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ABSTRACT

This paper discusses recent progress toward understanding the instability of a monotonic vortex at high
Rossby number, due to the radiation of spiral inertia–gravity (IG) waves. The outward-propagating IG
waves are excited by inner undulations of potential vorticity that consist of one or more vortex Rossby
waves. An individual vortex Rossby wave and its IG wave emission have angular pseudomomenta of
opposite sign, positive and negative, respectively. The Rossby wave therefore grows in response to pro-
ducing radiation. Such growth is potentially suppressed by the resonant absorption of angular pseudomo-
mentum in a critical layer, where the angular phase velocity of the Rossby wave matches the angular
velocity of the mean flow. Suppression requires a sufficiently steep radial gradient of potential vorticity in
the critical layer. Both linear and nonlinear steepness requirements are reviewed.

The formal theory of radiation-driven instability, or “spontaneous imbalance,” is generalized in isentropic
coordinates to baroclinic vortices that possess active critical layers. Furthermore, the rate of angular mo-
mentum loss by IG wave radiation is reexamined in the hurricane parameter regime. Numerical results
suggest that the negative radiation torque on a hurricane has a smaller impact than surface drag, despite
recent estimates of its large magnitude.

1. Introduction

a. Vortex instability driven by inertia–gravity wave
emission

Mesoscale vortices are among the most intriguing co-
herent structures in the troposphere. Figure 1 illustrates
their many forms, which range from hurricanes to ro-
tational thunderstorms. The angular velocity � of a me-
soscale vortex typically satisfies the condition

f � � � N, �1�

in which f is the Coriolis parameter and N is the ambi-
ent Brunt–Väisälä frequency. This condition allows
vortex-scale disturbances to resonate with ambient in-
ertia–gravity (IG) waves, and thereby efficiently pro-
duce IG wave radiation. Recent studies have examined
the magnitude of such radiation and its consequences

on the vortex. This paper will review and generalize
some notable results.1

The pertinent studies concern IG wave radiation
from a monotonic cyclone (MC), whose potential vor-
ticity (PV) consistently decays with distance from the
central axis of rotation. The radial PV gradient allows
Rossby-like waves to exist in the core region of the
vortex (Kelvin 1880; McDonald 1968; Montgomery and
Kallenbach 1997). The spectrum of vortex Rossby
waves includes continuum and discrete modes. A con-
tinuum disturbance typically suffers spiral windup due
to differential rotation of the mean flow. Here, we will
focus on discrete vortex Rossby waves (DVRWs),
which resist spiral windup and remain coherent over
time. DVRWs often account for rotating tilts and ellip-
tical (triangular, square, etc.) deformations of the vor-
tex core. The angular phase velocity of a DVRW is of
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1 It is well known that the problems of IG wave radiation and
acoustic radiation from a solitary vortex are analogous. Readers
interested in the acoustic analog may consult Broadbent and
Moore (1979), Kop’ev and Leont’ev (1983, 1985, 1988), Zeitlin
(1991), Chan et al. (1993), and Howe (2003).
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order �, but is less than the angular velocity of the core
circulation.

Under condition (1), a DVRW will typically excite an
outward propagating spiral IG wave in the peripheral
region of the vortex. Basic perturbation theory estab-

lishes that the creation of any wave by another distur-
bance in a circular flow must occur in such a way that
conserves net angular pseudomomentum (cf. McIntyre
1981; Haynes 1988; Guinn and Schubert 1993; Shep-
herd 2003). It has been shown for MCs that a DVRW

FIG. 1. It has been speculated that Rossby-like waves in vortices like these (at high Rossby and moderate-to-high Froude
numbers) might produce relatively strong levels of spiral IG wave radiation. (top left) Hurricane Katrina at 0820 EDT 29
Aug 2005 (National Aeronautics and Space Administration). (top right) A mesocyclone in Duncan, OK, on 17 Mar 2003
(courtesy of Dr. Robert J. Conzemius). (bottom left) A polar low over the Barents Sea on 27 Feb 1987 (NOAA-9).
(bottom right) Wake vortices behind Selkirk Island on 15 Sep 1999 (United States Geological Survey, Earth Resources
Observation and Science; NASA).
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and its IG wave emission have angular pseudomomenta
of opposite sign, positive and negative, respectively
(Schecter and Montgomery 2004, hereafter SM04;
Schecter and Montgomery 2006, hereafter SM06). Con-
sequently, a DVRW must grow in response to produc-
ing radiation. By this mechanism, the core of an MC
will gradually deform.

Although an atmospheric vortex is in a continuously
stratified fluid, the shallow-water model suffices to ex-
plain the essential physics of the radiation-driven insta-
bility. In the context of shallow-water theory, Ford
(1994a,b) verified that IG wave emissions compel cy-
clone-scale DVRWs in MCs to grow exponentially with
time, provided that the Rossby number Ro � �/f ex-
ceeds unity. Ford also showed that the growth rate van-
ishes algebraically as the Froude number, Fr � V/cg,
tends to zero; here V is the azimuthal velocity of the
vortex and cg is the ambient gravity wave speed. Spe-
cifically, the maximum growth rate of a DVRW is pro-
portional to Fr4� in the regime where Fr K 1. This
result was later generalized by Plougonven and Zeitlin
(2002) to “pancake” vortices in a continuously stratified
fluid. It stands to reason that an atmospheric vortex at
small Froude number would hardly feel the effects of
radiation.

Nevertheless, mesoscale cyclones such as hurricanes
and rotational thunderstorms (Fig. 1) can penetrate the
“superspin” parameter regime, where both the Rossby
and Froude numbers exceed unity. Recent numerical
studies of a stratified MC indicate that superspin can
shorten the e-folding time of a radiation-driven insta-
bility to less than four rotation periods (SM04). Chow
and Chan (2003) further speculated that the spontane-
ous emission of spiral IG waves can remove up to one-
tenth of the angular momentum of an intense hurricane
in a single rotation period. A similar estimate was pub-
lished earlier by Chimonas and Hauser (1997) for the
negative radiation torque on a supercell mesocyclone
under ideal conditions. In section 5, we will reconsider
these estimates.

Of course, superspin does not guarantee that IG
waves will greatly influence the evolution of a cyclone.
An important mechanism for quenching the radiation-
driven instability of an MC involves the resonant inter-
action between a DVRW and its critical layer. The criti-
cal layer of a DVRW is located beyond the core of an
MC, precisely where the angular phase velocity of the
wave equals the angular velocity of the mean flow.
While creating radiation, a DVRW simultaneously stirs
PV in its critical layer. Such stirring efficiently transfers
angular pseudomomentum from the DVRW into the
critical layer, and thereby acts to damp the wave.
Damping will prevail over radiative pumping if the ra-

dial gradient of PV in the critical layer is sufficiently
large (SM04; SM06). Figure 2 illustrates the two poten-
tial fates of a DVRW in an MC. Section 4 will demon-
strate that a precise growth rate formula for the DVRW
is readily extracted from an equation that expresses
angular pseudomomentum conservation. For the first
time, this formula will be derived for baroclinic MCs
that possess active critical layers.2

b. Connection to the broader problem of
spontaneous imbalance

Following the theme of the special issue for which
this paper was prepared, let us now turn our attention
to the general problem of spontaneous imbalance. In
practical terms, balanced motions are theoretical ap-
proximations of synoptic or mesoscale flows that filter
out IG waves. Quasigeostrophic (QG) flow, which ap-
plies only at small Rossby numbers, is the most familiar
kind (Charney 1948; Hoskins et al. 1985; cf. Muraki et
al. 1999). More general forms of balanced flow are con-
tained in the semigeostrophic model (Hoskins 1975;
Hoskins et al. 1985), the standard balance model
(McWilliams 1985), and the asymmetric balance model
(Shapiro and Montgomery 1993). Spontaneous imbal-
ance (SI) is the divergence of an actual flow from the
predictions of a balance model, which usually involves
the production of IG waves. SI is evident in numerical
simulations of baroclinic instability and frontogenesis
(Snyder et al. 1993; O’Sullivan and Dunkerton 1995;
Griffiths and Reeder 1996; Reeder and Griffiths 1996;
Zhang 2004; Plougonven and Snyder 2005). At Ro K 1,
theoretical arguments suggest that balanced motions
will produce exponentially weak IG wave emissions
(Saujani and Shepherd 2002; Vanneste and Yavneh
2004). At high Rossby numbers, compact regions of
unsteady balanced motions can resonate more directly
with environmental IG waves and thereby exhibit
stronger SI (Ford et al. 2000, 2002).

Typically, the intrinsic frequency of a DVRW will
not exceed the characteristic inertial frequency of the
vortex in which it resides, regardless of the Rossby
number (cf. Montgomery and Lu 1997). From this local
perspective, it is sensible to approximate DVRWs with
a model that filters out IG waves. Section 2 will review
the interaction of a DVRW with its critical layer in the
context of the asymmetric balance (AB) model, which
ostensibly applies to hurricanes as well as quasigeo-
strophic cyclones. However, at high Rossby number the

2 It is notable that the theory of modal growth in astrophysical
disks must likewise treat the net influence of critical layer stirring
and spiral density wave radiation. See, for example, Papaloizou
and Pringle (1987) and Shukhman (1991).
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balance approximation is unjustifiable in the far field
where the inertial frequency reduces to f. As explained
previously, this allows a DVRW to match onto an out-
ward propagating spiral IG wave. The balance approxi-
mation will qualitatively fail for the DVRWs of MCs if
critical layer damping is unable to restrain the positive
feedback of IG wave radiation (see section 3). In this
sense, the radiation-driven instability of an MC is a
prime example of SI.

c. Outline

The remainder of this paper is organized as follows.
Section 2 qualitatively reviews the balanced interaction
of a DVRW and its critical layer in a shallow-water MC.
Section 3 examines both linear and nonlinear condi-
tions for the SI of a shallow-water MC. Section 4 de-
rives a formula for the growth rate of a DVRW near
marginal stability in a baroclinic MC. This formula ac-
counts for the positive feedback of IG wave emission
and the negative feedback of PV stirring in a 3D critical
layer. Section 5 reexamines the torque that is applied
by spontaneous radiation on a barotropic cyclone with
parameters similar to those of a category 5 hurricane.
Section 6 summarizes the main text and suggests future

lines of investigation. For convenient reference, the ap-
pendices review the standard primitive equations that
form the theoretical foundation of this paper.

