Eq70) correctly de-
A=0.055. For both modesy; has a notable spike at the scribes the competition between CL damping and IB wave
critical radius, where resonant stirring now acts on a largeemission.

r=rg+ir,(rg), (74
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VII. CONCLUDING REMARKS V.v=0. (A4)

This paper has merged two disparate theories of disCreifiere 5 andp are pressure and mass density, both divided by
VR waves in a monotonic cyclone. One theory examined thgne constant reference densjty. Equations(Al)—(A4) are
decay of a VR wave due to the resonant disturbance of a P¥Yptained from(4)—(6), (9) by the transformatiord— —p,
gradient in its critical layet:'“*"*°Another theory exam- 4.5 and g/g,—g. In addition, z has returned to actual
ined the growth of a VR wave due to its excitation of a spiralpgjght. ’

IB wave in the ambient fluid?=2"We have referred to these

processes aSL dampingandIB wave emissiarrespectively.

CL damping was previously studied in the context of balance

models, which ignore the influence of IB waves. IB wave APPENDIX B: ANGULAR PSEUDOMOMENTUM

emission was previously studied for the case of zero PV

gradient in the critical layer The angular pseudomomentum density is a function of

he f
We believe that Eq¢(70) is the first analytical expression the form
for the growth rate of a VR wave that includésth CL Lo=[L(r,v)+C(q,0)]—[L(r,0)+C(q,0)]-V-G.
damping and IB wave emissidf This formula was derived P (B1)

as a corollary to conservation of wave activig). It shows ] . )
that the wave will damygor grow) if the PV gradient is above !t is closely related to the vertical angular momentum density
(or below) a threshold at the critical radius. . of the perturbation£(r,v) — £(r,v), and is flux conserva-
Several past studies have shown that monotonic vorticed/€ by construction. The Casimir functidh and gauge vec-
that coarsely represent tropical cyclones are stable and wilPr G are chosen so thal, is quadratic to lowest order in the
symmetrize'265% Furthermore, there is evidence that bal- Perturbation fields. _ .
ance models adequately describe the linear dynamics of VR~ We will attempt a solution fo€ andG, assuming tha€
waves in such vortices, despite Rossby numbers of ordéfePends only on. Then, a Taylor expansion of the first term
10-1002°42 |n part, this is because the CL damping of VR N £p, about the cyclonic equilibrium, yields

waves dominates the positive feedback of IB wave emission, dc 1d2C

i.e., €/ €ra> 1. £p=l’v/+—‘ q'+——2 (Q')Z—V-G+O[(Q')S]-
Of course, even if balance models describe damped VR dq T 2dq T

waves, they cannot describe the emitted IB waves. Further (B2

study of this transient radiation, in the context of the primi- . .
tive equations, may provide insight into various weather patWe next substitute the relation
terns that emerge in and around tropical cyclotdsere, we do
have focused on radiation from discrete VR waves. As men- g’ :VXU'.zd_+;2. Vo' +V-(0'Vxu') (B3)
tioned earlier, discrete VR waves typically dominate vortex z

deformations. However, an arbitrary PV perturbation mayinto the second term on the right-hand side of Q). To
also generate VR waves of another kind—sheareqjmnpiify the notation, let

spirals?~42334-42A comprehensive study would consider IB

wave emission from both discrete and sheared VR waves. do d [dcC
C]_Er - — | —/— ’ (B4)
dzdr\ dq|-—
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APPENDIX A: ISOMORPHISM BETWEEN 1d?C

dc
ATMOSPHERIC AND OCEANIC DYNAMICS Lp=cq +d—q‘V'Ce+ Ed_qz (0')?+V-(c;—G)
q

q

It is worth mentioning that Eq<$4)—(6), (9) are isomor- s
phic with the following inviscid, hydrostatic, Boussinesq +0[(q")”]. (B7)

equations that can be used to model oceanic fow: We may eliminate the first term on the right-hand side of

du+v-Vu+fzxXu+V,p=0, (A1) Eq. (B7) by settingc; =0. This condition is satisfied if
—p=9;plg, (A2) @) R ©8)
p+v-Vp=0, (A3) = 20oN? J o art.
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in which R(q) is the inverse of the mapping=q(R), and - [ radiativeb.c
Omax IS the maximum PV in the vortex. We have assumed 0003 | ¢ o D=20
— . . — [ e 0o D=20
that g is monotonic. We have also recalled thet/dz 0002 - v - v v D02
= 0,N?/g. From Eq.(B8), we obtain oot | y =
dC g ) 0 :
B 12, (B9) I i
dq T 26N -0.001 |
and 0002 |
-0.003 £ S
d2C g r P T H S ST R B
— | = . (B10) 0.04 0.05 0.06 0.07 0.08
dof? 5 6,N? do/dr A
Furthermore FIG. 10. Sponge-ring vs radiative boundary conditions. This plot shows the
' growth ratew, of the (m,n)=(2,1) dominant mode of a smoothed Rankine
r2 r cyclone, with variableA. The cyclone parameters are Rt0 andl,=r.
—| V.=V~ Cat —d,v' 9,0 . (B11) The X markers, connected by a solid curve, correspond to a radiative
dq _ 290N2 N2 z z boundary condition. The circles, triangles, diamonds, and squares corre-
q spond to sponge-ring boundary conditions, of varying absorfip@s in-

