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Notes and Correspondence
Hurricane intensity in the Ooyama (1969) paradigm
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This note derives an analytical approximation for steady-state hurricane intensity in
the three-layer model of Ooyama (1969). As in the more realistic but involved theory
of Emanuel (1986), the square of the maximum wind speed is roughly proportional
to the ratio of entropy to momentum exchange coefficients, times a measure of the
ambient thermal disequilibrium between the sea surface and the upper troposphere.
The analytical approximation compares favourably to a set of three-layer numerical
simulations that covers a broad range of parameter space. Limitations of the analysis
are briefly addressed, and a supergradient wind correction is estimated. Copyright
c© 2010 Royal Meteorological Society
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1. Introduction

The simple tropical cyclone model of Ooyama (1969–O69
hereafter) provided early insight into the response of
hurricanes to variations of sea-surface temperature and
surface-exchange coefficients. Numerical results from
the model (O69; DeMaria and Pickle, 1988; Schecter
and Dunkerton, 2009–SD09 hereafter) are qualitatively
consistent with intensity predictions given by the steady-
state theory of Emanuel (Emanuel, 1986–E86 hereafter;
Rotunno and Emanuel, 1987; Emanuel, 1988; Emanuel,
1995–E95 hereafter). The similarities between O69 and E86
are comforting, but are not fully explained in the literature.
The O69 model has three layers, whereas the E86 model
is continuous. The O69 model involves a crude cumulus
parametrization, whereas the E86 model directly accounts
for cloud moisture.

This note is an effort to explain the scaling of hurricane
intensity in the context of O69, with minimal complications.
An analytical theory is followed by a successful comparison
to numerical results. The analysis has virtue in its simplicity,
but does not incorporate several features of realistic
hurricanes that are known to affect intensity. Appendix
A1 briefly addresses the neglected presence of supergradient

wind in the boundary layer, but deviation from axisymmetric
flow, mid-level ventilation, and other subtleties are beyond
the modest scope of this note. Those interested may readily
consult a growing body of literature on the aforementioned
issues (Bister and Emanuel, 1997; Persing and Montgomery,
2003; Smith et al., 2008; Smith and Montgomery, 2008;
Bryan and Rotunno, 2009a,b; Tang and Emanuel, 2010;
Montgomery et al., 2010).

2. Estimate of hurricane intensity

Figure 1 illustrates an axisymmetric steady-state hurricane
in the O69 paradigm. The model consists of two ‘shallow-
water’ layers over a flat boundary layer. The mass density of
the upper layer is a fraction ε of the common mass density ρ

of the boundary and middle layers. An ocean with constant
surface temperature sits beneath the vortex. In the boundary
layer, air spirals radially inward while experiencing drag
and gaining moisture (moist entropy) from the underlying
ocean. The inflow converges into a cumulus updraught,
accentuated near the radius of maximum wind. The cumulus
air mass rarefies and ascends into the upper layer, where it
proceeds to flow radially outward.
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Figure 1. Illustration of a steady-state hurricane in the three-layer model of
Ooyama (1969). The boundary, middle and upper layers are labelled 0, 1
and 2, respectively. The primary azimuthal circulation (vm) is into the page.
White arrows show the secondary circulation. The grey clouds crudely
depict moist convection in the hurricane, which the model represents by
the rarefaction of lower tropospheric air, and its ascent into the upper layer.

The following derivation of steady-state hurricane
intensity is reasonably self-contained, but some familiarity
with O69 would likely benefit the reader. For convenient
reference, Table I indicates where O69 explicitly or implicitly
presents the fundamental vortex equations used in the
analysis. The O69 equations include lateral eddy-fluxes and
shearing stresses at the top and bottom of the middle layer.
In principle, both items can affect hurricane intensity, but
are neglected in this note.