2. The balanced evolution of a discrete vortex
Rossby wave

This section qualitatively reviews the balanced inter-
action of a DVRW with its critical layer. For simplicity,
we will limit our discussion to linear shallow-water
theory on the f plane. Throughout, we will refer to a
polar coordinate system whose origin is at the center of
the vortex. As usual, the symbols r, �, and t will denote
radius, azimuth, and time. A generic flow field h(r, �, t)
will be separated into a basic state h(r) and a pertur-
bation h�(r, �, t).

a. The unperturbed cyclone

By definition, the basic state of the vortex satisfies
gradient balance; that is,

u � 0 and
d�

dr
�

�2

r
� f�, �2�

FIG. 2. The two potential fates of a DVRW in the core of a stratified MC, bounded above and below by rigid
surfaces (cf. Schecter and Montgomery 2003; SM04). Evolution (top) of a PV isosurface deformed by the DVRW
and (bottom) of the horizontal flow at fixed height z in a reference frame that corotates with the DVRW. An initial
perturbation of the balanced cyclone (middle) excites a baroclinic DVRW with azimuthal wavenumber n � 2 and
angular phase velocity �/n. The DVRW excites an outward propagating spiral IG wave in the environment, and
stirs PV in its critical layer at r � r*. If the positive feedback of IG wave radiation prevails, the DVRW will grow
(left to right). If the negative feedback of PV stirring prevails, the DVRW will decay (right to left).
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in which u is the radial velocity, 	 is the azimuthal ve-
locity, 
 is the geopotential, and f is the constant Co-
riolis parameter. For notational convenience, we intro-
duce the following auxiliary variables:

� � ��r, � � r�1d�r���dr,

� � � � f, � � 2� � f , �3�

in which � is the angular rotation frequency,  is the
relative vertical vorticity, � is the absolute vertical vor-
ticity, and � is the modified Coriolis parameter. The
basic-state potential vorticity is defined by

q � ���. �4�

As mentioned earlier, the radial gradient of q supports
the existence of vortex Rossby waves. Unless stated
otherwise, we will assume that the basic state has the
following properties:

(i) q is uniformly positive,
(ii) dq/dr is uniformly negative, and

(iii) d�/dr is uniformly negative.

Conditions (i)–(iii) define a monotonic cyclone (MC).

b. The asymmetric balance model for weak
perturbations

Disturbances to the basic state are exactly governed
by the primitive equations (appendix A). Standard bal-
ance approximations of the primitive equations rely
upon the smallness of the Rossby number, the Froude
number, or both (cf. McWilliams 1985; Polvani et al.
1994). Here, we consider an alternative that has be-
come somewhat popular in hurricane meteorology. To
begin with, let us classify perturbations according to the
magnitude of

D 2 � � 	

	t
� �

	

	
�2���. �5�

The value of D 2 is the squared rate of change of the
disturbance in a reference frame that follows the basic
flow, divided by the regional inertial stability. Loosely
speaking, vortex Rossby waves satisfy D 2 � 1, whereas
IG waves satisfy D 2 � 1 (cf. Montgomery and Lu 1997).
In other words, vortex Rossby waves are intrinsically
slow, whereas IG waves are intrinsically fast. For low
azimuthal wavenumbers, and Rossby numbers of order
unity or less, the vortex Rossby waves of a cyclone
typically satisfy the more restrictive condition that

D 2 K 1. �6�

Condition (6) is the cornerstone of the AB model,
which filters out IG waves and provides a reduced set of
equations for vortex Rossby wave dynamics in ageo-
strophic vortices (Shapiro and Montgomery 1993;
Montgomery and Franklin 1998; Ren 1999; Möller and
Shapiro 2002; McWilliams et al. 2003).

It is straightforward to derive the lowest-order AB
model from the linearized primitive equations. To sim-
plify notation, let

DV

Dt
�

	

	t
� �

	

	

. �7�

Operating on both sides of the linearized momentum
equations with DV/Dt yields

u� � �
1

� �1
r

	��

	

�

1

�

DV

Dt

	��

	r � � D 2u�,

�� �
1

�
�	��	r

�
1

r�

DV

Dt

	��

	
 � � D 2�� �8�

in which u� is the radial velocity perturbation, 	� is the
azimuthal velocity perturbation, and 
� is the geopo-
tential perturbation. Substituting the right-hand sides
of Eqs. (8) into the linearized potential vorticity equa-
tion (McWilliams et al. 2003), and neglecting terms of
order D 2 and higher yields

DVq̂�

Dt
�

1
r

dq

dr

1

q2

	��

	

. �9�

Here we have introduced the quasi–potential vorticity
perturbation,

q̂� �
1
r

	

	r �rlD
2
	��

	r � � lD
2 �

r2

	2��

	
2 � ��, �10�

in which

lD�r� �� �

��
�11�

is a local deformation radius, and �(r) � (2� � �)/�.3

Equation (9) is the only prognostic equation in the AB
model. By Eq. (10), it is essentially an equation for the
temporal evolution of 
�. Equations (8) reduce to di-
agnostic formulas for u� and 	� by neglecting the far
right terms that are proportional to D 2.

3 The original derivation of the AB model (Shapiro and Mont-
gomery 1993) followed a different path, which resulted in � � 1.
This discrepancy has no bearing on the present discussion, and
becomes negligible for small but finite Rossby numbers. Different
AB models are possible because their derivation paths tacitly re-
quire different secondary conditions of validity.
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Note that the AB model [Eqs. (9)–(10)] conveniently
retains QG structure at high Rossby number. Further-
more, if the Rossby and Froude numbers satisfy the
relation Fr2 K Ro K 1, the AB model properly reduces
to the QG model. That is, (u�, 	�) becomes the geo-
strophic velocity perturbation, lD becomes the constant
Rossby deformation radius lR, and q̂� becomes l2

R times
the quasigeostrophic PV perturbation.

c. Basic kinematics of the DVRW–critical layer
interaction

A DVRW has a quasi-PV distribution of the form

q̂�d � a�t�Q̂�r�ei�n
�t� � c.c., �12�

in which a is the complex wave amplitude, n is the
azimuthal wavenumber, and c.c. denotes the complex
conjugate of the preceding term. We will assume that
the complex radial wavefunction Q̂ vanishes beyond
some core radius. We will further assume that the phase
of a varies at a much slower rate than the real wave
frequency �. Note that a DVRW has fixed radial struc-
ture and therefore differs from a generic continuum
disturbance that is sheared by the differential rotation
of the mean flow (e.g., Montgomery and Kallenbach
1997; Bassom and Gilbert 1998; Brunet and Montgom-
ery 2002; McWilliams et al. 2003).

In the outer region of the vortex, there is a critical
layer where the phase velocity of the DVRW equals the
angular rotation frequency of the mean flow. The cen-
tral radius r* of the critical layer is precisely defined by
the resonance condition

��r*� � �n. �13�

Figure 3a illustrates a typical set of critical layers for the
DVRWs of a shallow-water MC.

Through the extension of its velocity field, the
DVRW can stir fluid everywhere beyond the core. Out-
side of the critical layer, fluid parcels moving with the
mean flow experience rapid oscillations of positive and
negative wave forcing, which will have little cumulative
effect on the amplitude of q̂�. Within the critical layer,
fluid parcels are essentially phase locked with the wave.
It is therefore reasonable to assert that a DVRW will
most profoundly disturb q̂� in the neighborhood of r*
and that we need only consider the interaction between
a DVRW and its critical layer (cf. Lansky et al. 1997).

Any interaction between different components of the
perturbation must conserve total angular pseudomo-
mentum. In AB theory, the angular pseudomomentum
is given by

L�AB� � � dx2
r�qq̂��2

� 2dq�dr
, �14�

in which the integral is over all space (Ren 1999). Note
that L(AB) is positive definite because we have assumed
that dq/dr is uniformly negative. If only the DVRW and
critical layer contribute significantly to L(AB), its con-
servation law reduces to

d

dt �core
dx2

r�qq̂�d�
2

� 2dq� dr
� �

d

dt �cl
dx2

r�qq̂�cl�
2

� 2dq�dr
,

�15�

in which the left integral is over the area of the vortex
core and the right integral is over the area of the critical
layer. For convenience, we have introduced the nota-
tion q̂�cl to represent q̂� in the critical layer. Suppose that
q̂�cl is initially zero and then grows under the influence
of the DVRW. According to Eq. (15), the DVRW must

FIG. 3. (a) Typical arrangement of the critical layers of the
DVRWs of a shallow-water MC. The central radius r* of the
critical layer decreases as the azimuthal wavenumber n increases.
(b) Instantaneous streamlines in the critical layer of a DVRW,
viewed in a reference frame that corotates with the wave. The
symbol �b denotes the orbital angular frequency of fluid parcels
near the center of the cat’s eye, and ltrap denotes the half-width of
the trapping region that is enclosed by the separatrix. Both �b and
ltrap are proportional to the square root of the wave amplitude,
which can vary with time.

