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This paper further examines the rate at which potential vorticity in the core of a monotonic cyclone
becomes vertically aligned and horizontally axisymmetric. We consider the case in which
symmetrization occurs by the damping of a discrete vortex Rossby~VR! wave. The damping of the
VR wave is caused by its stirring of potential vorticity at a critical radiusr * , outside the core of the
cyclone. The decay rate generally increases with the radial gradient of potential vorticity atr * .
Previous theories for the decay rate were based on ‘‘balance models’’ of the vortex dynamics. Such
models filter out inertia–buoyancy~IB! oscillations, i.e., gravity waves. However, if the Rossby
number is greater than unity, the core VR wave can excite a frequency-matched outward
propagating IB wave, which has positive feedback. To accurately account for this radiation, we here
develop a theory for the decay rate that is based on the hydrostatic primitive equations. Starting from
conservation of wave activity~angular pseudomomentum!, an expression for the decay rate is
derived. This expression explicitly demonstrates a competition between the destabilizing influence
of IB wave emission, and the stabilizing influence of potential vorticity stirring atr * . Moreover, it
shows that if the radial gradient of potential vorticity atr * exceeds a small threshold, the VR wave
will decay, and the vortex will symmetrize, even at large Rossby numbers. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1651485#

I. INTRODUCTION

Vortices abound in planetary flow. Familiar examples are
the Gulf Stream rings, hurricanes, and the polar stratospheric
vortex. Many geophysical vortices tend to become symmet-
ric, that is, vertically aligned and circular in the horizontal
plane. For example, numerical simulations indicate that the
vortices of planetary turbulence symmetrize on average, al-
though individual vortices may retain some degree of tilt and
ellipticity.1 We should also remark that symmetrization is
more than a geometrical curiosity. It can, in principle, con-
tribute to the intensification of a swirling storm, such as an
incipient tropical cyclone.2–4

One paradigm of symmetrization is the decay of a three-
dimensional~3D! deformation wave in a nearly symmetric
vortex. This paper will examine a mechanism that drives the
decay of the wave, and a mechanism that frustrates the de-
cay. We will focus on a wave in an atmospheric cyclone that
has strong vertical density stratification. We will assume that
the mean circular wind of the cyclone does not vary with
height. In addition, we will assume that the angular velocity
and potential vorticity of the cyclone decrease monotonically
with radiusr .

Early studies of 3D symmetrization4–10 assumed that the
vortex motion was quasigeostrophic. The quasigeostrophic

model applies only if the Rossby and Froude numbers,

Ro[
V

Lhf
and Fr[

V

LvN
, ~1!

are much less than unity.11,12 Here, V, Lh , and Lv are the
characteristic horizontal velocity, horizontal length scale, and
vertical length scale of the flow. In addition,f andN are the
Coriolis parameter and the buoyancy frequency of the local
atmosphere; typically,f !N.

In the quasigeostrophic approximation, the cyclone sup-
ports only one class of waves. These oscillations occur due
to a finite radial gradient of potential vorticity~PV!, and are
here calledvortex Rossby waves.13 A vortex Rossby~VR!
wave is either barotropic~2D! or baroclinic ~3D!. Figure 1
illustrates several of both kinds. Each is excited by deform-
ing the mean PV distribution, with a specific pair of vertical
(m) and azimuthal (n) wave numbers. In time, the deformed
PV structure spins about the vertical axis with a constant
angular phase velocity,vR /n. The wave frequencyvR gen-
erally increases withn.

In a monotonic cyclone, a VR wave is damped by a
resonance with the fluid rotation at a critical radiusr * .9,14–20

The critical radius satisfies the equation
a!Present address: Department of Atmospheric Science, Colorado State Uni-
versity, Fort Collins, CO 80523.
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V̄~r * !5vR /n, ~2!

in which V̄(r ) is the angular velocity of the mean cyclone.
Figure 2 illustrates how cat’s eyes develop in the horizontal
flow near r * , upon excitation of a VR wave (n52). The
perturbed flow in and near the cat’s eyes efficiently redistrib-
utes PV. For a monotonic cyclone, this redistribution has
negative feedback, and causes the wave to decay, exponen-
tially at early times. The decay rate is proportional to the
radial derivative of PV atr * . We will often refer to this
decay ascritical layer (CL) damping.

A recent effort was made to extend the theory of damped
VR waves to rapidly rotating cyclones, which have Rossby
numbers of order unity or greater.20 The analysis was based
on an asymmetric balance~AB! approximation of the wave
dynamics.21–23 Overall, the AB theory of VR waves com-
pared well to numerical simulations, based on less approxi-
mate primitive equations. However, the accuracy of AB
theory declined as the Rossby number became much greater
than unity. The error arose for the following reason: at such
large Rossby numbers, baroclinic VR waves can resonantly
excite inertia-buoyancy~IB! oscillations in the ambient fluid.
AB theory, like any balance model, neglects the creation and
feedback of these oscillations.

Figure 3 illustrates the potential error of neglecting IB
waves in the environment. The contour plots show the dy-
namical pressure perturbation (f8) that is produced by a VR
wave in a Rankine cyclone, with Ro510. According to the
primitive equations@Fig. 3~a!#, the core VR wave emits a
frequency-matched, spiral IB wave into the environment. It
has been shown that such emission has positive
feedback.24–30 In this example, there is effectively no PV
gradient atr * to provide negative feedback. As a result, the
amplitude of the VR wave doubles in 5.6 eddy turnovers~not
shown!. In contrast, AB theory@Fig. 3~b!# permits no radia-
tion, and predicts a stable wave.

In a similar way, a VR wave can amplify by emitting a
sound wave.31,32 Since the cyclones of interest have Mach
numbers much less than unity, we need not concern our-
selves with acoustic destabilization. However, the following
trend should be noted: VR waves tend to grow as the vortex
loses energy and angular momentum to the environment, by

FIG. 1. Deformed PV isosurfaces corresponding to a selection of barotropic~top row! and baroclinic~bottom row! VR waves. The wave amplitudes are
exaggerated for clarity.

FIG. 2. Streamlines of the horizontal flow~in a rotating frame! at an arbi-
trary heightz. The excitation of a VR wave creates cat’s eyes atr * . ‘‘Stir-
ring’’ of PV in this critical layer causes the wave to decay, and the vortex to
symmetrize. In this paper, we will assume that the wave amplitude is suffi-
ciently small to avoid nonlinear arrest of the decay~see Refs. 14, 15, 18, and
19!.

FIG. 3. Dynamical pressure perturbation (f8) produced by the (m,n)
5(2,2) VR mode of a smoothed Rankine cyclone@Eq. ~37!#, at an arbitrary
height z, according to:~a! the primitive equations and~b! the asymmetric
balance model. Solid and dashed contours indicate positive and negative
anomalies. The contour levels are the same in~a! and~b! and have arbitrary
units. The cyclone parameters are Ro510, l 25r 0 , and D50.025. Equa-
tions ~20! and~42! precisely define Ro and the deformation radiusl 2 . Equa-
tion ~37! defines the smoothness parameterD and the core radiusr 0 . The
Froude number, given here by Fr5Ror 0 / l 2 , is 10.

