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ABSTRACT. We present the results from a hy-
drodynamic simulation of the classic Kelvin-Helmholtz
instability using TRIPLE. In this simulation, we
examine the particular case of a flow with a Richard-
son number of 0.05 and a Reynold’s number of
1500. We compare the outcome for both the two-
dimensional and three-dimensional cases as well
as the results of direct numeral simulation ver-
sus the large eddy approximation. We discuss
various points in time during the simulation that
appear to produce interesting behavior and what
characteristics manifest themselves in this partic-
ular realization of the instability.

1. INTRODUCTION

The Kelvin-Helmholtz instability occurs at the shear
interfaces between two flows with antiparallel veloci-
ties. In its simplest form the basic flow is two infinite,
incompressible, horizontal streams of oppossing veloci-
ties and stratefied density placed one on top of the other.
The instability grows as a sinusoidal disturbance which
induces vorticity, and then acts to increase the motion,
causing the fluid to go unstable. The flow forms large
billows, which then collapse after turbulent structures
form and disrupt the flow. The flow will reach a steady
state with a turbulent boundary layer diffusing the shear
between the flows.

During this series of events, there are numerous com-
plex components. The first is that before the large scale
billow collapses (and if the Richardson number is low
enough), the center of the billow rotates as a solid body
creating a reserve of potential energy that will be re-
leased once the billow can no longer support itself. The
other is the creation of transverse structure across the
breadth of the billow. Convective instability creates roll
features aligned with the flow. These vortex tubes add
extra structure to the flow and help support the billow.

Understanding Kelvin-Helmholtz instabilities are im-
portant because of the appearance of shear flows through-
out nature. Numerous examples can be found in astro-
physical applications such as disks and jets along with
more nearby phenomena such as currents in the ocean,
an example being surface waves, and atmosphere, an
example being billow clouds. Our simulation is focused
upon this application in particular. While the shear pro-
vides instability, the temperature and density gradients
act to stabilize the flow. This can be thought of as iner-
tia versus buoyancy. The stability of the atmosphere is
quantified by the Richardson number.

(1) Ri =
gαβh2

U2
0

Where g is the gravitational constant, alpha is 1/300
K, βh is the temperature scale, h is the length scale,
and U0 is the velocity scale. Typical Richardson num-
bers that result in Kelvin-Helmholtz instabilities are 0 <
Ri ≤ 0.25. Another important quantity of the flow is
the Reynold’s number.

(2) Re =
U0h

ν

Where ν is the kinematic viscosity. The Reynold’s num-
ber quantifies the importance of the inertial terms to
the viscous diffusivity. A very analogous relation is the
Peclet number:

(3) Pe =
U0h

κ

Where κ is a measure of the thermal diffusivity. The
Peclet number quantifies the importance of the inertial
terms to the thermal diffusivity. The Prandtl number
is just a relation between the Peclet number and the
Reynold number and is simply the viscosity over the
thermal diffusivity.

In order to simplify the problem, the TRIPLE code
uses the Boussinesq approximation, which means den-
sity fluctuations due to temperature only matter when
attached to graviational terms. The non-dimensionalized
equations of motion in the Boussinesq approximation
become:

(4) ∂tū+ ū ·∆ū =

−∆(P + gαβz2/2) +Riθẑ +Re−1∆2ū
1
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(5) ∂tθ̄ + ū ·∆θ̄ = −w + Pe−1∆2ū

The flow is also assumed to be incompressible, so the
divergence of the velocity is zero. The code represents
all the field variables as series expansions with periodic
boundary conditions for the transverse and longitudi-
nal directions and the vertical has slippery boundaries.
TRIPLE uses a spectral algorithm and a real fast fourier
transform (no imaginary terms) to transfer between the
physical and spectral spaces.

Our initial conditions were a velocity profile with a
profile following a hyperbolic tangent function.

(6) U = U0Tanh(z/h)

Where h is the length scale used for the problem and U0

the velocity scale. The temperature profile was initially
a linear gradient, and then the boundaries were held for
the entire problem.

(7) T = βz + θ

Where βh becomes the temperature scale.
TRIPLE is a fully spectral code that takes full advan-

tage of parallel processing power. For the direct numeri-
cal simulation (DNS), we used a grid of 600×150×600.
The LES code has a resolution of 200×50×200. The 2-
D runs has a resolution of 400× 400. The code was run
in these three settings to explore the pros and cons of
each method. The 2-D code is able to capture some el-
ements, however it cannot model vortex stretching and
this has stark effects on the steady state it achieves.