For simplicity, let us assume that the thermal structure
of the steady state approximately satisfies the following
condition of deep convective neutrality:

θe0(r) = θ∗
e2(r), (1)

in which θe0 is the equivalent potential temperature of the
boundary layer, θ∗

e2 is the saturation equivalent potential
temperature of the upper layer, and r is the radius from
the centre of the vortex. Condition (1) is analogous but
not equivalent to that of slantwise convective neutrality in
Emanuel’s more realistic model of steady-state hurricanes
(E86). In the O69 cumulus parametrization, deep convective
neutrality eliminates the entrainment of mid-level air by
cumulus updraughts, and thereby eliminates convergence in
the middle layer. In principle, intensification or spin-down
would occur if θe0 were greater or less than θ∗

e2 (O69; Smith,
2000). Moreover, condition (1) appears to hold fairly well at
late times in the original numerical simulations of Ooyama
(Figure 6 of O69). Ultimately, we apply condition (1) only
to the eyewall region of the hurricane, which contains the
radius of maximum wind.

Let us further suppose that the ratio of planetary to relative
vorticity is small, and that all three layers of the hurricane
satisfy cyclostrophic balance in the central region of interest.

Table I. Correspondence between equations of this note and
O69.

Description This note Ooyama (1969)

Deep convective Eq. (1) Sections 8, 10
neutrality Fig. 6 (194 hr)

Gradient (cyclostrophic) Eqs (2) Eq. (3.1),
balance Eq. (3.2)

Geopotential Eqs (3) Eqs (2.9),
perturbations Eq. (2.10)

Angular momentum Eq. (4) Eq. (3.19)
equation in the boundary
layer

Moist entropy equation Eq. (5) Eq. (7.4)
in the boundary layer

Saturation equivalent Eqs (6) Eq. (7.5),
potential temperatures Eq. (6.4)

Mass continuity equation Eq. (10) Eq. (2.6)
in the upper layer

Angular momentum Eq. (11) Eq. (3.5)
equation in the upper
layer

In the O69 model, cyclostrophic balance translates into

dφ1

dr
= v2

1

r
= v2

0

r
and

dφ2

dr
= v2

2

r
, (2)

in which vm and φm are the azimuthal velocity and
geopotential perturbations of layer m. The geopotential
perturbations are defined by

φ0 = φ1 ≡ g(h1 − H1) + εg(h2 − H2)

and

φ2 ≡ g(h1 − H1) + g(h2 − H2) ,

 (3)

in which hm and Hm are the local and ambient thicknesses
of layer m, and g is the gravitational acceleration.

The legitimacy of assuming cyclostrophic balance in
the hurricane core generally requires dominance of
centrifugal acceleration over radial advection and other
terms (excluding the geopotential gradient) in the radial
momentum equation. This condition is known to be
questionable in the boundary layer of an arbitrary hurricane
(e.g. Smith and Montgomery, 2008). The constraint
v0 = v1 implied by Eq. (2), which follows from extending
cyclostrophic balance (or gradient balance) to the boundary
layer, is therefore open to criticism. Appendix A1 examines
the error associated with this approximation. For now, let it
suffice to view v0 = v1 as a provisional characteristic of the
steady state, consistent with O69.

Continuing along, if the azimuthal wind speed is much
greater than the radial wind speed in the boundary layer,
then the steady-state angular momentum equation in the
boundary layer reduces to

u0 = −CDv2
0

H0ζ0
, (4)
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in which um and ζm ≡ r−1d(rvm)/dr are the radial velocity
and relative vorticity of layer m. The dimensionless
parameter CD in Eq. (4) is the momentum exchange
coefficient for air–sea interaction. As before, planetary
vorticity has been neglected under the assumption of high
relative vorticity inside the central region of the hurricane.