1335Phys. Fluids, Vol. 16, No. 5, May 2004 Damping and pumping of a vortex Rossby wave

Downloaded 22 Apr 2004 to 129.82.49.196. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



various means. This indicates that VR waves carry negative
energy and negative angular momentum.14

In this paper, we will revise the theory of discrete VR
waves in geophysical cyclones to incorporateboth critical
layer stirring and IB wave emission. The revised theory will
be based on the linearized hydrostatic primitive equations. A
growth rate formula@Eq. ~70!# will be derived as a corollary
to conservation of wave activity, i.e., angular pseudomomen-
tum. This formula will clearly demonstrate the negative feed-
back of critical layer stirring and the positive feedback of IB
wave emission. It will further show that there is a critical
value of the radial PV gradient atr * , above which the VR
wave is damped, and below which the wave will grow. Bal-
ance models are justified only if the PV gradient far exceeds
this critical value, and therefore dwarfs the influence of am-
bient IB waves~cf. Refs. 28 and 33!. We will verify the
revised growth rate formula upon comparison to numerics.

There are four subtle issues to address before advancing
to the main text. The first issue concerns the modal classifi-
cation of a VR wave. A growing VR wave appears as an
exact eigenmode of the linearized perturbation equations. A
damped VR wave does not; instead, it appears as a
quasimode.8,9,14–20 Physically, a quasimode hardly differs
from an eigenmode. It behaves like a single exponentially
damped wave over the bulk of the vortex; however, in a thin
critical layer, the PV perturbation grows.

The second issue concerns our restricted use of the term
‘‘VR wave.’’ In this paper, the term generally refers to a
discrete mode of oscillation. However, the literature also de-
scribes sheared VR waves.2–4,23,34–42Discrete and sheared
VR waves differ considerably. For example, the pressure
field of a sheared VR wave can decay algebraically, as op-
posed to exponentially, with time. Although an arbitrary PV
perturbation blends discrete and sheared waves, discrete
waves typically dominate vortex deformations.8,9,15,18,42,43

The third issue concerns our focus on monotonic cy-
clones, as opposed to arbitrary vortices. In this paper, we do
not discuss anticyclones, because they suffer centrifugal in-
stabilities at large Rossby numbers.44 We further assume
monotonicity to ensure that stirring in the critical layer
damps the VR wave. If the slopes of PV in the core and
critical layer were opposite, stirring atr * would ironically
amplify the wave.14

The fourth issue concerns the limitations of linear theory.
Although linear theory provides useful insight, there are vari-
ous nonlinear processes that merit future investigation. For
example, nonlinear stirring in the critical layer decreases the
magnitude of the radial PV gradient atr * .3,4,14,15,18,19If the
initial wave amplitude is sufficiently large, this gradient
might eventually drop below the stability threshold.45 Fur-
thermore, finite amplitude VR waves interact with others.
This may lead to beat-wave damping,46 among other effects.

Finally, although they do not pertain directly to geophys-
ical vortices, there are several analogous papers worth men-
tioning. These papers analyze waves in straight shear
flow47–49 and in stellar accretion disks.50–52 In general, they
discuss how PV stirring in the critical layer affects wave
stability. The accretion disk papers further discuss the posi-
tive feedback of sound-wave emission~as opposed to IB

wave emission!. Most notably, Papaloizou and Pringle50 de-
rive a growth rate formula for accretion disk waves that
closely resembles our Eq.~70!.

The remainder of this paper is organized as follows: Sec-
tion II reviews the hydrostatic primitive equations. Section
III presents the equations that govern 3D perturbations in a
barotropic cyclone. Section IV describes the VR–IB wave
instability in the context of linear eigenmode theory. Section
V shows how the VR–IB wave instability is quenched as the
radial PV gradient increases above a threshold in the critical
layer. Section VI contains the main result of this paper. In it,
we derive a formula for the growth rate of a VR wave, which
takes into account both CL damping and IB wave emission.
This formula agrees quantitatively with the growing and
damped waves of Secs. IV and V. Section VII recapitulates
our conclusions and discusses their possible relevance to
tropical cyclone dynamics.

II. MODEL FOR ATMOSPHERIC FLOW

In this paper, we will focus on vortex dynamics in a dry,
stably stratified atmosphere, for which the equation of state
is approximately that of an ideal gas,p5rRT. Here,p(x,t)
is pressure,r(x,t) is mass density,T(x,t) is temperature,R
is the gas constant,x is the position vector, andt is time. We
will neglect frictional effects, thermal diffusivity, and spatial
variation of the Coriolis parameterf . Finally, we will em-
ploy the hydrostatic and Boussinesq approximations. The re-
sulting model can also apply to oceanic flow,11 with an ap-
propriate change of variables~Appendix A!.

We will use the pressure-based coordinate system of
Hoskins and Bretherton~HB!, which is a staple of dynamical
meteorology.53 The HB coordinate system uses a function of
pressure for the vertical coordinate, rather than the actual
height variablez* . This function, called ‘‘pseudoheight,’’ is
defined below:

z~p![F12S p

p0
D R/cpG cp

R

p0

r0g
, ~3!

whereg is the gravitational acceleration,cp is the isobaric
specific heat of the atmosphere, andp0 (r0) is a constant
reference pressure~density!.

Assuming hydrostatic balance,z increases (p decreases!
monotonically withz* . Hydrostatic balance also implies the
differential relation, dz5dz* u0 /u. Here, u(x,t)
[T(p0 /p)R/cp is the potential temperature, andu0 is the
reference temperature. The potential temperature relates to
the specific entropy bys5cp ln(u/u0).

In the HB coordinate system, the equations of motion are

] tu1v•¹u1 f ẑ3u1¹hf50, ~4!

u5u0]zf/g, ~5!

] tu1v•¹u50, ~6!

¹•rpv50, ~7!

where¹h[ x̂]x1 ŷ]y , and¹[¹h1 ẑ]z . Equation~4! is the
momentum equation, describing the evolution of the hori-
zontal velocity fieldu(x,t). The 3D velocity field is given by
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v(x,t)5u1wẑ, wherew(x,t) is the material derivative ofz.
Note that the pressure force was transformed into the gradi-
ent of the geopotential,f(x,t)[gz* . Equation~5! is a con-
venient expression of hydrostatic balance. Equation~6! is the
adiabatic heat equation. Equation~7! is mass conservation. It
involves the pseudodensity, defined by

rp~z![r0S p

p0
D cv /cp

. ~8!

In the Boussinesq approximation,rp is treated as a constant
in ~7!, and divided through on both sides to obtain

¹•v50. ~9!