The 3-D direct numerical simulation is able to cap-
ture vortex stretching, however its large grid size and
ability to evolve small scale turbulence add accuracy as
well as significant time. The large eddy simulation is
designed to directly capture the large and mid scale tur-
bulence with significant time savings but with a reduced
grid is incapable of modeling the small scales. In order
to correct for this effect, a spacial filter is applied to re-
move all small scales below some scale that is in the
inertial range and then a turbulence model is used to
add dissipation back into the system. This turbulence
model must provide the right amount of energy flux at
the cutoff in order to balance the energy contained in the
simulation. Effectively, the LES code is attempting to
replace the dissipation range of the kinetic energy spec-
trum with a faster to compute turbulence model than di-
rect integration. This reduced gridsize, coupled with the
spectral nature of the code also creates what are known
as Gibbs oscillations, see figure 1. Since the spectra on

this smaller gridsize are truncated, it creates gloabl er-
rors. These errors are common in spectral codes with
low resolution and are a significant source of uncer-
tainty when using the LES as opposed to the DNS.

FIGURE 1. The LES at early time show-
ing the Gibbs oscillations above and be-
low the main structure

Throughout the rest of this paper, we will be dis-
cussing the effects seen during our simulation of a Kelvin-
Helmholtz instability. We will also compare the results
of the three different simulation techniques.

2. TIME EVOLUTION

Each of the three Kelvin-Helmholtz instability cases
exhibited a laminar billow that gave way to turbulent
instabilities. Our low Richardson number case had the
most persistent billow, with overturning motion contin-
uing out to a code time unit of at least 120 and some
small remaining circulation in the center of the domain
continuing to a code time unit of 180. In our case the
turbulence begins outside the billow until it eventually
consumes the domain, and we see long lasting laminar
structures that do not occur in the high Richardson num-
ber case.

In figure 2 we can see the midplane average of the
kinetic energy (solid) and the potential energy (dashed)
versus code time units. This first figure shows the DNS
while figure 3 shows the LES. We did not begin the LES
until a code time unit of approximately 48. Since the
LES simulates a dissipative region using sub-grid mod-
elling, it cannot handle the laminar structure that exists
during the early time evolution of our simulation. Thus,
as we will see, the LES does a qualitativly similar job of
simulating the instability once the domain has become
turbulent, as is evident from these first two figures.
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FIGURE 2. The DNS plot of kinetic en-
ergy vs time

FIGURE 3. The LES plot kinetic energy
vs time

In figure 2 we noticed three points of interest that
we will explore in later sections. First is the maxi-
mum of the kinetic energy versus time plot, at a code
time unit of approximately 35. At this point, the do-
main still strongly resembles a purely 2-dimenstional
structure and begins to transition into a 3-dimenstional
structure as it declines from the peak. Since we did not
begin the LES until a later time, we cannot explore the
differences between DNS and LES for this first kinetic
energy peak.

The second point of interest is the second kinetic en-
ergy peak, which occurs at a code time unit of approxi-
mately 90. This second peak seems to correspond to the
entire core of the billow going turbulent. We will see a
similar peak in the time evolution of the kinetic energy
in the 2 dimensional case, but this is the point at which
the two dimensional simulation begins to significantly
diverge from the 3 dimensional case.

The final interesting feature happens at a code time
unit of 150.This is when the kinetic energy stops fluctu-
ating and begins a consistent decline, but before it calms
into its final state a code time unit of 190. At this time

the DNS and LES still agree well but when examining
the final state of the simulation it becomes clear that
the LES does not allow as much dissipation as neces-
sary. The heat flux in particular persists in the LES to
a longer time than in the DNS. We also examine the 2
dimensional simulation, but it is clear from figure 4 that
this case is simply oscillating and the lack of a third di-
mension prevents the vortex stretching and energy dissi-
pation required for proper simulation of the instability.
When examining the time series slices of y-vorticity in
the 2 dimensional simulation it is clear that the billow
persists and the turbulence never develops.

FIGURE 4. The 2D simulation plot of
kinetic energy vs time

FIGURE 5. The DNS plot of maximum
vorticity vs time

The final time evolution figures we introduce are the
maximum vorticity in each dimension for the DNS and
LES (note that the bottom is x, the middle is y, and the
top is z, each offset by 30 vorticity units). In figure 5 we
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see that there are large peaks in the maximum vorticity
beginning near the second peak in the time evolution of
the kinetic energy. When comparing this to figure 6, we
can see that the smaller domain size of the LES prevents
the small scale vortical structure present in the DNS and
damps the maximum voriticty peaks.

FIGURE 6. The LES plot of maximum
vorticity vs time

From here, we move on to explore various ”snap-
shots” of the simulations to try and get a handle on what
sort of forces are at work in the K-H instability.

3. FIRST KINETIC ENERGY PEAK

In carrying out our analysis of the K-H instability
produced by our particular set of initial conditions, we
found it useful to investigate moments in time that seemed
of particular significance or provided interesting insight
in the behavior of the simulation.