Let us also assume that any downward mass flux of
low-entropy air into the boundary layer is negligible inside
a loosely defined perimeter of the vortex core. Then, the
steady-state equation for equivalent potential temperature
in the core region of the boundary layer reduces to

u0
dθe0

dr
= CEv0

θ∗
es − θe0

H0
, (5)

in which θ∗
es is the saturation equivalent potential

temperature at the sea surface, and CE is the dimensionless
surface-exchange coefficient for moist entropy. Equation (5)
notably implies that (in steady state) an unsaturated
boundary layer is required for the coexistence of radial inflow
and a non-zero entropy gradient (i.e. non-zero dθe0/dr).

In the O69 model, the saturation equivalent potential
temperatures at the sea surface and in the upper layer are
related to the geopotential perturbations by

θ∗
es = θ

∗
es − β

cp
φ1,

θ∗
e2 = θ

∗
e2 + α

cp
(φ2 − φ1),

 (6)

in which α and β are positive dimensionless constants, cp is
the isobaric specific heat of air, and overbars denote ambient
values. The top equation expresses the elevation of saturation
equivalent potential temperature at lower values of the sea-
surface pressure ps, sinceρφ1 = ps − ps. The bottom relation
expresses the association of warming with expansion of the
rarefied upper layer, since φ2 − φ1 = g(1 − ε)(h2 − H2).

Substituting Eqs (1), (4) and (6) into Eq. (5), and
appealing to cyclostrophic balance (2) yields

v3
0

1 − v2
2/v2

0

d(rv0)/dr
= cp

α

CE

CD

[
θ

∗
es− θ

∗
e2−

α

cp
(φ2− φ1)− β

cp
φ1

]
.

(7)

Let Vm denote the characteristic azimuthal velocity of the
vortex in layer m. By Eq. (2), we estimate that φm ∼ −V2

m.
By Eq. (7), we further estimate that

V2
0 ∼ CE

CD

cp

αS

θ
∗
es − θ

∗
e2

1 + CE
CD

(
1 − β

αS

) , (8)

in which S ≡ 1 − V2
2 /V2

0 . The quantitative accuracy of the
above relation depends in part on the ‘empirical’ validity of
substituting unity for several unknown scaling coefficients
in the derivation. Closure requires a formula for S, which
measures the vertical shear of the primary circulation. Two
possibilities are considered in section 4 of this note. In both
cases, and in the numerical simulations of section 3, S varies
little with V0.

Equation (8) implies that V2
0 is proportional to CE/CD,

as the ratio tends toward zero, times a measure of the
ambient thermal disequilibrium between the sea surface and
the upper troposphere. This result is similar to Eq. (43) of

E86 (or Eq. (16) of E95), as explained in Appendix A2.∗

It is worth noting that θ
∗
es − θ

∗
e2 is not directly related to

the ambient convective available potential energy (CAPE),
which is unspecified in the preceding analysis, and may be
zero provided that condition (1) extends to the environment.

Clearly, we have not derived a rigorous analytical
solution for the steady state. Equation (8) is best viewed
as a reasonable hypothesis, founded on basic physical
considerations. The merit of this formula must be judged by
comparison to numerical simulations.

3. Comparison to numerical simulations

Figure 2 compares the theoretical vortex intensity (Eq. (8))
to the tropical cyclone simulations of SD09. The SD09
simulations are based on a three-layer model with an
O69-like cumulus parameterization. The layer parameters
are H0 = 1 km, H1 = H2 = 5 km, and ε = 0.9. The
computational domain is a 2000 × 2000 km periodic box,
with 3.9 km horizontal grid increments. The surface-
exchange coefficients vary with the boundary-layer wind
speed |v0| according to an O69-like formula,

CD,E = C∗
D,E(1 + |v0| /v∗), (9)

in which C∗
D and C∗

E are adjustable parameters, whereas
v∗ is always 8.33 m s−1. (Interested readers may consult
Black et al., 2007, for a more realistic description of air–sea
exchange.) The simulations begin with turbulent initial
conditions and generate tropical cyclones over time-scales
of days to months. The parameter regime covers over one
decade of CE/CD, numerous values of θ

∗
es that span a

broad range of sea-surface temperatures, and several tropical
values of the Coriolis parameter f . A distinct parameter set is
represented by a distinct symbol on the scatter plot. Different
data points for the same parameters correspond to different
initial conditions.