Hereafter, we will use the Boussinesq approximation.
In addition to conserving entropy, our atmospheric

model @Eqs. ~4!–~6!, ~9!# conserves Boussinesq potential
vorticity

q~x,t ![~¹3u1 f ẑ!•¹u ~10!

along material trajectories. That is,

] tq1v•¹q50. ~11!

It is possible to construct additional flux-conservative
equations from~4! to ~6! and~9!. One is for the evolution of
energy density

] tE52¹•Fe , ~12!

in which

E~x,t ![
u2

2
1f2fuz50 , ~13!

and

Fe~x,t ![vS u2

2
1f D1E

0

z

dz8u]z8f2 ẑz~w]zf!uz50 .

~14!

Another is for the evolution of vertical angular momentum
density

] tL52¹•Fl , ~15!

in which

L~x,t ![ ẑ•~x3u!, ~16!

and

Fl~x,t ![vF ẑ•~x3u!1
f r 2

2 G1 ẑ3xf. ~17!

Note thatr 2[( ẑ3x)2. Finally, we have

] tC~q,u!52¹•vC~q,u!, ~18!

where C is an arbitrary function of potential vorticity and
potential temperature. Of course, any linear combination of
E, L, andC will also satisfy a flux-conservative equation.

The fluid dynamics is generally sensitive to the boundary
conditions. We will focus on flow in a horizontal layer,
bounded betweenz50 and H. For simplicity, we will as-
sume thatu is constant along the top (z5H) and bottom
(z50) surfaces. From Eq.~6!, and the convective stability

condition ]zu.0, constantu implies zero vertical velocity
(w50). Accordingly, the vertical energy flux (Fe• ẑ) and
vertical angular momentum flux (Fl• ẑ) both vanish atz50
andH. However, we will allow energy and angular momen-
tum to leave the radial boundary via waves.

III. PERTURBATIONS IN A CYCLONE

We now present the equations that govern 3D perturba-
tions in a barotropic cyclone. In general, we will denote the
perturbation of a fieldx(x,t) about the basic statex̄(r ,z) by
a prime; i.e.,x8(x,t)[x2x̄. In addition, we will use a cy-
lindrical coordinate system (r ,w,z) ~see Fig. 1!, in which the
vector field (u,v,w) gives the radial, azimuthal, and vertical
velocities, in that order.

A. Unperturbed cyclone

The unperturbed cyclone is characterized by its azi-
muthal velocity profilev̄(r ). For convenience, we define the
auxiliary fields

V̄~r ![
v̄
r

, z̄~r ![
1

r

d~r v̄ !

dr
,

j̄~r ![ f 12V̄, h̄~r ![ f 1 z̄. ~19!

Here, V̄ is the angular rotation frequency,z̄ is the vertical
vorticity, j̄ is the modified Coriolis parameter, andh̄ is the
absolute vorticity. The intensity of the cyclone is measured
by the central Rossby number

Ro5
z̄~0!

f
. ~20!

Figure 4 shows the vertical vorticityz̄ for a class of cyclones
that we will examine.

The unperturbed vortex is stationary due to a balance of
forces. This includes gradient balance

] rf̄5 f v̄1
v̄2

r
, ~21!

and hydrostatic balance

FIG. 4. The relative vorticity of a smoothed Rankine cyclone. The potential

vorticity, q̄} f 1 z̄, has the same form. Equation~37! defines the parameters
r 0 andD.
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]zf̄5
g

u0
ū. ~22!

The positive derivative ofū(z) determines the buoyancy fre-
quency

N[A g

u0

dū

dz
5A]zzf̄. ~23!

To simplify future analysis, we will assume thatN is con-
stant.

The unperturbed PV distribution is given by

q̄~r ![~ f 1 z̄ !
dū

dz
5

u0N2

g
~ f 1 z̄ !. ~24!

Note thatdq̄/dr is proportional to, and has the same sign as,
dz̄/dr. Therefore, the unperturbed PV and vorticity gradients
are essentially the same.

B. Linearized dynamics

The perturbation equations are easily derived from the
original model ~4!–~6!, ~9!. In cylindrical coordinates, the
linearized equations for the velocity and geopotential pertur-
bations are

] tu81V̄]wu82 j̄v81] rf850, ~25!

] tv81V̄]wv81h̄u81
1

r
]wf850, ~26!

] t]zf81V̄]w]zf81w8N250, ~27!

1

r
] r~ru8!1

1

r
]wv81]zw850. ~28!

In addition, the linearized potential vorticity equation is

] tq81V̄]wq81u8
dq̄

dr
50, ~29!

in which, to first order,

q85
u0N2

g
~¹3u8!• ẑ1

u0

g
h̄]zzf8. ~30!

C. Wave activity

To simplify future analysis of modal growth and decay,
we will appeal to conservation of wave activity. The wave
activity in a vortex of radiusr v is defined by

Av~ t;r v![2E
0

2pE
0

HE
0

r v
~dw dz drr!Lp , ~31!

in which

Lp~r ,w,z,t ![
g

2u0N2

r ~q8!2

dq̄/dr
1

r ]zv8]zf8

N2 ~32!

is the ‘‘angular pseudomomentum.’’ Appendix B explains
how Lp closely relates to the vertical angular momentum

density of a perturbation. The reader may consult Refs. 22,
23, and 54–59 for more details on angular pseudomomentum
and its cousins.

The following steps lead to a flux-conservative equation
for Lp :

~i! differentiate Eq.~26! with respect toz;
~ii ! multiply the new Eq.~26! by r ]zf8/N2;
~iii ! multiply Eq. ~27! by r ]zv8/N2;
~iv! multiply Eq. ~29! by

g

u0N
2

r

dq̄/dr
q8;

~v! sum the new Eqs.~26!, ~27!, and~29!.

Simplifying the sum yields

] tLp52¹•Fp , ~33!

in which

Fp[ r̂ ru8v8

1ŵH r V̄Lp1
r

2N2 ~]zf8!21
r

2
@~v8!22~u8!2#J

1 ẑS h̄r

N2 u8]zf81rw8v8D . ~34!

Note that the flux of angular pseudomomentum (Fp• ẑ) van-
ishes at the vertical boundaries, since]zf8505w8 at z50
and atz5H.

The volume integral of Eq.~33! implies that

dAv

dt
5Srad, ~35!

in which

Srad~ t;r v![E
0

2pE
0

H

~dw dz!r v
2~u8v8!r v

. ~36!

Fundamentally,Srad is the rate at which wave activity enters
the vortex from the environment. It is also the outward flux
of vertical angular momentum.

IV. INSTABILITY OF A RANKINE CYCLONE:
INERTIA–BUOYANCY WAVE EMISSION

A. Smoothed Rankine cyclone

We now describe the potential instability of a rapidly
rotating monotonic cyclone in greater detail. In particular, we
consider a smoothed Rankine cyclone, defined by

z̄~r !5
Z0

2 F12tanhS r 2r 0

r 0D D G . ~37!