AUGUST 2008 S C H E C T E R 2503



decay in response. Figure 4 (top) illustrates the kine-
matics.4

The reader may have noticed that a damped DVRW
cannot possibly be an eigenmode of an MC. An eigen-
mode consists of a q̂� distribution that decays exponen-
tially with time everywhere in space. In contrast, a
DVRW decays because of growing q̂�cl. For this reason,
and others that are more technical, the DVRWs of MCs
are more properly classified as “quasi-modes” (Briggs
et al. 1970; Corngold 1995; Spencer and Rasband 1997).
If the vortex were nonmonotonic, then dq/dr could
have opposite signs in the core and at r*. According to
Eq. (15), the DVRW would then grow in response to its
action on the critical layer (Briggs et al. 1970; Schecter
et al. 2000, 2002; Benilov 2005; Mallen et al. 2005).
Simultaneous growth of a DVRW and q̂�cl is consistent
with the behavior of a genuine eigenmode.

3. The spontaneous imbalance of a shallow-water
cyclone

a. The positive feedback of spiral radiation

At Rossby numbers greater than unity, any DVRW
of a shallow-water MC can excite a frequency-matched
outward propagating spiral IG wave in the environ-
ment. In other words, the geopotential (and velocity
components) of the balanced DVRW can match onto a
spiral IG wave at the periphery of the circular flow. As
mentioned earlier, the spiral radiation has positive
feedback on the DVRW.

We may understand the positive feedback by recon-
sidering conservation of angular pseudomomentum. To
lowest order in the perturbation fields, the angular
pseudomomentum of an unfiltered perturbation in a
shallow-water cyclone is given by (cf. Guinn and Schu-
bert 1993)

L�SW� � � dx2J �SW�, �16�

in which the area integral is over all space, and

J �SW� �
r�

2
�q��2

� 2dq�dr
� r����. �17�

4 The resonant damping of a DVRW is analogous to the “Lan-
dau damping” of a discrete plasma wave (Landau 1946; O’Neil
1965). Moreover, in nonneutral plasma physics the resonant
damping of a DVRW is known as the Landau damping of a dio-
cotron (slipping stream) mode (Briggs et al. 1970; cf. Davidson
1990, chapter 6).

FIG. 4. (top) Balanced dynamics of a DVRW. In a balance model, the core DVRW resonantly excites a PV perturbation
at the critical radius r*. To conserve total angular pseudomomentum, the DVRW must decay. (bottom) Spontaneous
imbalance. If the Rossby number exceeds unity, the DVRW will also emit a frequency-matched spiral IG wave into the
environment. Since the IG wave has negative angular pseudomomentum, its creation compels the DVRW to grow. In this
cartoon, radiative pumping dominates critical layer damping of the DVRW and causes an instability that is a form of
spontaneous imbalance. In both panels, the symbol � represents the characteristic growth/decay rate of the DVRW. Note
also that q is sketched for spatial reference only, and is not drawn to scale relative to q� in the vertical.
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The first component of J (SW) is proportional to the
square of the exact PV perturbation q� and corresponds
to the angular pseudomomentum density that appears
in most balance models. The new term, proportional to
	�
�, has emerged by the removal of balance con-
straints.

With the addition of radiation, conservation of angu-
lar pseudomomentum now takes the form

d

dt �core
dx2J d

�SW� � �
d

dt �env
dx2J rad

�SW�

�
d

dt �cl
dx2J cl

�SW�. �18�

The integral on the left-hand side of Eq. (18) covers the
core DVRW. The top integral on the right-hand side
covers the environmental radiation field, whereas the
bottom integral covers the critical layer disturbance. It
has been shown that the PV component of J (SW)

d domi-
nates the angular pseudomomentum of the DVRW,
and yields a positive integral (SM06). On the other
hand, the 	�
� component of J (SW)

rad dominates the an-
gular pseudomomentum of the spiral IG wave radia-
tion, and yields a negative integral (SM06). Hence, by
exciting a spiral IG wave, the DVRW creates angular
pseudomomentum of opposite sign. Neglecting the
critical layer, the DVRW must grow in response. In
other words, the top term on the right-hand side of
Eq. (18) is positive. Figure 4 (bottom) illustrates the
spontaneous growth of a DVRW due to the emission

of an IG wave that has negative angular pseudomo-
mentum. Such growth is in sharp contrast to balanced
dynamics, where the DVRW is either neutral or
damped.

Figure 5 contains a snapshot of an exponentially
growing SI mode of a shallow-water cyclone at Fr2 �
0.74 and Ro � 53 (cf. SM06). For reference, Fig. 5a
shows the basic state of the cyclone, which possesses a
monotonic potential vorticity distribution. The angular
velocity of the basic state is slightly nonmonotonic, but
this feature is unimportant for our discussion. Figure 5b
shows the complex radial velocity wavefunction U of the
SI mode, which is defined by u� � a(t)U(r)e i(n���t) �
c.c. The inner part of U corresponds to a DVRW, and
maintains an approximately constant phase far beyond
the critical radius r*. The outer part of U corresponds to
a spiral IG wave and has increasing phase with radius.
Figure 5c verifies that the angular pseudomomenta of
the DVRW and IG wave are positive and negative,
respectively. Because the Froude number of the cy-
clone is less than unity, the IG wave emission is fairly
weak. Consequently, the e-folding time of the SI mode
is many (23) vortex rotation periods.

In the parameter regime where the vortex motion is
approximately governed by 2D Euler flow, say f � 0
and Fr2 K 1, the radiation-driven instability is readily
explained in more familiar terms. In the 2D Euler
model, the conserved potential vorticity reduces to q �
/
a in which 
a is the constant ambient geopotential.
Furthermore, the mean torque per unit mass on the
cyclone at the radius r is given to lowest order by

FIG. 5. The radial structure of an SI mode. (a) The basic state of the shallow-water cyclone that suffers SI. The radial coordinate r
is normalized to the characteristic vortex scale ro. The variables � and 
 are in units of �max and the ambient geopotential 
a. The
potential vorticity q is normalized to one-half of its peak value. The Rossby number of the cyclone is Ro ��max/f � 53, and the squared
Froude number is Fr2 � (�maxro)2/
a � 0.74. (b) The magnitude (solid curve) and phase (dotted curve) of the radial velocity
wavefunction U of the n � 2 SI mode. The magnitude is normalized to have a peak value of 1. (c) The azimuthally averaged angular
pseudomomentum density rJ (SW)

�

of the mode, normalized to its peak value at the instant under consideration. The DVRW and IG
wave components have positive and negative angular pseudomomenta, respectively. The bump at r* accounts for the absorption of
wave activity by the critical layer. In this case, radiative pumping prevails over critical layer damping, but is fairly weak. The growth
rate � of the mode is merely 0.007�max.
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	t
r�
 � �r�u



�

	

	t

r�a�q��
2


2dq�dr
, �19�

in which h
�

is the azimuthal average of h. Equation (19)
indicates that an MC (in which dq/dr � 0) will lose
angular momentum as a DVRW [(q�)2] grows. It is
therefore sensible that the outward angular momentum
flux of IG wave radiation acts to amplify the DVRW.

b. The growth rate of a DVRW and its coupled
radiation field

Of course, an instability will occur only if the positive
feedback of IG wave radiation prevails over the nega-
tive feedback of PV stirring in the critical layer. In sec-
tion 4, we will derive a fairly general solution for the
growth rate of a DVRW in a baroclinic cyclone that
accounts for both feedbacks. Here we cite a closed-
form result (based on linear perturbation theory) for
the growth rate of a DVRW in a special shallow-water
cyclone whose relative PV distribution consists of a
constant core, surrounded by a low amplitude skirt.
Specifically, let

q �
f

�a
�

2�o

�a
� 1, r � ro,

��r�, r � ro,
�20�

in which �o is a positive constant, � K 1, and d�/dr �
0. For simplicity, we will again suppose that f � 0 and
Fr2 K 1. In this case, a Rankine circulation is an excel-
lent approximation of the basic flow out to very large
distances; that is,

��r� � �oro

r�
r�

�21�

in which r� (r�) is the greater (lesser) of r and ro. Fur-
thermore, the frequency and critical radius of the nth
DVRW are given by

 � �o�n � 1� and r* � ro� n

n � 1
�22�

to zero order in Fr2 and � (Kelvin 1880; Briggs et al.
1970; Ford 1994a).

After a brief transition period, the amplitude of a
DVRW in the cyclone under consideration obeys an
equation of the form

d |a |
dt

� � |a | , �23�

in which5

� �
�n�n � 1�2n

�n!�222n Fr2n�o

�
�

4n �n � 1
n �n�3�2

�aro�dq

dr �r�r*

�24�

for n � 2, and � � 0 for the n � 1 pseudomode that
corresponds to a static displacement. As in the more
general case of section 4, the first (top) term of the
growth rate � accounts for the positive feedback of IG
wave radiation (cf. Ford 1994a). Its magnitude de-
creases algebraically with the Froude number, Fr �
�oro /�
a. The second (bottom) term accounts for the
negative feedback of the critical layer disturbance (cf.
Briggs et al. 1970). It is directly proportional to the
negative radial gradient of basic-state PV at r*. This is
because a steeper gradient at r* permits stirring (the
radial redistribution of fluid elements) to create a larger
PV perturbation in the critical layer. Equivalently, a
steeper gradient at r* increases the capacity of the criti-
cal layer to absorb angular pseudomomentum.