Substituting Eqs(B9)—(B11) into Eq.(B7), and setting dicated._ Filled _and empty symbols signify normal modes and quasimodes,
respectively.w, is normalized taZ, .

gr?
G=c,t+ WC3, (B12)
in which e=(r—rg). Therefore, in general, the first deriva-
yields tive of @ is weakly (logarithmically singular at the complex
g r@)? r critical radius.
= — '9,6"+0[(q")%]. (B13 _ Equationg43) relate®d to the velocity _and PV perturba-_
20poN- dg/dr N tions. There are several results worth noting. One may verify,

by direct substitution, that the velocity and PV perturbations
are regular at the inertial resonances,. At the complex
critical radiusrg, U and W are continuous well-defined
functions. On the other han¥, is logarithmically singular,

So, we have arrived at a flux-conserved quantity, that
reduces to the right-hand side of E§2) to lowest order in
the perturbation fields. Its exact form is given bel@f Ref.

59): andQ has a pole.
_ ’ 9 9~ 231 —
Lp=ro’+ 26oN? fadqR @-v-c. (B1Y  APPENDIX D: SPONGE-RING BOUNDARY
CONDITION
APPENDIX C: BEHAVIOR OF A MODE NEAR Another notable treatment of the far-field radial bound-
RESONANCES

ary is to let asponge-ringbuffer a “wall” at r=r,,. Here,
we apply a sponge ring that linearly damps the perturbation

This appendix briefly describes the form®d{r), and its '
fields (u’, v’ andd,¢’) at a rate

derivatives, near the false and genuine singular points of th

eigenmode equatiof89). The false singular points are the Z2(0) 15(r—r,,)
inertial resonances,. , defined by Nr)=D== 1+tanr(TW”, (D1)
w
o(r=)==Vulrs). (€D in whichD>0 is an adjustable absorption coefficient. Note
The genuine singular point is the complex critical radiys ~ thaty is effectively zero for <r,,(1—2/15). At the “wall,”
defined by we set
a(rg)=0. (C2) e (ry)=0. (D2)

A sponge ring slightly modifies the vortex eigenmode

A standard Frobenius analysis near yields g
problem. To begin with, we must let

O(ro+e)=d(r.) 1+2—f e+0(e?) (C3) oc—w—nQ+iy (D3)

M+

in Eqg. (39). Furthermore, we must replace the radiative
in which e=(r—r.). So, ® is regular at the inertial reso- boundary conditior{48) (j=1) with (D2).

nances. A standard Frobenius analysis meaiields Although a sponge ring is meant to absorb, it may par-
. tially reflect outward propagating 1B waves. The valueDof
& dgidr affects the reflectivity. In what follows, we examine how
P(rste)=0(rg)| 1+ —— eIn(e)+0(e) |, changingD varies the growth rate of a mode that represents
7" dQ/dr rs the VR—IB wave instability.
(C9 Figure 10 shows the growth rate of then,fh)=(2,1)
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dominant mode of a smoothed Rankine cycldke. (37)], (a) ®)

as a function of the parametér The fixed cyclone param- | v

eters are Re-10 andl,=r,. The X markers, connectedbya ' !

solid curve, are the growth rates obtained by a radiative Aetion contour );(w (Bol®
boundary condition at,=5.5r;. The same data appear in ’o j( T, I 0 Wobrnchew VR
Fig. 7. Iy

The additional data result from sponge-ring boundaries

_ : _ : FIG. 11. As the PV gradient at, increases above a threshol@ the
(Dl) (DZ)’ with fw=7.30. Filled Symb0|s correspond to imaginary part of the complex critical radingbecomes positive ang) the

normal modes, whereas ?mpty symbols correspond to quasiaginary part of the mode frequenay becomes negative. Such changes
modes. For weak absorptioD&0.2), the growth and decay are indicated by the dashed arrows. Above the gradient threshold, one must

rates differ notably from the solid curve. However, for 2 deform the radial integration contour abowugin order to keepw as a pole