Here,Z0 is the central vorticity andD is a smoothness pa-
rameter. Figure 4 illustrates how the smoothness increases as
D increases.

We will only consider cases in which the Rossby number
Ro5Z0 / f exceeds unity. Only then can a VR wave, on the
scale of the vortex, emit a frequency-matched IB wave into
the environment.60,61Such emission is required for instability
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in an unbounded system. Balance models, which neglect IB
waves, generally purport that unbounded monotonic cy-
clones are stable.62

B. The eigenmode problem

The VR–IB wave instability appears as an exponentially
growing normal mode. A normal mode of a monotonic cy-
clone, with isothermal boundaries atz50 andz5H, has the
form

f8~r ,w,z,t !5aF~r !cos~mpz/H !ei (nw2vt)1c.c.,

u8~r ,w,z,t !5aU~r !cos~mpz/H !ei (nw2vt)1c.c.,

v8~r ,w,z,t !5aV~r !cos~mpz/H !ei (nw2vt)1c.c., ~38!

w8~r ,w,z,t !5aW~r !sin~mpz/H !ei (nw2vt)1c.c.,

q8~r ,w,z,t !5aQ~r !cos~mpz/H !ei (nw2vt)1c.c.,

wherea is an arbitrary constant, and c.c. denotes the com-
plex conjugate.

Substituting the normal mode solution into Eqs.~25!–
~28!, and performing some manipulation, we obtain

1

r

d

dr F r

m̄2s2

d

dr
FG2

n

sr

d

dr
F j̄

m̄2s2GF

2F n2

r 2~m̄2s2!
1

1

f 2l m
2 GF50, ~39!

where

m̄~r ![j̄h̄ ~40!

is the ‘‘inertial stability,’’

s~r ![v2nV̄ ~41!

is the complex Doppler shifted mode frequency, and

l m[NH/mpu f u ~42!

is themth internal Rossby deformation radius. The complex
mode frequencies are the values ofv that permit a solution
to Eq. ~39!, with prescribed radial boundary conditions.

Once a solution is found forF, the other field variables
are obtained by the following relations:

U~r !5
i

m̄2s2 S s
dF

dr
2

nj̄

r
F D ,

V~r !5
1

m̄2s2 S h̄
dF

dr
2

ns

r
F D ,

~43!

W~r !52
imps

HN2 F,

Q~r !5
2 i

s

dq̄

dr
U.

In general,s is complex, and the resonant denominators in
Eqs. ~43! are nonzero for allr . Appendix C analyzes the
modal solution near the resonances. It turns out that the in-
ertial resonances, wherem̄5s2, are spurious singularities.

In what follows, we will focus on nonaxisymmetric (n
>1) baroclinic (m>1) modes. Other modes are either pure
VR waves (m50) or pure IB waves (n50). Accordingly,
other modes cannot represent hybrid instabilities.

To find the normal modes, we must specify the radial
boundary conditions. Asr→0, there exist two independent
solutions to Eq.~39!:

F I
(1)~r !;r 2n, n>1,

~44!
F I

(2)~r !;r n, n>1.

The singular solutionF I
(1) is rejected on physical grounds,

leavingF I
(2) as the natural choice. This implies the following

mixed boundary condition at a point near the origin:

dF

dr
.

n

r
F. ~45!

As r→`, i.e., in the radiation zone, there also exist two
independent solutions to Eq.~39!; they are

F II
(1)~r !;H0

(1)~k!, F II
(2)~r !;H0

(2)~k!, ~46!

in which

k[
Av2/ f 221

l m
r , 2p/2,arg~k!<p/2, ~47!

andH0
( j ) is the zeroth-order Hankel function of thej th kind.

The associated mixed boundary conditions at a pointk2

@n2, andr much greater than the vortex scale, are

dF

dr
.2 i 2 j 11

Av2/ f 221

l m
F. ~48!

The first (j 51) and second (j 52) Hankel functions corre-
spond to radially outward and radially inward propagating
waves ~spiral if n>1). As in related literature,44 we will
choose the outward propagating (j 51) wave as the ‘‘radia-
tion condition’’ for an unbounded medium. In Appendix D,
we discuss another possibility—the sponge-ring boundary
condition. The sponge ring deserves some attention, because
it is often used in numerical simulations.

To compute the normal modes, we generally use a
center-point shooting scheme. We first obtain the inner and
outer solutions of Eq.~39! for a trial value ofv. The inner
solution (F I) must satisfy Eq.~45! at a radius« near zero.
The outer solution (F II) must satisfy Eq.~48! ( j 51) at a
sufficiently large radiusr b . The value ofv is varied until the
Wronskian

Wk~v,r ![F I~r !
dF II

dr
~r !2F II~r !

dF I

dr
~r !, ~49!

vanishes at an arbitrary radiusr between zero andr b , and
hence at all radii.63 Wk50 indicates thatv is an eigenfre-
quency, andF I (}F II) is an eigenfunction. The values of«
and r b are decreased and increased, respectively, until the
eigenfrequency converges to the desired accuracy.

C. Dominant modes

We now examine the dominant modes of a smoothed
Rankine cyclone, with parametersD50.025, l 25r 0 , and
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Ro510. By definition, adominant modeis the fastest grow-
ing eigenmode for a given wave vector~m,n!.

Figure 5 shows the geopotential perturbationF(r ) for
several dominant modes. Each mode has the same vertical
wave number,m52. The azimuthal wave numbers vary from
n51 to n54. Extended tick marks indicate the locations of
the critical radii. In each case,r * is greater thanr 0 .

Figure 6 shows the complex frequencyv5vR1 iv I of
the dominant mode for eachn, asm increases from 0 to 4.
The shorteste-folding time (v I

21) in this sample is about
four central rotation periods. Them50 frequencies were cal-
culated analytically, assuming a radially unbounded

domain.14,18 These modes are stable because they represent
pure VR waves.

We may view each dominant mode as having inner and
outer parts. As in Sec. I, we identify the inner part as a VR
wave. It is peaked approximately whereudq̄/dru is maxi-

mum, and is retrograde (vR /n,V̄) at that location. As the
radius r increases, the mean cyclonic flow becomes negli-
gible. In this outer region, the eigenmode is a spiral wave
that propagates away from the vortex. There is no local PV
gradient to support this propagation. Accordingly, we iden-
tify the outer part of the dominant mode as an IB wave.

We note that a shooting code does not necessarily find
the dominant mode. However, we have checked~for many
cases! that the modes in Figs. 5–7 dominate numerical inte-
grations of the initial value problem, after short transition
periods. Our numerical simulations employed a sponge-ring
boundary condition, with absorption coefficientD520, and
r w57.5r 0 ~see Appendix D!. The initial conditions were
simple vortex deformations as in Ref. 20.

V. STABILIZATION OF A SMOOTHED RANKINE
CYCLONE: A HINT OF CRITICAL LAYER DAMPING

Figure 7 illustrates how smoothing the edge of the vor-
tex ~increasingD! decreases the growth ratev I of a dominant
mode. It is crucial to realize that smoothing the edge actually
steepensthe unperturbed PV profile at the critical radiusr * .
As a result, CL damping intensifies. This would explain the
observed decay ofv I .