It is important to emphasize that Eq. (23), in which �
is constant, corresponds to linearized dynamics. Hence-
forth, � will refer exclusively to the growth rate of a
DVRW in linear theory.

c. Nonlinear SI

Suppose that linear theory predicts the exponential
decay of a DVRW, because the radial gradient of q is
steep at the critical radius r*. Nonlinear dynamics al-
lows q, interpreted as the azimuthal mean of q, to
change with time (cf. Killworth and McIntyre 1985;
Maslowe 1986). In nonlinear balance models, dq/dr at
r* tends to oscillate and become negligible, provided
that the initial DVRW amplitude exceeds a threshold.
Equation (24) suggests that leveling of q at r* would
enable radiative pumping to prevail over critical-layer
damping.

The amplitude threshold that is required to “flatten”
q in the critical layer has been examined theoretically
(Briggs et al. 1970; Balmforth et al. 2001; cf. Le Dizes
2001), numerically (Bachman 1998; SM06; cf. Rossi et
al. 1997), and experimentally (Pillai and Gould 1994;
Cass 1998; Schecter et al. 2000). A good estimate for
this threshold is obtained by considering basic critical
layer dynamics. Figure 3b shows that the critical layer
contains a region where fluid parcels (within one azi-

5 Schecter et al. 2008 contains an explicit derivation and nu-
merical verification of the acoustic analog of Eq. (24).
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muthal wavelength) are bound to orbit a central fixed
point. The region of trapped fluid is enclosed by a sepa-
ratrix. The radial width of the separatrix is given by

ltrap � 2� 2aU

nd��dr�r�r*

1�2

, �25�

in which |2aU | is the peak radial velocity of the DVRW
at a given radius (cf. section 3a). The orbital angular
frequency of a trapped fluid parcel has a characteristic
value of order

�b � |2naUd��dr | r�r*

1�2 , �26�

which is commonly called the “bounce frequency.” In
linear theory, both ltrap and �b decrease exponentially
with time, in proportion to the square root of a � aoe�t.

Linear theory tacitly assumes that trapped fluid par-
cels move outside of the collapsing separatrix before
making too much progress along their orbital cycles.
The escape of trapped fluid prevents thorough mixing
of PV. However, if the initial bounce frequency exceeds
the linear decay rate of the wave; that is, if

�b�ao�� |� | , �27�

then trapped fluid parcels would complete their orbital
cycles and collectively coil PV inside the separatrix.
Such coiling tends to level q in the vicinity of r* and
thereby arrest critical layer damping. In other words,
condition (27) is sufficient grounds for a nonlinear ra-
diation-driven instability.

An alternative line of reasoning leads to the same
conclusion. Let us first posit that a nonlinear radiation-
driven instability will occur if the initial angular pseudo-
momentum of the DVRW exceeds the finite absorption
capacity of the critical layer. Assuming that the PV
component dominates the angular pseudomomentum,
this condition can be written

�
0

2� �
0

rc

d
 dr
r2�

2
�q�d�

2

� 2dq�dr
�

t�0

� max��
0

2� �
r*��r*

r*��r*
d
 dr

r2�
2
�q�cl�

2

� 2dq�dr �, �28�

in which rc � (r* � �r*) is the radius of the vortex core,
and �r* is the half-width of the critical layer. As usual,
the subscripts d and cl refer to the DVRW and critical-
layer perturbation, respectively.

To estimate the right-hand side of the above inequal-
ity, we may first suppose that

max��q�cl�
2� � ��r*

dq

dr �r�r*

2

. �29�

The above estimate for q�cl follows from material con-
servation of PV. In addition, we may suppose that

�r* � max�ltrap, l��. �30�

The above estimate for �r* considers two possibilities.
The first candidate ltrap is the initial half-width of the
separatrix [Eq. (25)]. The second candidate l� is derived
from linear theory; it is the radial length scale of the
peak that develops in q�cl as t → �. Schecter et al. (2000)
demonstrates that, to lowest order in �,

l� � � �

nd��dr�r�r*

. �31�

If � K � and the correction to balanced dynamics is
small, then we may infer from SM06 (cf. section 4) that

� �
�

�
0

rc

dr
r2�

2
|Q |2

� dq�dr

�r2 |U |2�
2
dq�dr

|nd��dr | �
r�r*

.

�32�

Using q�d � aoQ(r)e in� � c.c. at t � 0, Eq. (32) for �, and
either ltrap or l� for �r*, condition (28) amounts to (27)
up to an undetermined constant of proportionality on,
say, the right-hand side.

d. An illustrative numerical simulation

Figures 6–8 (adapted from SM06) illustrate the non-
linear SI of a numerically simulated shallow-water MC.
The initial condition consists of a balanced elliptical
deformation of the vortex core. Figure 6 shows the evo-
lution of the potential vorticity field and the asymmet-
ric component of the geopotential perturbation. The
core perturbation consists of an n � 2 DVRW, which
over time generates an outward propagating spiral IG
wave in the far field. Early on, PV stirring in the critical
layer (which appears as filamentation) tends to damp
the DVRW and its radiation field. Later on, the
DVRW and IG wave spontaneously amplify. The bot-
tom panel of Fig. 6 provides a detailed picture of PV
stirring in the critical layer. In time, trapped fluid par-
cels collectively coil the PV distribution into a pattern
that is said to resemble a pair of cat’s eyes.

Figure 7 (top solid curve) shows a time series of the
amplitude of the DVRW. For analytical purposes, the
ratio |�b /� | 2 is substituted for a dimensional measure
of the perturbation strength. Initially, the DVRW de-
cays exponentially with time, exactly as predicted by
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linear theory (top dashed curve). Since the initial value
of �b exceeds the magnitude of �, the time series even-
tually diverges from linear theory. Specifically, the am-
plitude of the DVRW bounces after a time period of
order 2�/�b. At this point, the critical layer starts to
periodically return a fraction of the angular pseudomo-
mentum that it absorbs. As a result, critical layer damp-
ing becomes inefficient. In the meantime, the positive
feedback of IG wave radiation remains steady. Ulti-
mately, radiative pumping prevails and SI ensues.

The bottom curves in Fig. 7 show the nonlinear

(solid) and linear (dashed) evolution of the mode am-
plitude in a similar experiment in which the initial value
of �b is less than the magnitude of �. In contrast to the
previous case, cat’s eyes do not fully develop in the
critical layer of the DVRW. Moreover, there is no sign
of nonlinear SI.

To conclude this section, let us briefly address an
important technicality. The preceding discussion as-
serted without proof that the inner part of the excited
mode was dominated by a vortex Rossby wave. A vor-
tex Rossby wave should possess the basic characteris-

FIG. 6. Numerical simulation of the nonlinear SI of a shallow-water MC on the f plane. (top left) Evolution of
the PV distribution q. Note that core ellipticity (the DVRW) decays and then grows. (top right) Evolution of the
asymmetric component of the geopotential perturbation 
�. Note that 
� decays and then grows. (bottom) Detailed
evolution of the PV distribution in the critical layer. For all panels, time t is measured in units of ��1

max, and lengths
are normalized to a characteristic vortex-scale ro. The Rossby number of the cyclone is Ro � �max/f � 40, and the
Froude number is Fr � �maxro /�
a � 0.7. The data shown here correspond to simulation G1 of SM06.
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tics of a balanced perturbation. The formal theory of
asymmetric balance requires that

D 2 �
� � n��2

��
K 1, �33�

in which, as usual, � is the oscillation frequency of the
mode. The weaker condition, D 2 � 1, suffices to ensure
that the intrinsic frequency of the mode is less than the
local inertial frequency. Figure 8 (solid curve) verifies
that the asymmetric balance condition weakly holds in
the vortex core and strongly holds in the critical layer.
For standard balance (McWilliams 1985; Polvani et al.
1994; Montgomery and Franklin 1998), the central per-
turbation would normally satisfy

� �
�n

�n
K 1, �34�

in which �n and n are the peak values (at a given ra-
dius) of the divergence and vorticity components of the
mode. Figure 8 (broken curve) indicates that the inner
part of the mode satisfies condition (34). On the other
hand, neither D 2 nor � is less than unity far beyond the
critical layer, where the DVRW transitions to an IG
wave.

4. The spontaneous imbalance of a dry baroclinic
cyclone

The theory of IG wave production by DVRWs, in-
cluding the influence of critical layers, has been ex-
tended to 3D stratified cyclones with barotropic basic
states and cloud coverage (SM04; Schecter and Mont-
gomery 2007, hereafter SM07). Plougonven and Zeitlin
(2002) had previously developed an analytical theory
for IG wave emission by “pancake” vortices, but their
analysis did not account for active critical layers. A
general theory for baroclinic cyclones, whose tangential
winds have vertical shear, was lacking before now.
The following extension-by-analogy of shallow-water
theory (SM06) to dry baroclinic cyclones has not been
tested against numerical experiments, but is presented
here for the purpose of motivating a deeper investiga-
tion.

As usual, we will assume that � (the potential tem-
perature) of the atmosphere increases monotonically
with altitude and that the axisymmetric PV distribution
q(r, �) of the unperturbed cyclone decreases monotoni-
cally with radius on a surface of constant �. With suit-
able boundary conditions, such a vortex is stable in the
context of balanced dynamics (Montgomery and Sha-
piro 1995; Ren 1999). On the other hand, stability is not
guaranteed when IG waves are allowed to interact with
DVRWs—in which case SI can occur.

FIG. 8. The radial dependence of balance parameters in the
numerical simulation of nonlinear SI (Fig. 6). Both D 2 and � (at
t � 429.18) are less than unity to a radius beyond r*, suggesting
that the DVRW and its critical layer are approximately balanced.
In contrast, D 2 and � are much greater than unity in the IG wave
radiation zone. Radius r is measured in units of the characteristic
vortex scale, as were all lengths in Fig. 6.