The plotted simulation values of vortex intensity are
given by Vsim ≡ 〈v0〉t , in which vm is the azimuthal mean of
the azimuthal velocity of layer m. The polar coordinate
system which defines the azimuthal velocity is centred
at the instantaneous point of minimum surface pressure.
The operator 〈. . . 〉t takes the time average of the enclosed
variable, evaluated at the radius of maximum v0 (henceforth
rmw), after the vortex reaches a statistically stationary state.
The theoretical vortex intensity (Vth) on the horizontal axis
is the steady-state time average of the right-hand side of
Eq. (8), with the shear parameter S ≡ 1 − v2

2/v2
0 evaluated

at rmw, and θ
∗
es − θ

∗
e2 set equal to the domain average of

θ∗
es − θ∗

e2.† The values of α and β are 10 and 2, respectively,
and cp = 1005.7 J kg−1K−1. Evidently, Eq. (8) provides an
accurate description of the simulation results in SD09.

We may also compare Eq. (8) to a detailed simulation
result in O69 (far-right column of Figure 6). The O69
hurricane under consideration has the following properties
at the 60 km radius of maximum wind: v0 � 49 m s−1 and

∗Recent cloud-resolving numerical simulations suggest that hurricane
intensity may be less sensitive to CE/CD than suggested by E86 and
the present analysis, due to lateral eddy-fluxes, non-axisymmetric flow,
or relatively involved boundary layer dynamics (Bryan and Rotunno,
2009a; Montgomery et al., 2010).
†Be aware of the notational discrepancy with SD09, in which an overbar
strictly denotes the initial value of the domain average.
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Figure 2. The maximum tangential wind speeds of the simulated tropical cyclones of SD09 (Vsim) versus the theoretical wind speeds (Vth) of Eq. (8).
Each symbol corresponds to a unique set of values for C∗

D, C∗
E , f and θ

∗
es. The equilibrium values of θ

∗
e2 and S vary slightly with initial conditions; the

tabulated values of θ
∗
es − θ

∗
e2 and S are averages over a given set. The dotted line represents the curve Vsim = Vth. In general, the simulations have 3.9-km

horizontal grid increments; simulation + has 2-km increments.

S � 0.5. The ratio of surface-exchange coefficients is unity,
and θ

∗
es − θ

∗
e2 measured at r = 400 km is about 20 K. With

α, β and cp given as before, Eq. (8) predicts an agreeable
wind speed of 50 m s−1.

The apparent accuracy of Eq. (8) is remarkable, given
that the estimate was built upon simplified conditions for
the steady state, and set various unknown coefficients of
proportionality to one. In fairness, successful comparison
to SD09, which uses a model less constrained than the
O69 prototype, involves some cancellation of error. To
begin with, SD09 hurricanes have persistent asymmetrical
fluctuations in their statistical equilibria, which violates the
fundamental premise of axisymmetry. Although condition
(1) holds well (on average) in the eyewall, which
contains the radius of maximum wind, the condition
dθe0/dr = dθ∗

e2/dr is fragile and generally less accurate.
Furthermore, the boundary layer develops a non-trivial
degree of supergradient flow (v0 > v1) for those cases with
exceptionally large values of C∗

D. Hence, the preceding
derivation of Eq. (8) provides substantial insight into steady-
state maintenance, but falls short of telling the complete
story.