As D surpasses a threshold,v I becomes negative. Asv I

becomes negative, the wave becomes aquasimode.8,9,14–20

Over most of the cyclone, a quasimode behaves like a single
damped wave. In contrast, the PV perturbation grows in the

FIG. 5. Geopotential eigenfunctions for them52 dominant modes of a smoothed Rankine cyclone. The cyclone parameters are Ro510, l 25r 0 , andD
50.025. Then52 dominant mode was shown previously, in Fig. 3~a!.

FIG. 6. Complex frequencies of the dominant modes of a smoothed Rankine
cyclone.v I is the growth rate andvR is the oscillation frequency. Solid
curves connect the data for a single azimuthal wave numbern. Arrows are
in the direction of increasing vertical wave number,mP$0,1,2,3,4%. The
cyclone parameters are Ro510, l 25r 0 , andD50.025.v I andvR are nor-
malized to the central vorticityZ0 .
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critical layer. Consequently, the disturbance is not a solution
to the eigenmode problem. Appendix E describes a method
for computing the complex frequencies of quasimodes. The
resulting values forv I appear as empty symbols in Fig. 7.

The data in Fig. 6 also reflect the stabilizing influence of
a steepened PV profile atr * . As the vertical wave numberm
increases, the critical radius decreases to a region of larger
dq̄/dr.9,20 Accordingly,v I eventually diminishes.

VI. CRITICAL LAYER DAMPING VERSUS IB WAVE
EMISSION

Figure 8 illustrates the interaction of a VR wave with its
critical layer and the environment. A VR wave acts on the
environment by emitting an IB wave. It acts on the critical
layer by resonantly disturbing PV in that region. The results
of Sec. IV indicated that IB wave emission has positive
feedback.24–30 The results of Sec. V indicated that PV stir-
ring in the critical layer has negative feedback.9,14–20In what
follows, we will use conservation of wave activity to quan-
tify the competition between both feedbacks.

A. Decomposition of wave activity

We assume that the perturbation within the cyclone is
dominated by a single VR wave, with a critical radius atr * .
Furthermore, we divide the wave activity into bulk (b) and
critical layer ~cl! components:

Av~ t;r v!5Ab~ t;r v ,r * !1Acl~ t;r * !, ~50!

in which

Ab[2E
0

2pE
0

H

«
0

r v
~dw dz drr!Lp , ~51!

and

Acl[2E
0

2pE
0

HE
r
*

2dr

r
*

1dr

~dw dz drr!Lp . ~52!

Here,dr is the half width of the critical layer, and« denotes
integration outside the critical layer, i.e., over the bulk of the
vortex. Ultimately, we will consider the limitdr→01. With
the present decomposition, conservation of wave activity
@Eq. ~35!# becomes

d

dt
Ab5Srad2

d

dt
Acl . ~53!

In principle, the vortex radiusr v is arbitrary, insofar as it
is greater thanr * 1dr . Choosingr v near its lower limit typi-
cally ensures thatAb represents the VR wave activity, with
only a small contribution from the emitted IB wave.

B. Growth rate formula: A physical derivation

In this subsection, we derive an analytical expression for
the growth rate of a VR wave. Our presentation aims to
elucidate the dynamics, at the expense of mathematical rigor.
Appendix F outlines a more formal derivation.

Because a single wave dominates the perturbation, we
may write

f8~r ,w,z,t !.a~ t !F~r !cos~mpz/H !ei (nw2vRt)1c.c.,

u8~r ,w,z,t !.a~ t !U~r !cos~mpz/H !ei (nw2vRt)1c.c.,

v8~r ,w,z,t !.a~ t !V~r !cos~mpz/H !ei (nw2vRt)1c.c.,

w8~r ,w,z,t !.a~ t !W~r !sin~mpz/H !ei (nw2vRt)1c.c.
~54!

Here, as opposed to~38!, the frequencyvR in the exponen-
tial is real, and the amplitudea is a complex valued function
of time. In the critical layer, we permit a small correction to
the single wave model. To emphasize its potential deviance,
we separate the critical layer disturbance from the bulk dis-
turbance. For example, the PV perturbation becomes

FIG. 7. Growth rate of two VR waves as a function of the smoothness
parameterD. IncreasingD corresponds to increasing the PV gradient at the
critical radiusr * . Filled or empty symbols indicate that the VR wave is a
normal mode or quasimode, respectively. The cross-hairs correspond to Eq.
~70!. The solid curves are to aid the eye. The fixed cyclone parameter is
l 25r 0 . v I is normalized toZ0 .

FIG. 8. Diagram showing the source and sink of VR wave activity~ampli-
tude!, according to linearized dynamics.
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q8~r ,w,z,t !5H a~ t !Q~r !cos~mpz/H !ei (nw2vRt)1c.c. ur 2r * u.dr

q̂cl~r ,t !cos~mpz/H !einw1c.c. ur 2r * u,dr
. ~55!

In the single wave model,dAb /dt is proportional to the
rate of change ofuau. In particular,

d

dt
Ab5M uau

duau
dt

. ~56!

Here, we have introduced the weight

M[«
0

r v
dr@a1~r !1a2~r !#, ~57!

in which

a1~r ![2
2pHg

u0N2 r 2
uQu2

dq̄/dr
, ~58!

and

a2~r ![2
4pH

f 2l m
2 r 2R@VF* #. ~59!

In Eq. ~59!, R@...# denotes the real part of the quantity in
square brackets.

We may also relateSrad anddAcl /dt to the wave ampli-
tudeuau. Substituting the single wave solution into the right-
hand-side of Eq.~36! yields

Srad5e raduau2, ~60!

in which

e rad[2pHr v
2R@UV* # r v

. ~61!

Substituting a generic critical layer perturbation into the defi-
nition of Acl , and taking the time derivative, yields

d

dt
Acl52

pHg

u0N2 E
r
*

2dr

r
*

1dr

dr
r 2

dq̄/dr
] t~ q̂clq̂cl* !

2
pH

f 2l m
2 E

r
*

2dr

r
*

1dr

dr r 2] t~ v̂clf̂cl* 1c.c.!. ~62!

In the critical layer, the linearized PV equation~29! takes
the form

] tq̂cl1 inV̄q̂cl52aUe2 ivRt
dq̄

dr
. ~63!

Here, we have approximatedu8 by its dominant single wave
component, since it is multiplied by a small parameter
(dq̄/dr nearr * ). Integrating Eq.~63! yields

q̂cl52U
dq̄

dr
e2 inV̄tE

0

t

dt8a~ t8!ei (nV̄2vR)t8, ~64!

provided thatq̂cl50 at t50. Other initial conditions lead to
the same growth rate formula~70!.