FIG. 7. Conditional SI. The top curve (solid) shows the ampli-
tude of the DVRW in Fig. 6. The horizontal bar (with double
arrows) indicates the maximum bounce period of the wave. Since
�b / |� | initially exceeds unity, nonlinear SI occurs. The bottom
curve (solid) is from a similar experiment, in which the initial
wave amplitude is reduced by a factor of 0.25. Here, there is no
sign of SI. The dashed curves are the exponential-decay predic-
tions of linear theory (�2

b � e�t). Time t is measured in units of
��1

max. The data shown here correspond to simulations G1 (top
curve) and G3 (bottom curve) of SM06. The reader may consult
this reference for details on the measurement of �b and the cal-
culation of �.
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a. PV and angular pseudomomentum equations

It is most convenient to analyze the dynamics of a
baroclinic cyclone using the hydrostatic primitive equa-
tions in isentropic coordinates (see Appendix B). The
assumption of hydrostatic balance does not permit ac-
curate modeling of high-frequency IG waves. Accord-
ingly, we will confine our attention to IG wave radia-
tion that has a characteristic frequency greater than f
but much less than the Brunt–Väisälä frequency N.

There are two prominent equations that we must ex-
plicitly consider in order to discuss the SI of a baroclinic
MC. The first is the linearized PV equation:

DVq�

Dt
� �u�

	q

	r
. �35�

The second is the lowest-order flux conservative equa-
tion for the angular pseudomomentum density J. In
isentropic coordinates,

J � �
r�2�q��2

2�	q�	r�
� r���� �36�

and

	J

	t
�

1
r

	

	r
�r2�u���� �

	

	�
�p�

g

	��

	

�

�
	

	

	�r J �

�

2
�u�2 � ��2� �

R�p��2

2gp � p

pa
�R�cp
,

�37�

in which  is the isentropic mass density, ! is the Mont-
gomery streamfunction, g is gravitational acceleration,
R is the gas constant of dry air, cp is the specific heat of
dry air at constant pressure p, and pa is the constant
ambient surface pressure (cf. Chen et al. 2003).

The total angular pseudomomentum L in a fixed vol-
ume V, containing a compact vortex, is the integral

L � �
V

d
 d� drrJ. �38�

Let V be a cylinder of radius R	, with top and bottom
surfaces at �max and �min (Fig. 9). Integrating Eq. (37)
over V, we obtain

dL

dt
� �

��

� �
�min

�max

d
 d��r2�u����r�R�

� �
��

� �
0

R�

d
 drr
p�

g

	��

	

�
�min

�max

� S. �39�

The surface integrals that define S are associated with
IG wave radiation, and possibly waves that are re-
flected back into the vortex from distant objects should
they exist. Specifically, the top integral is the outward
angular momentum flux on the lateral boundary of V in
the absence of ambient rotation [assuming that 	 � 0 at
r � R	; cf. Eq. (B8)]. The bottom integral is the net
outward angular momentum flux on the vertical bound-
aries of V for any value of f.

Note that we have departed from our previous con-
vention, and have chosen to represent the rate of
change of angular pseudomomentum in the environ-
ment by S rather than by an indefinite volume integral.
This alternative approach will facilitate the derivation
of a formula for the growth rate of a radiative DVRW.

b. The growth rate of a DVRW

As in shallow-water theory, a DVRW is here viewed
as a nearly balanced vortex mode that matches onto a
spiral IG wave in the environment. Presumably, the IG
wave emission compels the DVRW to grow. In the
outer region of the vortex, there exists a 3D critical
layer in which the angular rotation frequency of the
cyclone equals the angular phase velocity of the mode
(Fig. 9). The PV disturbance in the critical layer is
viewed (for the following analysis) as a relatively weak
perturbation. Loosely speaking, the isentropic stirring
of PV in the critical layer is slaved to the velocity fields
of the DVRW and of the mean vortex. At “higher or-
der,” the growth of q� in the critical layer compels the

FIG. 9. Illustration of a baroclinic MC and a cylinder that sepa-
rates the vortex from the environment for analytical purposes. An
arbitrary DVRW will emit spiral IG waves into the environment.
Isentropic PV stirring in the critical layer, centered on the surface
r � r*(�), will potentially damp the DVRW and thereby suppress
the IG wave radiation.
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DVRW to decay. The following formally examines the
competition between the positive feedback of IG wave
radiation and the negative feedback of PV stirring in
the critical layer.

In a baroclinic cyclone, the perturbation fields of an
ideal DVRW have the form

�
u�d
��d

��d

p�d
��d

q�d

� � a�t�ei�n
�t��
U�r,��

V�r,��

��r,��

P�r,��

��r,��

Q�r,��

� � c.c., �40�

in which the phase of a varies at a much slower rate
than �. Far from the vortex core, the above wavefunc-
tions match onto those of a spiral IG wave.

The critical layer is centered on the surface r � r*(�)
in which r* satisfies the following resonance condition:

��r*, �� � �n. �41�

In linear theory, the radial length scale �r*(�) of the
critical layer is proportional to

l���� �� �

n	��	r�r�r*

, �42�

in which � � d ln|a | /dt. In principle, the constant of
proportionality is of order unity (cf. Schecter et al.
2000), but a more conservative choice of order 10 is
frequently used (SM04; SM06; SM07). If at some ver-
tical level r* happens to be near the origin, where the
radial derivative of � vanishes, then a basic exten-
sion of the analysis in Schecter et al. (2000) suggests
that �r* � �|� |.

Note that Eq. (40) cannot precisely describe a quasi-
mode that is damped by the growth of q� in the region
of resonance. In particular, q� � q�d would be accurate
only outside the critical layer. Inside the critical layer,
let

q� � q̃cl�r, �, t�e in
 � c.c., |r � r*��� | � �r*���,

�43�

in which q̃cl is to be determined.
To find the growth rate of a DVRW, let us first divide

the total angular pseudomomentum into DVRW and
critical-layer components; that is, let L � Ld � Lcl in
which

Ld � �
��

� �
�min

�max

–�
0

R�

d
 d� drrJ and

Lcl � �
��

� �
�min

�max �
r*−�r*

r*��r*
d
 d� drrJ. �44�

Here "– is a radial integral that excludes the critical
layer, and the value of R	 corresponds to the inner edge
of the radiation zone.6 With the above decomposition,
conservation of total L [Eq. (39)] becomes

dLd

dt
� S �

dLcl

dt
. �45�

The restructured conservation law [Eq. (45)] is
readily transformed into an equation for the amplitude
|a| of the DVRW. Inserting Eq. (40) into the integral
expression for Ld [Eq. (44)] and taking the time deriva-
tive yields

dLd

dt
� 2�M

d |a |2

dt
, �46�

in which

M � �
�min

�max

–�
0

R�

d� dr	r2�2 |Q |2

� 	q�	r
� r2��V* � c.c.�


�47�

is the angular pseudomomentum of the DVRW divided
by 2� |a | 2. Likewise, inserting Eq. (40) into the surface
integrals that define S yields

S � 4��rad |a |2, �48�

in which

�rad �
1
2 ��min

�max

d� �r2�UV* � c.c.�r�R�

�
1

2g �0

R�

dr��inrP�* � c.c� |�min

�max. �49�

It is consistent with the barotropic problem (SM04;
SM07) to expect positive values for M and #rad.

A different path is required to evaluate the time de-
rivative of angular pseudomomentum in the critical

6 Sections 2 and 3 assumed that the angular pseudomomentum
of the DVRW was negligible beyond the inner core of the vortex
(i.e., for r � r* � �r*). Here, we have taken a more liberal view,
and have allowed the angular pseudomomentum density of the
DVRW to exist on both sides of the critical layer. In practice, the
contribution to Ld from the inner core typically dominates.
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layer where q� is potentially deviant. First, we may
write

dLcl

dt
� 2��

�min

�max �
r*��r*

r*��r*
d� dr

$ 	 r2�2

� 	q�	r

	

	t
�q̃clq̃*cl� � r2

	

	t
����



, �50�

in which h
�

is the azimuthal average of h, as in section
3. The integrand contains two terms that we will exam-
ine separately.

To begin with, consider the linearized PV equation
[Eq. (35)] in the critical layer,

	q̃cl

	t
� in�q̃cl � �aUe�it

	q

	r
. �51�

Here we have used the modal approximation u� � u�d on
the right-hand side. Presumably, nonmodal contribu-
tions to u� are negligible if %q/%r is sufficiently weak in
the critical layer.7 For simplicity, suppose that the initial
value of q̃cl equals zero. Furthermore, suppose that the
DVRW is near marginal stability so that a remains ap-
proximately constant over many oscillation periods.
Then, integration of Eq. (51) yields

	

	t
�q̃clq̃*cl� →

2� |U |2�	q�	r�2

|n	��	r |
��r � r*� |a |2 �52�

for t k ��1 (cf. SM04). The delta-function response is
a signature of resonance.

The second term of the integrand of dLcl /dt [Eq.
(50)] is proportional to the time derivative of  �	�

�
. For

the special case of a barotropic cyclone, it has been
argued that the integral of this term is negligible
(SM04). The argument was built upon a Frobenius
analysis of the critical layer disturbance and on numeri-
cal evidence. Let us suppose that the second term of
dLcl /dt is also negligible in the more general baroclinic
problem, and leave rigorous proof for future research.

Inserting Eq. (52) into the right-hand side of Eq. (50)
and neglecting the second term yields

dLcl

dt
� 4��cl |a |2, �53�

in which

�cl � ���
�min

�max

d��r2 |U |2�2	q�	r

|n	��	r | �
r�r*

. �54�

Note that the positive value of #cl increases from zero
with the “average” negative value of %q/%r in the critical
layer.