4. The S-closure

As mentioned earlier, the scaling theory is incomplete
without a formula for the shear parameter S. In order to
obtain some degree of closure, let us consider the secondary
circulation of the hurricane core in greater detail. The
cumulus mass flux out of the boundary layer is proportional
to the convergence of u0. The upper layer is steady only
if the divergence of its (outward) radial mass flux cancels
the influx of cumulus air mass from below. For a neutral
axisymmetric vortex in the O69 model, this condition is
tantamount to

ε
d(ru2h2)

dr
= −d(ru0H0)

dr
,

which upon integrating outward from r = 0 yields

u2 = −u0H0

εh2
. (10)

Furthermore, the divergence of the radial flux of angular
momentum in the upper layer must cancel the cumulus
influx from below. Neglecting planetary vorticity, this
condition may be written as:

ε
d(r2u2v2h2)

dr
= −d(ru0H0)

dr
rv0. (11)

Substituting Eqs (10) and (4) into (11) and integrating
outward from r = 0 yields

v2

v0
= 1 − 1

r3CDv3
0

d(rv0)

dr

∫ r

0
r̃2CDv2

0 d̃r. (12)

Suppose that the azimuthal velocity in the boundary layer is
Rankine (v0 ∝ r) within the radius of maximum wind rmw,
and CD satisfies Eq. (9). Then, the right-hand side of Eq. (12)
may be solved at r−

mw to find a shear parameter S that varies
from 0.56 to 0.64 as the maximum of v0 decreases from
infinity to zero. This range of values is somewhat below that
found for S in the numerical simulations of SD09, suggesting
that the shear parameter may be sensitive to fine details of v0,
or to asymmetrical fluctuations which exist in the statistical
equilibrium.

An alternative closure begins by considering a variant
of the thermal wind relation in the vicinity of rmw, where
cyclostrophic balance and condition (1) are assumed valid:

1 − v2
2

v2
0

= β

α

dθ∗
e2

dθ∗
es

= β

α

dθe0

dθ∗
es

. (13)

Suppose that θe0 decays with increasing radius at and
beyond rmw, specifically as though temperature and relative
humidity were constant (cf. E86). This would imply that θe0
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depends on pressure alone in the outer region of the vortex.
Linearizing the pressure dependence yields

θe0 = θ e0 − β ′

cp
φ1 , r ≥ rmw , (14)

in which β ′ is a constant determined by the ambient
conditions. Substituting Eq. (14) into the right-hand side
of Eq. (13) gives S = β ′/α. Since plausible values of β ′ are
comparable to β , the closure under consideration yields
substantially smaller values for S (around 0.2) than are
observed at rmw in the simulations. An implicit outward
radial decay of relative humidity (or temperature) in the
boundary layer would produce a larger value of dθe0/dθ∗

es,
and a larger value of S by Eq. (13). The value of S would also
increase if dθ∗

e2/dθe0 > 1, in violation of condition (1).

5. Conclusion

We have shown that a ‘back-of-the-envelope’ analysis
provides substantial insight into the scaling of hurricane
intensity in the O69 paradigm. As in E86, our derived
expression for the square of the maximum wind speed of a
steady-state hurricane (Eq. (8)) is roughly proportional to
the ratio of entropy to momentum exchange coefficients,
times a measure of the ambient thermal disequilibrium
between the sea surface and the upper troposphere. The
wind speed formula compared favourably to a large and
diverse set of three-layer numerical simulations. Because of
its simplicity, the scaling theory presented here may have
some pedagogical value. However, any simple theory of an
atmospheric system has limited applicability. Appendix A1
addresses one important limitation of Eq. (8) caused by
neglecting supergradient flow in the boundary layer. Other
deficiencies shared with E86 were noted in section 1, along
with pertinent references.
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Appendices

A1. Supergradient flow

It is well known that supergradient flow can occur in the
boundary layer of a realistic hurricane (Smith et al., 2008;
Smith and Montgomery, 2008; Bryan and Rotunno, 2009b).
By contrast, the original O69 model (used in section 2)
imposes gradient balance on the primary circulation of
the entire vortex. In this appendix, we remove the balance
constraint on v0 and estimate the degree of supergradient
flow near the radius of maximum wind rmw, given CD and a
few geometrical parameters of the vortex.