Equation~64! implies that

] t~ q̂clq̂cl* !52uUu2S dq̄

dr D
2

RFa~ t !E
0

t

dt8a* ~ t8!

3ei (nV̄2vR)(t2t8)G . ~65!

For t!uau/(duau/dt), we may substitute the approximation
a* (t8).a* (t) into the right-hand-side of Eq.~65!. With
some additional reduction, we find that the PV perturbation
develops a sharp peak at the critical radius, i.e.,

] t~ q̂clq̂cl* !.2uUu2S dq̄

dr
D 2

sin@~nV̄2vR!t#

nV̄2vR

uau2~ t !

.2puUu2S dq̄

dr
D 2

d~r 2r * !

nudV̄/dru
uau2~ t !, ~66!

in which d is the Dirac distribution. The second approxima-
tion is valid for t@vR

21 .
A Frobenius analysis~Appendix C! of normal modes

suggests that] t( v̂clf̂cl* ) is at worst logarithmically singular
near the critical radiusr * . Accordingly, the second term in
Eq. ~62! vanishes as the critical layer becomes infinitesimally
thin.

Substituting Eq.~66! into ~62!, and taking the limitdr
→01, yields

d

dt
Acl5ecluau2, ~67!

in which

ecl[2
2p2Hg

u0N2 F r 2uUu2dq̄/dr

nudV̄/dru
G

r
*

. ~68!

Using Eqs.~56!, ~60!, and~67!, we may convert conser-
vation of wave activity~53! into an amplitude equation

M
duau
dt

5~e rad2ecl!uau. ~69!

The solution to Eq.~69! is uau5a0ev It, where

v I5
e rad2ecl

M
, ~70!

anda0 is a constant coefficient~cf. Ref. 50!.
For all cases considered here, the weightM of the VR

wave is positive. As a result, the sign ofe rad2ecl gives the
sign of v I . Assuming thatdq̄/dr is negative atr * , ecl is
positive. Therefore, stirring of PV in the critical layer damps
the VR wave. Assuming that the IB wave component of the
mode transports angular momentum outward at the bound-
ary, e rad is positive. Therefore, IB wave emission induces the
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bulk wave to grow. This competition between PV stirring in
the critical layer and IB wave emission was discussed earlier,
in connection to Fig. 8.

We emphasize that the analysis leading to Eq.~69! re-
quires that the amplitude of the wave grows or decays on a
slower time scale than its oscillation period, i.e.,

v I

vR
!1. ~71!

That is, the wave must be near marginal stability.

C. Verification

We now verify the growth rate formula@Eq. ~70!# of the
previous subsection. In particular, we consider the normal
modes of Fig. 7, which meet the requirement of weak growth

v I

vR
,531023!1. ~72!

To evaluate the growth rate formula, we must extract values
for M , e rad, and ecl from the critical radiusr * and wave
form F(r ) of a computed mode. Fore rad andecl , the proce-
dure is straightforward. The procedure forM requires further
explanation.

Figure 9 plots the primary and secondary densities of the
wave activity,a1(r ) anda2(r ), for four of the modes. Fig-
ure 9~a! corresponds to the case in which the smoothness
parameter of the cyclone is smallest, i.e.,D50.025. In this
example, the PV gradient at the critical radiusr * is negli-
gible, anda1 has no visible amplitude there. Rather,a1 is
concentrated nearr 0 , where the PV gradient is maximal. The
secondary densitya2 extends over a broader region. Figures
9~b! and 9~c! correspond to cases in whichD50.0375 and
D50.055. For both modes,a1 has a notable spike at the
critical radius, where resonant stirring now acts on a larger

PV gradient. By definition, the integralM excludes this criti-
cal layer contribution. Accordingly, we make the approxima-
tion

M.E
0

r c
dr a1~r !1E

0

r v
dr a2~r !, ~73!

in which r c is between the spike ofa1 at r * and the core
region in whicha1 is otherwise concentrated. For all cases
considered, we specifically setr c51.2r 0 .

For quasimodes (v I,0) there is a more subtle issue~see
Appendix E!. Here the eigenvalue problem@Eq. ~39!# is
solved along a contour of the form

r 5r R1 ir I~r R!, ~74!

in which 0<r R<r b . The imaginary partr I satisfiesr I(0)
505r I(r b). In addition, the contour must arc above the
complex critical radius. By choice, we keepr I uniformly
positive and small, such that

0<r I,0.015r 0 . ~75!

The eigenfunctionF(r R) that emerges from this problem
only approximates the form of the physical quasimode.
Nonetheless, it is used here to evaluate the analytical growth
rate @Eq. ~70!#. The procedure for quasimodes and normal
modes is otherwise equivalent. Figure 9~d! plots the primary
and secondary densities of modal wave activity, from which
we calculateM , for a quasimode in a cyclone withD
50.07. Note that by smoothing the cyclone, the distinction
between the critical layer and bulk wave activity has become
less obvious; yet, we have kept the separation atr c51.2r 0 .

The cross-hairs~1! in Fig. 7 correspond tov I , given by
Eq. ~70!, as explained. Apparently, Eq.~70! correctly de-
scribes the competition between CL damping and IB wave
emission.

FIG. 9. Wave activity densities for the
(m,n)5(2,1) dominant mode of a
smoothed Rankine cyclone, with fixed
parameters Ro510, l 25r 0 , and vari-
ableD as indicated.~d! corresponds to
a damped quasimode. In a given plot,
a1 and a2 have the same arbitrary
units.
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VII. CONCLUDING REMARKS

This paper has merged two disparate theories of discrete
VR waves in a monotonic cyclone. One theory examined the
decay of a VR wave due to the resonant disturbance of a PV
gradient in its critical layer.9,14,16–20Another theory exam-
ined the growth of a VR wave due to its excitation of a spiral
IB wave in the ambient fluid.24–27We have referred to these
processes asCL dampingandIB wave emission, respectively.
CL damping was previously studied in the context of balance
models, which ignore the influence of IB waves. IB wave
emission was previously studied for the case of zero PV
gradient in the critical layer.

We believe that Eq.~70! is the first analytical expression
for the growth rate of a VR wave that includesboth CL
damping and IB wave emission.64 This formula was derived
as a corollary to conservation of wave activity~53!. It shows
that the wave will damp~or grow! if the PV gradient is above
~or below! a threshold at the critical radiusr * .

Several past studies have shown that monotonic vortices
that coarsely represent tropical cyclones are stable and will
symmetrize.42,65,66 Furthermore, there is evidence that bal-
ance models adequately describe the linear dynamics of VR
waves in such vortices, despite Rossby numbers of order
10–100.20,42 In part, this is because the CL damping of VR
waves dominates the positive feedback of IB wave emission,
i.e., ecl /e rad@1.