Upon substituting Eqs. (46), (48), and (53) into Eq.
(45) we obtain

d |a |
dt

� � |a |, �55�

in which8

� �
�rad � �cl

M
. �56�

The first term of the growth rate (#rad /M ) accounts for
the positive feedback of IG wave radiation. The second
term (�#cl /M ) accounts for the negative feedback of
PV stirring in the critical layer.

The preceding theory for � relied on multiple as-
sumptions that may have limited applicability. The least
subtle is that the DVRW (should one even exist) is near
marginal stability. A small value of � is required for the
presumed length scale separation between the thin
critical layer and the bulk of the vortex. It is also re-
quired for the time scale separation between the e-
folding and oscillation periods of the wave. Despite the
imprecision of Eq. (56) in more general circumstances,
it still demonstrates that wave–flow resonances can
greatly hinder SI in MCs.

5. The potential impact of SI on tropical cyclones

The introduction referred to a theoretical study by
Chow and Chan (2003) that estimated an appreciable
rate of angular momentum loss by hurricanes due to IG
wave radiation. Specifically, they proposed that a spiral
IG wave can remove up to 10% of the core angular
momentum in one rotation period. To the author’s
knowledge, there are no numerical studies at this time
that irrefutably support the 10% loss estimate.

On the other hand, there is numerical evidence that
radiation-driven instabilities of hurricane-like vortices
can occur relatively fast (Schecter and Montgomery
2003; SM04; D. Hodyss and D. Nolan 2005, personal

7 Note that nonmodal (continuum) contributions to u� are ex-
pected to dominate at very late times if the DVRW is damped.
Nevertheless, we will assume that Eq. (51) stays valid over the
time scale of interest.

8 Growth rate formulas that are similar to Eq. (56) have been
numerically verified for DVRWs near marginal stability in moist
barotropic MCs (SM07), dry barotropic MCs (SM04), and shal-
low-water MCs (SM06).
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communication). In the following, we will reexamine
these instabilities with the goal of calculating the rate at
which they remove angular momentum from a vortex.
In addition, we will reexamine the magnitude of the
spiral bands of vertical velocity that they create in the
radiation zone. It has been speculated that such bands
might encourage moist convection.

a. Radiation torque on a Rankine cyclone

The study that we shall revisit is SM04, which is based
on the hydrostatic Boussinesq primitive equations (see
appendix C). In the Boussinesq model, the relative
angular momentum of a cyclone (per unit mass) is de-
fined by

L �
1

�R�
2H

�
V

dx3r�, �57�

in which the volume integral is over a cylinder V of
height H and radius R	. For simplicity, we assume rigid
vertical boundaries at z � 0 and at z � H. Then, the
rate of change of angular momentum due to spiral IG
wave radiation is given by

dL

dt
� �2u���


,z
�58�

in which h
�,z

is the average of h over the lateral bound-
ary of the cylinder V [cf. Eq. (C10) with condition (C7)].

Consider a barotropic Rankine cyclone in which 	m is
the maximum tangential velocity and Rm is the radius of
maximum wind. The unperturbed angular momentum
(per unit mass) of this cyclone is

L � �mRm	1 �
1
2 �Rm

R�
�2
, �59�

assuming that R	 � Rm. If the Brunt–Väisälä frequency
N is constant, the linear modes of any barotropic cy-
clone have the form

�
u�

��

w�

��
� � aoe�te i�n
�t��

U�r� cos�m�z�H�

V�r� cos�m�z�H�

W�r� sin�m�z�H�

��r� cos�m�z�H�
� � c.c.,

�60�

in which u�, 	�, w�, and 
� are the radial velocity, azi-
muthal velocity, vertical velocity, and geopotential per-
turbations, respectively. The reader may consult appen-
dix C for formulas that relate the velocity wavefunc-
tions to &.

Suppose that the perturbation is dominated by a
single mode. Furthermore, suppose that

ao �
�

2
�m

|U | r�Rm

, �61�

such that the initial amplitude of the radial velocity
perturbation at r � Rm and z � 0 is ' times the maxi-
mum tangential wind speed. Then it is readily shown
that the initial rate of change of L satisfies the following
equation:

1
L

dL

d�
� �

��2ℜ�UV*�r�R�

	1 �
1
2 �Rm

R�
�2
 |U | r�Rm

2

, �62�

in which ℜ[. . .] is the real part of the quantity in square
brackets and ( is time normalized to the vortex rotation
period, 2�Rm /	m. The rhs of Eq. (62) is expected to
increase monotonically from zero as the rotational
Froude number of the cyclone increases from zero to
order one (cf. section 3b; Ford 1994a,b; Plougonven and
Zeitlin 2002). In other words, at fixed N, the dimen-
sionless radiation torque is expected to increase mono-
tonically with 	m into the superspin parameter regime.

For comparison, surface drag would remove angular
momentum (per unit mass) from the unperturbed cy-
clone at the following rate:

�dL

dt �s
� �

2CD

R�
2H

�
0

R�

drr2�2, �63�

in which CD is the average dimensionless drag coeffi-
cient. For Rankine cyclones, Eq. (63) implies that

1
L �dL

d��s
� �

4�CDRm
3 � R�

Rm
�

4
5�

R�
2H	1 �

1
2 �Rm

R�
�2
 , �64�

again assuming that R	 � Rm. The absolute value of the
rhs of Eq. (64) provides a threshold on the dimension-
less radiation torque, above which IG wave emission
supersedes surface drag as an angular momentum sink.
Notably, this threshold does not vary with 	m. If an
intense cyclone cannot generate radiation torque above
this threshold, neither can a weak cyclone.

b. Some computational results in the category 5
hurricane parameter regime

Figure 10 presents key features of the first baroclinic
(m � 1) SI modes of a barotropic Rankine cyclone. The
parameters of the cyclone resemble those of a category
5 hurricane: 	m � 75 m s�1; Rm � 50 km; H � 10 km;
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f � 10�4 s�1; and N � 10�2 s�1.9 The Rossby and
Froude numbers are thus

Ro �
�m

fRm
� 15 and Fr �

��m

NH
� 2.36, �65�

in which NH/� is the characteristic horizontal phase
speed of an ambient gravity wave with vertical wave-
number m � 1. Each SI mode under consideration,
which consists of an inner DVRW and an outer spiral
IG wave, corresponds to a numerical solution of the
linear eigenmode problem (cf. SM04; appendix C). The

eigenmode solver approximated the Rankine cyclone
with the following vorticity distribution:

��r� �
�m

Rm
�1 � tanh	�r � Rm�

bRm

, �66�

in which b � 0.025. Two of the four solutions (n � 2, 4)
were independently verified with numerical integra-
tions of the initial value problem.

The top curves of Fig. 10 show the e-folding times
and wave periods of the DVRWs and their connected
radiation fields. Notably, the minimum e-folding time is
3.5 rotation periods, which is just over 4 h. It is impor-
tant to emphasize that this instability is driven entirely
by IG wave radiation. It does not require millions,
thousands, hundreds, or even tens of rotation periods
to be seen, as would be the case at small Froude num-
ber.

The middle curves of Fig. 10 show the fractional loss
of core angular momentum (�L) in one vortex rotation
period [minus the rhs of Eq. (62)]. This quantity in-
creases quadratically with the perturbation strength ',
and is shown for ' � 0.2. The two curves for �L use
different values of R	. For the top curve, R	 is chosen to
maximize �L. All maxima occur in the domain 1.05 �
R	 /Rm � 1.07. For the bottom curve, R	 � r* � 10l�.
With this formula, R	 /Rm decreases from 2.1 to 1.2 as n
increases from 1 to 4. For all cases considered,

R� K
NH

�m�
, �67�

in which the rhs is an estimate (valid for � k f ) of the
radial distance that the spiral IG wave travels in one
e-folding time ((� � ��1) of the perturbation. Condition
(67) guarantees that ℜ[UV*]r�R	 in Eq. (62) approxi-
mately corresponds to the radiation flux created by the
core DVRW at the instant under consideration.

Figure 11 (bottom) illustrates the variation of �L with
R	. The limit as r → � is irrelevant since it is zero. In
part, �L vanishes at infinity because the relative angular
momentum of a Rankine cyclone diverges with increas-
ing radius. To avoid this problem, we could regularize
the vortex. However, the instantaneous radiation field
would still decay exponentially with increasing r. Such
decay follows from causality; the outer waves were cre-
ated when the amplitude of the source (the DVRW)
was exponentially smaller.

According to Fig. 10, the first baroclinic SI modes of
a category 5 “hurricane” do not remove angular mo-
mentum at an appreciable rate. For ' � 0.2, the rate is
0.006–0.028 core units per vortex rotation period. As
such, it would take between a few days and one week

9 Using an extratropical value for the Coriolis parameter ( f �
10�4) instead of a tropical value does not matter, since Ro k 1 in
either case. Results for f � 5 $ 10�5 are nearly indistinguishable
from the results presented here.

FIG. 10. The SI modes (m � 1, 1 � n � 4) of a barotropic
Rankine cyclone in the parameter regime of a category 5 hurri-
cane. Each mode consists of an inner DVRW and an outer spiral
IG wave. They are initially excited by deforming the isosurfaces of
core potential vorticity, as sketched below the graph. The vari-
ables (� and (� are, respectively, the e-folding time (1/�) and
oscillation period (2�/�) of the mode, measured in vortex rotation
periods (2�Rm /	m). The variable �L is the fraction of core relative
angular momentum that is lost by radiation in one vortex rotation
period. The variable w� is the maximum vertical velocity of the IG
wave radiation, normalized to 	m. Both �L and w� depend on the
instantaneous mode amplitude ', which is the peak value of u� at
the radius of maximum wind, normalized to 	m. Here, ' � 0.2. The
two curves for 4�L correspond to two reasonable definitions of the
core radius R	 (see section 5b). The shaded region covers the
estimated range of 4�L s, which is (four times) the fraction of core
relative angular momentum that would be lost by surface drag
over the ocean in one vortex rotation period.
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for spiral radiation to deplete the core circulation (r �

R	) of the bulk of its original angular momentum, ne-
glecting potential decay of the radiation torque and re-
plenishment by radial inflow. In contrast, Chow and
Chan (2003) estimated that �L is of order 0.1. Their
large estimate may have resulted from using a small
Froude-number formula to approximate the radiation
flux at Fr � 1.