Including terms neglected in O69, the steady-state radial
momentum equation for the boundary layer has the

following form (cf. SD09):

v2
0

r

(
1 + fr

v0

)
− d

dr

(
u2

0

2

)
− CD |v0| u0

H0
− u0w−

H0

= dφ1

dr
= v2

1

r

(
1 + fr

v1

)
.

(A1)

The new variable w− (times ρ) is the downward mass flux
on top of the boundary layer; the value of w− is non-
zero (and positive) only in regions of subsidence. The term
−u0w−/H0, which may be unfamiliar to some readers,
represents radial drag due to momentum mixing with the
middle layer, under the assumption that u1 � u0. The far
right-hand side of Eq. (A1) assumes that gradient balance
remains a valid approximation in the middle layer.

By definition, supergradient flow is the condition where
the centrifugal (plus Coriolis) force exceeds the inward force
imposed by the radial pressure gradient. By Eq. (A1), it exists
in the boundary layer iff

d

dr

(
u2

0

2

)
> −CD|v0|u0 + u0w−

H0
,

that is, iff the Lagrangian deceleration of radial inflow
exceeds the deceleration due to surface friction and
momentum mixing with the middle layer. For the model
under consideration, supergradient flow in the boundary
layer is tantamount to the condition v0 > v1.

To estimate the degree to which v0 might exceed v1 near
rmw, it is helpful to reformulate Eq. (A1). The first step is
to consider the following steady-state angular momentum
equation in the boundary layer:

u0 = − CD |v0| v0

H0ζ0(1 + f /ζ0)
− (v0 − v1)w−

H0ζ0(1 + f /ζ0)
. (A2)

The second step is to note that the vertical mass flux
is positive (w− = 0) in the vicinity of rmw. Substituting
Eq. (A2) and w− = 0 into Eq. (A1) yields

v2
1

v2
0

= 1 + fr/v0

1 + fr/v1
− r

v2
0

(
1 + fr/v1

)
×

[
1

2

d

dr

(
CD|v0|v0

H0ζ0(1+f /ζ0)

)2

−
(

CD|v0|
H0

)2 v0

ζ0(1+f /ζ0)

]
.

(A3)

The first term in the square brackets, d(u2
0/2)/dr, is typically

positive near rmw, whereas the second term, CD|v0|u0/H0, is
negative.

Suppose that the Rossby number (near rmw) is much
greater than unity, such that vm/fr � 1 and ζm/f � 1.
Further, suppose that |u0| � |v0|. We estimate that ζ0 ∼
v0/rmw and dζ0/dr ∼ −v0/r2

mwδ, in which rmwδ is the
radial decay length of ζ0 near rmw. If δ � 1, then the
first term of Eq. (A3) in square brackets likely dominates
the second. Taking this and our previous assumptions into
consideration, we obtain

v2
1

v2
0

− 1 ∼ −1

δ

(
CDrmw

H0

)2

. (A4)

The above estimate implies some degree of supergradient
flow (v0 > v1) at rmw. A severe violation of gradient balance
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seems possible, but a plausible set of parameters such as
{rmw/H0, CD, δ} = {40, 0.002, 0.1} gives only a modest error
of v2

1/v2
0 − 1 ∼ −0.064. According to Eq. (A4), increasing

surface friction has the potential to enhance supergradient
flow; however, an attendant variation of rmw or δ could
modify the effect.

Figure 2 suggests that the maximum wind speed of a
tropical cyclone does not diverge from the balanced flow
estimate (Eq. (8)) as C∗

D becomes exceptionally large in
the SD09 model, which permits supergradient wind. This
result is interesting, but is partially due to numerical error
at relatively high values of C∗

D, where rmw is about 10 km
(SD09). Repeating a subset of the simulations after reducing
the grid spacing from 3.9 to 2 km produces values of
Vsim/Vth (defined in section 3) that clearly increase with
C∗

D.‡ Specifically, as C∗
D grows from 0.5 × 10−3 to 4 × 10−3,

the value of Vsim/Vth grows from 1.1 to 1.2.