Of course, even if balance models describe damped VR
waves, they cannot describe the emitted IB waves. Further
study of this transient radiation, in the context of the primi-
tive equations, may provide insight into various weather pat-
terns that emerge in and around tropical cyclones.67 Here, we
have focused on radiation from discrete VR waves. As men-
tioned earlier, discrete VR waves typically dominate vortex
deformations. However, an arbitrary PV perturbation may
also generate VR waves of another kind—sheared
spirals.2–4,23,34–42A comprehensive study would consider IB
wave emission from both discrete and sheared VR waves.
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APPENDIX A: ISOMORPHISM BETWEEN
ATMOSPHERIC AND OCEANIC DYNAMICS

It is worth mentioning that Eqs.~4!–~6!, ~9! are isomor-
phic with the following inviscid, hydrostatic, Boussinesq
equations that can be used to model oceanic flow:11

] tu1v•¹u1 f ẑ3u1¹hp̃50, ~A1!

2 r̃5]zp̃/g, ~A2!

] tr̃1v•¹r̃50, ~A3!

¹•v50. ~A4!

Here,p̃ andr̃ are pressure and mass density, both divided by
the constant reference densityr0 . Equations~A1!–~A4! are
obtained from~4!–~6!, ~9! by the transformationu→2 r̃,
f→ p̃ and g/u0→g. In addition, z has returned to actual
height.

APPENDIX B: ANGULAR PSEUDOMOMENTUM

The angular pseudomomentum density is a function of
the form

Lp[@L~r ,v !1C~q,u!#2@L~r ,v̄ !1C~ q̄,ū !#2¹•G.
~B1!

It is closely related to the vertical angular momentum density
of the perturbation,L(r ,v)2L(r ,v̄), and is flux conserva-
tive by construction. The Casimir functionC and gauge vec-
tor G are chosen so thatLp is quadratic to lowest order in the
perturbation fields.

We will attempt a solution forC andG, assuming thatC
depends only onq. Then, a Taylor expansion of the first term
in Lp , about the cyclonic equilibrium, yields

Lp5rv81
dC

dq
U

q̄

q81
1

2

d2C

dq2U
q̄

~q8!22¹•G1O@~q8!3#.

~B2!

We next substitute the relation

q85¹3u8• ẑ
dū

dz
1h̄ ẑ•¹u81¹•~u8¹3u8! ~B3!

into the second term on the right-hand side of Eq.~B2!. To
simplify the notation, let

c1[r 2
dū

dz

d

dr S dC

dq
U

q̄
D , ~B4!

c2[
dC

dq
U

q̄

F r̂
dū

dz
v82ŵ

dū

dz
u81 ẑh̄u8G , ~B5!

and

c3[u8¹3u8. ~B6!

Then, Eq.~B2! becomes

Lp5c1v81
dC

dq
U

q̄

¹•c31
1

2

d2C

dq2U
q̄

~q8!21¹•~c22G!

1O@~q8!3#. ~B7!

We may eliminate the first term on the right-hand side of
Eq. ~B7! by settingc150. This condition is satisfied if

C~q!5
g

2u0N2 Eqmax

q

dq̃ R2~ q̃!, ~B8!
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in which R(q) is the inverse of the mappingq5q̄(R), and
qmax is the maximum PV in the vortex. We have assumed
that q̄ is monotonic. We have also recalled thatdū/dz
5u0N2/g. From Eq.~B8!, we obtain

dC

dq
U

q̄

5
g

2u0N2
r 2, ~B9!

and

d2C

dq2 U
q̄

5
g

u0N2

r

dq̄/dr
. ~B10!

Furthermore,

dC

dq
U

q̄

¹•c35¹•

gr2

2u0N2
c31

r

N2
]zv8]zf8. ~B11!

Substituting Eqs.~B9!–~B11! into Eq. ~B7!, and setting

G5c21
gr2

2u0N2 c3 , ~B12!

yields

Lp5
g

2u0N2

r ~q8!2

dq̄/dr
1

r

N2
]zv8]zf81O@~q8!3#. ~B13!

So, we have arrived at a flux-conserved quantity,Lp , that
reduces to the right-hand side of Eq.~32! to lowest order in
the perturbation fields. Its exact form is given below~cf. Ref.
59!:

Lp5rv81
g

2u0N2 E
q̄

q

dq̃R2~ q̃!2¹•G. ~B14!

APPENDIX C: BEHAVIOR OF A MODE NEAR
RESONANCES

This appendix briefly describes the form ofF(r ), and its
derivatives, near the false and genuine singular points of the
eigenmode equation~39!. The false singular points are the
inertial resonances,r 6 , defined by

s~r 6![6Am̄~r 6!. ~C1!

The genuine singular point is the complex critical radiusr s ,
defined by

s~r s![0. ~C2!

A standard Frobenius analysis nearr 6 yields

F~r 61«!5F~r 6!F11
nj̄

sr
U

r 6

«1O~«2!G , ~C3!

in which «[(r 2r 6). So, F is regular at the inertial reso-
nances. A standard Frobenius analysis nearr s yields

F~r s1«!5F~r s!F 11
j̄

h̄r

dz̄/dr

dV̄/dr
U

r s

« ln~«!1O~«!G ,

~C4!

in which «[(r 2r s). Therefore, in general, the first deriva-
tive of F is weakly~logarithmically! singular at the complex
critical radius.

Equations~43! relateF to the velocity and PV perturba-
tions. There are several results worth noting. One may verify,
by direct substitution, that the velocity and PV perturbations
are regular at the inertial resonances,r 6 . At the complex
critical radius r s , U and W are continuous well-defined
functions. On the other hand,V is logarithmically singular,
andQ has a pole.

APPENDIX D: SPONGE-RING BOUNDARY
CONDITION

Another notable treatment of the far-field radial bound-
ary is to let asponge-ringbuffer a ‘‘wall’’ at r 5r w . Here,
we apply a sponge ring that linearly damps the perturbation
fields (u8, v8 and]zf8) at a rate

g~r !5D
z̄~0!

2 F11tanhS 15~r 2r w!

2r w
D G , ~D1!

in which D.0 is an adjustable absorption coefficient. Note
thatg is effectively zero forr &r w(122/15). At the ‘‘wall,’’
we set

F~r w!50. ~D2!

A sponge ring slightly modifies the vortex eigenmode
problem. To begin with, we must let

s→v2nV̄1 ig ~D3!

in Eq. ~39!. Furthermore, we must replace the radiative
boundary condition~48! ( j 51) with ~D2!.

Although a sponge ring is meant to absorb, it may par-
tially reflect outward propagating IB waves. The value ofD
affects the reflectivity. In what follows, we examine how
changingD varies the growth rate of a mode that represents
the VR–IB wave instability.