To start off that investigation, we first explore the
point in time when the kinetic energy of the system first
peaks. For our specific case, we find that the first peak
in the time evolution of kinetic energy occurs much ear-
lier than the higher Richardson number cases, occuring
at t ∼ 35 in units of code time as can be clearly seen in
Figures 2, 3, and 4. It is important to note that both the
3D DNS run and 3D LES run were restarted off of the
same set of initial conditions produced by a 3D DNS
run and don’t actually produce distinct results until af-
ter the first peak in kinetic energy has occured. For this
reason, we will only be looking at the 2D and 3D DNS
data.

One immediately notices that at this particular point
in time the 2D and 3D runs are essentially indistinguish-
able. The flow has a firmly established solid-body rota-
tion in the core with no significant turbulence. At this
point the 3D volume is acting as a thick 2D plane as
can be seen when one compares Figure 7 and Figure 8.
We would also like to make a note to the reader that all
of the snapshots of the 3D flows use a consistent color
table throughout this paper.

FIGURE 7. DNS first peak enstrophy snapshot

FIGURE 8. 2D first peak y-vorticity snapshot

Furthermore, one can compare the vorticity profiles
as a function of height in the z direction between the
the 2D and 3D cases (Figures 9 and 10) and again we
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find that the simulations have produced nearly identical
results. We will see shortly that it isn’t until later times
(our discussion of of the 2nd kinetic peak will show this)
that the two flows diverge significantly.

FIGURE 9. DNS first peak mean vortic-
ity profile

FIGURE 10. 2D first peak mean vortic-
ity profile

Not surprisingly, when we analyzed essentially every
imaginable quantity, we found resounding similarity in
the 2D and 3D cases and as a result spare the reader the
time that one might spend looking at nearly identical
plots. We conclude, that in the situation where the 3D
K-H instability is initialized as a 2D planar flow, it takes
a significant length of time (nearly one-fifth of our total
run time) for turbulence to develop in the 3D simulation
and break down the symmetries present in the 2D case.

Outside of doing a direct comparison between the 2D
and 3D cases, we can also explore the general nature of
the instability by looking at vertical profiles of various
quantities. For example, while the flow is undergoing
this solid-body rotation there is rapid transport of ma-
terial from the top of the flow down to the bottom and

vice-versa as the fluid layers overturn. This is a high
amount of heat flux, as can be seen in Figure 11, which
starts pushing the temperature profile away from its lin-
ear initial condition to be more isothermal in the center
as indicated by Figure 12.

FIGURE 11. DNS first peak heatflux profile

FIGURE 12. DNS first peak mean tem-
perature profile

In ending our analysis of this first peak in the kinetic
energy, we examine the energy spectrum seen in Fig-
ure 13. We see that the simulation exhibits a k−

5
3 iner-

tial range as expected by Kolmogorov theory to a kx of
∼20. After that, the spectrum drops off into the dissipa-
tion range where energy flows out of the system. One
point to note is that at this early time before 3D vortex
tube stretching has occurred, the relative amount of en-
ergy in the y-direction is much less than the other two
directions as the flow has not yet evolved to being fully
3D in nature as mentioned above. We will see that this
is no longer the case in later times.
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FIGURE 13. DNS first peak kinetic en-
ergy spectra in the x direction

4. SECOND KINETIC ENERGY PEAK

At the second peak of the kinetic energy spectrum,
the core of the billow becomes turbulent in both 3D
cases (fig 14) and continues to exhibit solid body ro-
tation in the 2D simulation. Some vortex tubes are still
visible along the edge of the flow in all three simula-
tions extending from both sides of the domain towards
the top and bottom edges of the billow.

FIGURE 14. DNS second peak reynolds
stress profile

The energy spectra for all three simulations show match-
ing profiles as well. All three exhibit the k−

5
3 slope

within the inertia range as predicted by the Kolmogorov
spectrum. This is different from earlier times where the
energy spectra in the y direction is strikingly different
from x and z. Within the dissipation range at higher
frequencies, both DNS and 2D show significant drops

in the spectra whereas none is observed in the LES sim-
ulation. This is because the LES implementation trun-
cates around the inertial range with no energy transfer
to smaller scale for dissipation through viscosity.

FIGURE 15. DNS second peak kinetic
energy spectra in the x direction

FIGURE 16. LES second peak kinetic
energy spectra in the x direction

Vertical mean temperature profiles for all three are
identical (fig 18). They all increase linearly with height
with two separate kinks corresponding to the top and
bottom half of the billows. In the middle is an inflection
point with an isothermal profile. This feature is present
in all three cases. Mean horizontal heat flux ut minima
observed at the top and bottom edges of the billow from
the first peak are still visible during this time step (fig
19). However, the positive maximum at z = 0 from
earlier times has now been reduced to almost zero in all
three simulations. Such flux profile sets up a larger heat
gradient which will later be eliminated through mixing.