For comparison, the shaded region of Fig. 10 shows
the estimated fractional loss of core angular momentum
due to surface drag (�L s) in one vortex rotation period
[minus the rhs of Eq. (64)]. The upper and lower
bounds correspond to CD � 0.001 and CD � 0.003, as
might be expected for a hurricane over the ocean (cf.
Black et al. 2007). The value of R	 was set equal to
1.17Rm where �L s is maximized. The upper bound of
the radiation torque barely matches the lower bound of
the surface torque. So, it is sensible to assume that ra-
diation torque is typically subdominant. This assump-
tion is a tacit component of current theories for the
maximum potential intensity of a hurricane (e.g.,
Emanuel 1986, 1995).

On another topic, the bottom curves of Fig. 10 show
the maximum vertical velocities (w�) of the SI modes in

the midtropospheric region (z � H/2) of the radiation
zone (r � R	). For ' � 0.2, these velocities range from
0.002 to 0.015 times 	m, or from 0.1 to 1.1 m s�1. For
perspective, Fig. 11 (top) shows the w� field of the n �
2 mode. To the author’s knowledge, there is no indis-
putable evidence from realistic hurricane simulations
that the spiral w� bands of SI modes engender deep
convection. The case study by Chow et al. (2002) sug-
gests that cloud bands producing little rainwater are
more likely. Perhaps future investigations will reveal
circumstances in which the IG wave component of an
SI mode produces heavy rainbands.

c. Suppression of SI by skirts

Sections 5a and 5b focused on the radiation-driven
instability of a Rankine cyclone, which might be excep-
tional in its propensity for SI. Comprehensive observa-
tions (e.g., Mallen et al. 2005) and basic theory (e.g.,
Emanuel 1986) suggest that, in contrast to the Rankine
model, a typical hurricane will have a significant skirt of
cyclonic vorticity  that extends far beyond Rm and de-
cays with increasing r. The linear theories of sections 3
and 4 suggest that such skirts enhance the damping of
DVRWs owing to wave–flow resonances, and thereby
hinder SI.

Studies of barotropic MCs in a continuously stratified
fluid indicate that the damping power of a skirt is
largely controlled by the deformation radius [cf. Eq.
(11)]:

lD �
Nmlz

���
. �68�

Here Nm is the characteristic Brunt–Väisälä frequency
of moist air within the cyclone, �� is the characteristic
inertial stability of the cyclone, and lz is the vertical
length scale of the DVRW. The literature generally
indicates that the critical layers of the DVRWs of MCs
move radially inward with decreasing lD (Jones 1995;
Reasor and Montgomery 2001; Schecter et al. 2002;
Schecter and Montgomery 2003; SM04; SM07; Reasor
et al. 2004). Equation (68) indicates that decreasing lD
occurs by

(i) increasing the density of cloud coverage,
(ii) decreasing the positive vertical potential tempera-

ture gradient,
(iii) increasing the intensity (inertial stability) of the

vortex, or
(iv) decreasing the vertical length scale of the pertur-

bation.

FIG. 11. Snapshot of a radiating “hurricane.” The vertical wind
(w�) and radiation torque (��L) are generated by an SI mode with
(m, n) � (1, 2) and ' � 0.2. The solid w� curve is along a fixed
azimuth at z � H/2. The dashed curve shows the maximum of w�
at the same vertical level. Note that w� is negligible in the critical
layer [cf. Eq. (C13)]. The dark triangle and diamonds indicate the
measurements that were used in Fig. 10.
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Typically, the radial PV gradient of a skirt sharply in-
creases with decreasing r. Consequently, decreasing lD
(to values below Rm) greatly increases the negative ra-
dial PV gradient in the critical layer of a DVRW and
greatly accelerates resonant damping.10

Hurricane-like vortices have relatively small values
of lD. For example, evaluating the inertial stability �� at
Rm and letting lz � H/�, we obtain lD � 0.3 Rm for the
model hurricane of section 5b. This small value of lD
ensured that the critical layers of all baroclinic DVRWs
were centered close to the core; in particular, r* � 1.6
Rm for each mode. Consequently, in linear theory, a
skirt of very modest extension would have sufficed to
quench all DVRWs and thereby suppress radiation (cf.
SM04).

The above conclusion seems more robust upon con-
sidering the effect of moisture. Figure 12, adapted from
SM07, illustrates the suppression of a linear SI mode by
cloud coverage in a barotropic cyclone. As usual, the SI
mode consists of an inner DVRW and an outer spiral
IG wave (not shown). The azimuthal wavenumber is
n � 2, and the vertical wavelength is such that under
dry conditions lD � 0.26 Rm in which lD is evaluated at
r � Rm. Because the cyclone is nearly Rankine, the dry
value of lD is not sufficiently small to quench SI. Nev-
ertheless, lD is reducible by increasing cloudiness (de-
creasing Nm) in the vicinity of Rm. As shown here, re-
duction of lD by cloud coverage ultimately moves r* to

a location where, in linear theory, critical layer damping
prevails over radiative pumping. Interested readers
may consult SM07 for further details.11

Of course, a steep skirt (or lD K Rm) does not guar-
antee the suppression of SI in a real tropical cyclone;
rather, it represents one inhibiting factor. As men-
tioned earlier, the angular pseudomomentum of a
DVRW at sufficiently large amplitude can exceed the
finite absorption capacity of its critical layer. In this
case, nonlinear SI would occur. Furthermore, hurri-
canes typically have nonmonotonic cores that suffer
shear-flow instabilities. Such instabilities can act as ad-
ditional sources of spiral IG waves and are not sensitive
to the gradient of the skirt. Finally, even if the cyclone
has a monotonic potential vorticity distribution, it can
exhibit a “nonmodal” shear-flow instability (cf. Nolan
and Farrell 1999; Antkowiak and Brancher 2004) that
temporarily amplifies the IG wave radiation field. Con-
vective processes within the vortex might initiate such
an event.

d. IG wave emission by sheared vortex Rossby
waves

If a steep skirt is able to severely damp all DVRWs,
then arbitrary forcing might prefer to excite sheared
vortex Rossby waves (SVRWs). There is evidence that

10 Schecter et al. 2002 provides a rare counterexample.

11 The results in SM07 (section 8) are expressed in terms of a
cloudiness parameter # and the dry Rossby deformation radius
l dry

R . Here we have used the relation lD � (1 � #)l dry
D in which

l dry
D � fl dry

R /���.

FIG. 12. The suppression of a linear SI mode by increasing cloudiness in a barotropic cyclone at Ro � �max/f � 2. All lengths are
normalized to the radius of maximum wind Rm, and all frequencies are normalized to the peak relative vorticity. (a) Relative vorticity
() and angular velocity (�) of the basic state. The basic state is cloudy in the vicinity of Rm, but the environmental air is dry. (b) The
growth rate � of an n � 2 DVRW whose vertical length scale yields lD � 0.26Rm under dry conditions. As cloudiness increases, lD
decreases and � ultimately becomes negative. The � symbols correspond to numerical solutions of the eigenmode/quasi-mode problem,
and are connected by the solid curve. The dotted curves are theoretical values of the (top) radiative pumping rate and (bottom) critical
layer damping rate. Each $ corresponds to the sum of the dotted curves at a specific value of lD. (c) As lD decreases, the critical radius
r* of the DVRW moves inward, where the vorticity (PV) gradient is relatively steep. Each diamond marks the location of r

*
for a data

point in (b), with progressively smaller lD from right to left. Note: the data in (b) and (c) are from Figs. 12 and 10 of SM07.
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such waves exist in tropical cyclones and are capable of
generating spiral cloud bands (McDonald 1968; Chen
and Yau 2001; Wang 2002a,b; Chen et al. 2003). Bal-
ance theories suggest that SVRWs can intensify the
storm by fluxing angular momentum to the radius of
maximum wind (Montgomery and Kallenbach 1997;
Möller and Montgomery 1999, 2000; Enagonio and
Montgomery 2001). However, an SVRW may also cre-
ate IG wave radiation that fluxes angular momentum
away from the vortex. Because an SVRW loses coher-
ence and attenuates, it is not likely to sustain radiation
by itself. Nevertheless, persistent cycles of SVRW cre-
ation and dissipation may engender a notable time-
averaged radiation torque.

6. Concluding remarks

This paper reviewed an important paradigm of spon-
taneous imbalance (SI) that operates at Rossby num-
bers greater than unity. The main text began by dis-
cussing the balanced dynamics of a discrete vortex
Rossby wave (DVRW) in a monotonic cyclone (MC).
In the context of balanced dynamics, the DVRW is a
potential vorticity wave that acts at a distance on fluid
beyond the core region of the MC. Section 2 explained
that the external flow field of a DVRW most efficiently
stirs PV in a critical layer where the angular phase ve-
locity of the wave matches the angular velocity of the
mean flow. Since total angular pseudomomentum is
conserved, its production in the critical layer damps the
DVRW. The damping rate is proportional to the mean
radial gradient of critical layer PV.