Figure 10 shows the growth rate of the (m,n)5(2,1)

FIG. 10. Sponge-ring vs radiative boundary conditions. This plot shows the
growth ratev I of the (m,n)5(2,1) dominant mode of a smoothed Rankine
cyclone, with variableD. The cyclone parameters are Ro510 andl 25r 0 .
The 3 markers, connected by a solid curve, correspond to a radiative
boundary condition. The circles, triangles, diamonds, and squares corre-
spond to sponge-ring boundary conditions, of varying absorptionD, as in-
dicated. Filled and empty symbols signify normal modes and quasimodes,
respectively.v I is normalized toZ0 .
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dominant mode of a smoothed Rankine cyclone@Eq. ~37!#,
as a function of the parameterD. The fixed cyclone param-
eters are Ro510 andl 25r 0 . The3 markers, connected by a
solid curve, are the growth rates obtained by a radiative
boundary condition atr b55.5r 0 . The same data appear in
Fig. 7.

The additional data result from sponge-ring boundaries
~D1!–~D2!, with r w57.5r 0 . Filled symbols correspond to
normal modes, whereas empty symbols correspond to quasi-
modes. For weak absorption (D<0.2), the growth and decay
rates differ notably from the solid curve. However, for 2
<D<20, the sponge-ring and radiative boundary conditions
give approximately the same results.

Figure 10 merely illustrates the extent to which sponge-
ring and radiative boundary conditions can differ. A more
comprehensive study is tangential, and not pursued here.

APPENDIX E: QUASIMODES

In this appendix, we briefly examine the formal defini-
tion of a quasimode, and present a method for computing its
complex frequency.14,16,17For simplicity, we consider a per-
turbation that consists of a single Fourier component, e.g.,
f85f̂(r ,t)cos(mpz/H)einw1c.c. We may define the Laplace
transform of the Fourier coefficientf̂, as follows:

f̂T~r ,n![E
0

`

dt f̂~r ,t !eint. ~E1!

As such, the inversion contour is in the upper half of the
complexn plane, and is antiparallel to the realn axis; i.e.,

f̂~r ,t !52
1

2p È
1 ib

2`1 ib

dn f̂T~r ,n!e2 int, ~E2!

whereb.0.
By standard techniques, we may convert the linearized

equations of motion into a single differential equation inr for
f̂T. Following Ref. 14, we may solve this differential equa-
tion with the aid of a Green function.

For the purposes of this appendix, we need only consider
the form of the solution at the boundary radiusr b :

f̂T~r b ,n!5E
0

r b
dr rF ~n,r !F I~r !F II~r b!

m̄~r !2s2~r !

rWk~n,r !
.

~E3!

Here,F is a function that depends on both the basic vortical
flow and the initial perturbation. As before,F I and F II are
independent solutions of Eq.~39!, with end-point conditions
~45! and ~48! ( j 51), respectively. Theirn dependence is
implicit. Notably, the Wronskian ofF I and F II @Eq. ~49!#
appears in the denominator of the integrand.

As a result, poles off̂T(r b ,n) will occur at discrete
values ofn where the Wronskian is zero~for any and allr
betweem 0 andr b). Each pole explicitly contributes a term
to f̂(r b ,t) that oscillates at a discrete frequency, and grows
or decays exponentially with time. One zero of Wk, atn
5v, corresponds to the dominant growing eigenmode of
Sec. IV C. We will refer to this zero as thedominant root.

By analogy to the theory developed in Ref. 14, we may
assume that Wk has a branch cut along the realn axis. By
further analogy, we may assume that the dominant root of
Wk will ‘‘slip underneath’’ this branch cut, and disappear, as
the magnitude ofdq̄/dr increases above a threshold atr * .
However, the analytic properties of Wk vary with the radial
contourr on which it is defined, i.e., the flexible integration
contour in Eq.~E3!. If we bend the radial contour above the
real r axis @Fig. 11~a!#, the branch cut of Wk will dip below
the realn axis @Fig. 11~b!#. The dominant root will reappear
if the radial contour arches over the complex critical radius

r s , defined bynV̄(r s)5v.

The recovered root of Wk, and pole off̂T, corresponds
to an exponentially damped quasimode. From above, we
conclude that the procedures for computing eigenmode and
quasimode frequencies hardly differ. To find an eigenfre-
quency, we solve the equation Wk~v,r!50 for v, on the real
r axis. To find a quasimode frequency, we must solve the
equation Wk~v,r!50 for v on a deformedradial contour,
similar to that in Fig. 11~a!. Our numerics~see Sec. IV B!
was easily generalized for this task. The principal modifica-
tion was to integrate Eq.~39! for F I and F II along the de-
formed radial contour.

APPENDIX F: ALTERNATIVE DERIVATION OF THE
GROWTH RATE FORMULA

Assume that the perturbation is an exponentially grow-
ing mode. Substituting the normal mode solution@Eq. ~38!#
into conservation of wave activity@Eq. ~35!# yields

E
0

r v
dr v I~a11a2!5e rad, ~F1!

wherea1 , a2 , ande rad were defined by Eqs.~58!, ~59!, and
~61!. Using the identity

v I5
i

2
~s22s1!, ~F2!

in which s6[vR2nV̄6 iv I , we may write

v Ia152
ipHg

u0N2 r 2
dq̄

dr S uUu2

s1
2

uUu2

s2
D . ~F3!

FIG. 11. As the PV gradient atr * increases above a threshold:~a! the
imaginary part of the complex critical radiusr s becomes positive and~b! the
imaginary part of the mode frequencyv becomes negative. Such changes
are indicated by the dashed arrows. Above the gradient threshold, one must
deform the radial integration contour abover s in order to keepv as a pole

in the analytic continuation of the geopotential transformf̂T. Otherwise, the
pole will ‘‘slip underneath’’ the branch cut. The subscriptsR and I denote
the real and imaginary parts of the complex variablesr andn.
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Note that we have used Eq.~43! to expressa1 as a function
of U, rather thanQ.

Consider the expansion

E
0

r v
dr r 2

dq̄

dr

uUu2

s6
5F16 iv I

]

]vR

1...G lim
v I→01

E
0

r v
dr r 2

dq̄

dr

uUu2

s6
.

~F4!

From the Plemelj formula68

lim
v I→01

E
0

r v
dr r 2

dq̄

dr

uUu2

s6

5«
0

r v
dr r 2

dq̄

dr

uUu2

vR2nV̄

7 ipF r 2uUu2dq̄/dr

nudV̄/dru
G

r
*

, ~F5!

where « denotes the principal part, fractured at the critical
radiusr * .

Suppose thatrdq̄/dr is of orderv I ~or less! for r>r c ,
wherer c,r * . Then, using Eqs.~F3!–~F5!, we obtain

E
0

r v
dr v Ia152v I

2pHg

u0N2 E
0

r c
dr r 2

dq̄

dr

uUu2

~vR2nV!2

2
2p2Hg

u0N2 F r 2uUu2dq̄/dr

nudV̄/dru
G

r
*

1O~v I
2!.

~F6!

Further simplification yields

E
0

r v
dr v Ia15v IE

0

r c
dr a11ecl1O~v I

2!, ~F7!

in which ecl was defined by Eq.~68!.
Substituting Eq.~F7! into ~F1! reproduces the growth

rate formula of the main text~70!, with M given by ~73!.
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