<D=20, the sponge-ring and radiative boundary conditiongn the analytic continuation of the geopotential transfo}sm Otherwise, the
give approximately the same results. pole will “slip underneath” the branch cut. The subscriftsand| denote

. . . the real and imaginary parts of the complex varialvlesd v.
Figure 10 merely illustrates the extent to which sponge- ginary p P v

ring and radiative boundary conditions can differ. A more

comprehensive study is tangential, and not pursued here. )
By analogy to the theory developed in Ref. 14, we may

assume that Wk has a branch cut along the reakis. By
APPENDIX E: QUASIMODES furthe.r anglogy, we may assume that the dominant root of
WKk will “slip underneath” this branch cut, and disappear, as
In this appendix, we briefly examine the formal defini- the magnitude ofig/dr increases above a thresholdrat.
tion of a quasimode, and present a method for computing itslowever, the analytic properties of Wk vary with the radial
complex frequency 1%’ For simplicity, we consider a per- contourr on which it is defined, i.e., the flexible integration
turbation that consists of a single Fourier component, e.ggontour in Eq.(EJ). If we bend the radial contour above the
¢’ = ¢(r,t)cosmmz/H)e"*+c.c. We may define the Laplace realr axis[Fig. 11(@)], the branch cut of Wk will dip below
transform of the Fourier coefficiert, as follows: f[he realv.axis[Fig. 11(b)]. The dominant root wiII_r.eappea.r
if the radial contour arches over the complex critical radius
&T(r,y)zj dto(r,t)e™. (E1) s, defined bynQ(rq) = w. R
0 The recovered root of WK, and pole @f, corresponds
As such, the inversion contour is in the upper half of theto an exponentially damped quasimode. From above, we

complexv plane, and is antiparallel to the reabxis; i.e., conclude that the procedures for computing eigenmode and
1 (-wtip guasimode frequencies hardly differ. To find an eigenfre-

H(rt)=— _f dv d(r,v)e ", (E2)  quency, we solve the equation \\ékr)=0 for w, on the real
2m Jootip r axis. To find a quasimode frequency, we must solve the

where 8>0. equation Wkw,r)=0 for o on a deformedradial contour,

By standard techniques, we may convert the linearizedMilar to that in Fig. 1(a). Our numerics(see Sec. IV B
equations of motion into a single differential equatiom for ~ W&S easily generalized for this task. The principal modifica-

&+. Following Ref. 14, we may solve this differential equa- tion was to integrate Eq39) for &, and ®; along the de-
. : . : formed radial contour.
tion with the aid of a Green function.

For the purposes of this appendix, we need only consider

the form of the solution at the boundary radiys APPENDIX F: ALTERNATIVE DERIVATION OF THE
(r)—o2(r) ~ GROWTH RATE FORMULA

~ "o
¢T(rbyv)=J’ drrF(v,r)®,(r)®(ry) Wk . . .
0 rWk(w,r) Assume that the perturbation is an exponentially grow-

(E3)  ing mode. Substituting the normal mode solut[@y. (38)]
Here,F is a function that depends on both the basic vorticalinto conservation of wave activityeq. (35] yields
flow and the initial perturbation. As beford, and ® are ‘|
independent solutions of E39), with end-point conditions J dr o\(a1+ aj) = €aq, (F1
(45 and (48) (j=1), respectively. Theirr dependence is 0
implicit. Notably, the Wronskian ofb, and ®, [Eq. (49)]  wherea;,, a,, ande,qwere defined by Eqg59), (59), and

appears in the denominator of the integrand. (61). Using the identity
As a result, poles ofng(rb,v) will occur at discrete i
values ofr where the Wronskian is zer@or any and allr w|=§(o'_—o'+), (F2)

betweem 0 and,). Each pole explicitly contributes a term

to &S(rb ,t) that oscillates at a discrete frequency, and growsn which 0. =wg— nﬁiiw,, we may write
or decays exponentially with time. One zero of WKk, iat . dq/ U2 |U|?

= w, corresponds to the dominant growing eigenmode of w Q= — ”THg 2_q(| _ )
Sec. IV C. We will refer to this zero as thdominant root ON* " dri o, o

(F3)
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Note that we have used E@3) to expressy; as a function

of U, rather tharQ.
Consider the expansion

ry dq|U|? d
27D i
fo drr ar o, 1i|w,&wR
ry dq|U|?
+...| lim f drrz—q| |.
w—0" 0 dr O+
(F4)
From the Plemelj formuf§
ry dgqul® [ dq |U|?
lim j drrz—q—| |=f drrz—q—| |_
00" 70 dr o Jo dr wr—nQ
| rUl2dg/dr
Fim|——| , (FH
n|dQ/dr|
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