A2. The E86 wind speed formula

In his seminal paper, Emanuel derived the following formula
for the maximum tangential wind speed of a hurricane
(Eq. (43) of E86; Eq. (16) of E95):

V2
max = CE

CD
γ Llvq∗

as(1 − RHas)

×
1 − 1

4
f 2r2

o
ξRTB

1 − 1
2

CE
CD

γ
Llvq∗

as(1−RHas)
ξRTs

.

(A5)

As usual, CE and CD are the surface-exchange coefficients
for entropy and momentum, respectively. Llv is the latent
heat of vaporization, R is the gas constant of air, and f is the
Coriolis parameter. TB and Ts are the absolute temperatures
along the tops of the subcloud layer and the surface layer,
respectively. The variables q∗

as and RHas are ambient values of
the saturation mixing ratio and relative humidity on top of
the surface layer; the relative humidity is assumed constant
along the top of the surface layer, at and beyond the radius
of maximum wind. The variable ro is the outer radius of the
storm near sea-level. The thermodynamic efficiency γ and
the ξ -parameter (Eqs (37) and (38) of E86) are defined by

γ ≡ TB− To

TB
and ξ = 1− γ

(
1+ Llvq∗

asRHas

RTs

)
. (A6)

Here, To is the average outflow temperature of convective
air parcels, which is roughly the tropopause temperature.
How does the E86 wind speed formula compare with our
estimate based on O69?

The leading factor (CE/CD)γ in Eq. (A5) is analogous to
(CE/CD)(θ

∗
es − θ

∗
e2) in Eq. (8). On the other hand, the E86

formula contains an explicit proportionality to 1 − RHas,
and a weak dependence on fro. The absence of the factor
1 − RHas in Eq. (8) is not a critical deficiency. Whereas the
wind speed explicitly vanishes under saturated conditions in
E86, it implicitly vanishes in Eq. (8) by way of the neutrality
constraint§. The absence of the factor 1 − f 2r2

0/4ξRTB is also

‡For all simulations in the subset, C∗
E = 0.5 × 10−3, f = 5 × 10−5 s−1,

and θ
∗
es = 372 K. The values of θ

∗
e2 are initially equal, but change over

time, as mentioned previously.
§Taking the neutrality constraint (Eq. (1)) into consideration, the
saturation condition θ∗

es − θe0 = 0 amounts to θ∗
es − θ∗

e2 = 0 in the

acceptable, since it is very close to unity for typical hurricane
parameters. It is worth noting that the first S-closure of
section 4 (Eq. (12)) circumvents direct consideration of
relative humidity in the outer boundary layer. Furthermore,
the assumption φm ∼ −V2

m obviates direct consideration of
ro and the outer Coriolis force, for the purpose of estimating
the maximum wind speed.

Those interested in directly relating the derivation of
Eq. (8) to the analysis of E86 may first consider the following
rudimentary form of Eq. (7), which stems from Eqs (4) and
(5) alone:

v2
0 = − 1

2r2

CE

CD

dM2
0

dθe0
(θ∗

es − θe0). (A7)

Here, M0 is the absolute angular momentum of the boundary
layer, which reduces to rv0 in the core region of interest.
In the framework of E86, a similar formula applies along
the top of the subcloud layer (Eq. (13) of E95). However,
the E86 formula incorporates a variant of the thermal wind
relation that equates the analogue of

−dM2
0

dθe0

θe0

2cpr2

to the parameter TB − To (Eq. (13) of E86; Eq. (5) of E95).
A thermal wind relation of such form requires a condition
of slantwise convective neutrality of saturated air above the
subcloud layer, and is crucial to the conversion of Eq. (A7)
into Eq. (A5). In contrast, this note implicitly uses the
formula

− 1

2r2

dM2
0

dθe0
∼ cp

αS
,

and offers two possible solutions for S.
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