Beyond the critical layer, balance conditions break
down, and the external flow field of the DVRW excites
an outward propagating spiral IG wave. Section 3 ex-
plained that the DVRW and IG wave have angular
pseudomomenta of opposite sign, positive and nega-
tive, respectively. Therefore, producing IG wave radia-
tion compels the DVRW to grow. The growth rate due
to radiation alone increases algebraically from zero
with the rotational Froude number of the vortex.

Nevertheless, SI will occur only if radiative pumping
supersedes critical layer damping. The competition be-
tween these two processes has been quantified in linear
theory, for both shallow-water cyclones [section 3; Eq.
(24)] and continuously stratified cyclones [section 4;
Eq. (56)]. It is sensible to suppose that increasing Fr
would enable or intensify SI because it enhances the
radiative pumping of a DVRW. However, increasing Fr
at high Rossby number coincides with decreasing the
vortex deformation radius lD. The reduction of lD

moves the critical radius inward where the PV gradient

can steepen by orders of magnitude (Fig. 12c). Hence,
raising Fr can bolster critical layer damping and sup-
press SI.

Of course, linear damping does not guarantee sup-
pression. Section 3d showed that nonlinear SI will occur
if the angular pseudomomentum of the DVRW exceeds
the finite absorption capacity of the critical layer. Such
is the case when the bounce frequency �b of the
DVRW is greater than the linear decay rate |� | . When
the wave amplitude is sufficiently large to satisfy this
condition, the DVRW mixes the PV distribution in the
critical layer and effectively levels the once stabilizing
gradient.

Section 5 reexamined SI in the superspin parameter
regime where both Ro and Fr are above unity. In par-
ticular, it considered the first baroclinic SI modes of a
barotropic cyclone at Rossby and Froude numbers
characteristic of a category 5 hurricane. It was verified
that IG wave radiation can triple the amplitude of a
DVRW in just a few vortex rotation periods. However,
the negative radiation torque appeared to be less sig-
nificant than the expected influence of oceanic surface
drag.

Despite recent progress, much remains to learn
about the SI of intense mesoscale vortices. The extent
to which DVRWs (as opposed to continuum perturba-
tions) control IG wave emissions from baroclinic cy-
clones is unknown. Moreover, the effect of secondary
circulation in the basic state is uncertain. The role of
moisture is also relatively unexplored. Clearly, mois-
ture cannot be ignored in the troposphere. At the most
basic level of approximation, cloud coverage simply re-
duces the Brunt–Väisälä frequency of the system. As
explained in section 5c, this can indirectly enhance the
ability of critical layers to inhibit the SI of an MC (cf.
SM07). Future research may better explain how a more
realistic nonlinear coupling of vortex modes to cloud
processes affects their ability to excite IG waves in the
far field.
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APPENDIX A

The Shallow-Water Model

The shallow-water equations constitute the simplest
model of geophysical flow that accounts for the inter-
action of vortical motion with IG waves. They form the
basis of the theoretical and numerical results of section
3. We may write the shallow-water equations in the
following compact form:

	u
	t
� � $ u � ��� �

u2

2 � � 0, �A1�

	�

	t
� � · �u � 0. �A2�

Above, u is the horizontal velocity field, 
 is the geo-
potential (gravitational acceleration g times the free
surface height), t is time, and � is the horizontal gradi-
ent operator. The absolute vorticity vector is defined by

� � � $ u � f ẑ, �A3�

in which ẑ is the vertical unit vector.
It is well known that Eqs. (A1) and (A2) conserve

PV (q) along material trajectories. That is,

	q

	t
� u · �q � 0, �A4�

in which

q �
ẑ · �

�
. �A5�

In addition, manipulation of Eqs. (A1) and (A2) yields
the following flux-conservation law for absolute angu-
lar momentum density:

	

	t 	��r� �
fr2

2 �
� �� · 	u��r� �
fr2

2 � � r�2

2
�̂
,

�A6�

in which r is radius from a central vertical axis, 	 is the
azimuthal velocity field, and �̂ is the azimuthal unit
vector. Conservation of mass, PV, and absolute angular
momentum form the basis of an exact angular pseudo-
momentum conservation law. The reader may consult
Guinn and Schubert (1993) for a detailed derivation.

APPENDIX B

The Hydrostatic Primitive Equations in Isentropic
Coordinates

The theoretical results of section 4 are based on the
hydrostatic primitive equations in isentropic coordi-
nates. The isentropic coordinate system (e.g., Dutton

1976) replaces the vertical Cartesian coordinate z with
the potential temperature

� � T�pa

p �R�cp

�B1�

in which T is absolute temperature, R is the gas con-
stant of dry air, cp is the specific heat of dry air at
constant pressure p, and pa is the ambient surface pres-
sure.

In isentropic coordinates, the momentum equation
takes the form

	u
	t
� �ẑ $ u � ���u2

2
� �� � 0, �B2�

in which u is the horizontal velocity field, �� is the isen-
tropic horizontal gradient operator, � � ẑ · �� $ u � f
is the absolute vertical vorticity, and ! � cpT � gz is the
Montgomery streamfunction. The hydrostatic relation
is given by

	�

	�
� cp� p

pa
�R�cp

. �B3�

Finally, mass continuity takes the form

	�

	t
� �� · �u � 0, �B4�

in which

� � �
1
g

	p

	�
. �B5�

With appropriate boundary conditions, Eqs. (B2)–(B5)
form a closed system.

In the isentropic coordinate system, potential vortic-
ity is given by

q � ��� �B6�

and is conserved along material trajectories; that is,

	q

	t
� u · ��q � 0. �B7�

In addition, the absolute angular momentum density is
governed by

	

	t 	��r� �
fr2

2 �
� ��� · 	u��r� �
fr2

2 �
�

cprp

g�1 � cp �R�
� p

pa
�R�cp

�̂

�

	

	�
�p

g

	�

	

� , �B8�
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in which 	 again represents the azimuthal velocity field.
As in shallow-water theory, conservation of mass, PV,
and absolute angular momentum form the basis of an
exact angular pseudomomentum conservation law.

APPENDIX C

The Hydrostatic Boussinesq Model in
Pseudoheight Coordinates

The results of section 5 are based on a hydrostatic
Boussinesq model that uses the following pseudoheight
as the vertical coordinate:

z�p� � 	1 � � p

pa
�R�cp
 cp

R

pa

 ag
, �C1�

in which pa and )a are ambient surface values of pres-
sure and density (Hoskins and Bretherton 1972). Note
that dz � dz̃�a /�, in which z̃ is the genuine height co-
ordinate and �a is the ambient surface value of potential
temperature. The difference between z and z̃ is gener-
ally small in the lower 10 km of the atmosphere and
vanishes if the stratification is dry adiabatic. Therefore,
the pseudo vertical velocity (w � dz/dt) of a fluid parcel
approximately equals the genuine vertical velocity in
the region of interest.

In pseudoheight coordinates, the horizontal momen-
tum equation takes the form

	u
	t
� v · �u � f ẑ $ u � �z� � 0, �C2�

in which u is horizontal velocity, v � u � ẑw, 
 � gz̃ is
the geopotential, �z is the horizontal gradient operator,
and � � �z � ẑ%/%z. Furthermore, the adiabatic heat
equation is given by

	�

	t
� v · �� � 0. �C3�

The hydrostatic relation and mass continuity equations
take the forms

� �
�a

g

	�

	z
�C4�

and

� ·  pv � 0, �C5�

respectively. Above, we have introduced a pseudoden-
sity, defined by

 p�z� �  a� p

pa
�c� �cp

. �C6�

In the Boussinesq approximation, )p is treated as a con-
stant in (C5) and divided through on both sides to obtain

� · v � 0. �C7�

With appropriate boundary conditions, Eqs. (C2)–(C4)
and (C7) form a closed system.

It can be shown that the Boussinesq equations con-
serve the following potential vorticity,

q�x,t� � �� $ u � f ẑ� · ��, �C8�

along material trajectories. That is,

	q

	t
� v · �q � 0. �C9�

In addition, the relative angular momentum per unit
mass is governed by

	�r��

	t
� � · 	v�r� �

fr2

2 � � r��̂
� 0 �C10�

in which 	 (as usual) is the azimuthal velocity field.
SM04 derives an exact angular pseudomomentum con-
servation law that stems from Eqs. (C9) and (C10).
Equation (58) of the main text follows from Eq. (C10),
Eq. (C7), and rigid, frictionless vertical boundary con-
ditions.

It is straightforward to derive linearized perturbation
equations from the above model. Suppose that the ba-
sic state is a barotropic cyclone in gradient balance, and
that the vertical boundaries are rigid. Furthermore, sup-
pose that the Brunt–Väisälä frequency N � �%2
/%z2

is constant. Then, the eigenmodes are formally given by
Eq. (60) of the main text. Furthermore, it has been
shown (SM04) that the geopotential eigenfunction must
satisfy the following equation:

1
r

d

dr 	 r

�� � ̂2

d

dr
�
� n

̂r

d

dr 	 �

� � � ̂2
�
� 	 n2

r2��� � ̂2�
� �m�

NH�2
� � 0, �C11�

in which

̂�r� � c � n� �C12�

and �c � � � i� is the complex eigenfrequency. The
polarization equations are

U�r� �
i

�� � ̂2 �̂ d�

dr
�

n�

r
��,

V�r� �
1

�� � ̂2 �� d�

dr
�

n̂

r
��,

W�r� �
im�̂

HN2 � �C13�

for the radial, azimuthal, and vertical velocities, respec-
tively. The boundary conditions that determine the pos-
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sible values of �c are regularity at the origin and out-
ward IG wave propagation as r tends toward infinity
(SM04). The eigenmodes of section 5 were obtained
numerically with a radiation condition imposed at r �
9.5Rm.
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