The vertical profiles for the mean production terms
−uw · dU/dz are less correlated. The production term
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FIGURE 17. 2D second peak kinetic en-
ergy spectra in the x direction

FIGURE 18. DNS second peak mean
temperature profile

FIGURE 19. DNS second peak heatflux profile

for the 2D case (fig 20) is strictly negative with a rather
prominent minimum at z = 0. For the LES run (fig 21),
a positive maximum is observed instead, and the top and
bottom edge of the billow are slightly negative. Finally,

the DNS simulation (fig 22) shows a similar profile to
the LES profile but with a smaller magnitude and more
noisy. This discrepancy can be explained by the persist-
ing billow core in the 2D case and turbulence in both
3D cases.

FIGURE 20. 2D second peak produc-
tion terms profile

FIGURE 21. LES second peak produc-
tion terms profile

5. KINETIC ENERGY DECLINE

Now we will examine the third feature mentioned
when discussing figure 2 at a code time unit of 150. As
we can see in figure 23 that the domain is fully turbu-
lent with very little evidence of circulation except in the
very center of the domain where there is some small
right handed curl. In figure 24 we can see similar quali-
titive results with some tube like structure at the edge of
the domain in both cases.

From figure 25 we can see the kinetic energy spec-
trum in the x direction. It appears that at this time the
inertial range exists from approximately kx = 4 to kx =
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FIGURE 22. DNS second peak produc-
tion terms profile

FIGURE 23. DNS kinetic energy de-
cline enstrophy snapshot

20. We see a similar result for the LES but it still has a
small piece of the dissipation range, which could cause
problems since the code is intended to run only in the
inertial range. Since the 2 dimensional simulation can-
not dissipate energy, the 2D spectrum at this time is not
significantly different than in figure 17. Energy builds
up in the middle of the spectrum and there is no obvious
inertial range.

One of the most important characteristics of our sim-
ulation at late time is how long it takes to dissipate the
heat flux. Figure 26 shows the heat flux for the DNS,
which is qualititatively similar to the LES. The heat flux
profile for this later time shows flux is now positive at
z = 2 and z = −2, as opposed to earlier plots. This is
likely because the mean temperature profile, figure 27,

FIGURE 24. LES kinetic energy decline
enstrophy snapshot

FIGURE 25. DNS kinetic energy de-
cline KE spectra in the x direction

has reached its maximum distortion from the linear pro-
file and the heat flux is now trying to restore the initial
conditions. This mean temperature profile is very simi-
lar to the LES and persists into the later times examined
in the next section.

The shear production (solid line), shown in figure 28,
exhibits much larger values around z = 0 and is pos-
itive, indicating that the shear is working to dissipate
energy from the turbulence at these late times, as ex-
pected. By this time the buoyancy term (dashed line)
is nearly zero and no longer has a significant impact on
the structure of the instability.

In figure 29, it is clear that the mean velocity profile
for the x direction velocity still shows significant devi-
ations from the original tanh profile. Along with the
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FIGURE 26. DNS kinetic energy de-
cline heatflux profile

FIGURE 27. DNS kinetic energy de-
cline mean temperature profile

FIGURE 28. DNS kinetic energy de-
cline production terms profile

mean temprature profile, these deviations demonstrate
there is still a fossil of the instability even after the ap-
parent overturning motion has stopped.

FIGURE 29. DNS kinetic energy de-
cline mean velocity profile

Finally, we can see from the shear and buoyancy pro-
duction terms in the 2 dimensional case, figure 30, that
these two are nearly balanced. This indicates, as we
have discussed previously that there is no energy dissi-
pation and only a transfer from kinetic to potentional as
the elliptical central region of the billow rotates.

FIGURE 30. 2D late time shear and
buoyancy production terms profile

6. LATE TIME BEHAVIOR

After the decay of the turbulence we still see some
remnant structure in the mean temperature profile, fig-
ure 31, that does not occur in the high Richardson num-
ber case. These are the last timesteps for the DNS at
code time unit 314.60. Notice that while our kinetic en-
ergy peaks at an earlier time than either of the other,
higher Richardson number cases, we also see longer
lasting perturbations to the mean temperature profile even
after all the other profiles have decayed to zero.

The LES simulation was run to a much later time of
868.111 in code time units. We can see in figure 32 that
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FIGURE 31. DNS final timestep mean
temperature profile

these deviations from the original profiles decay but per-
sist to very late in the simulation. This may be decieving
because the LES does not dissipate energy as quickly as
the DNS but it clearly takes a long time for the domain
to re-establish the mean temperature profile.

FIGURE 32. LES final timestep mean
temperature profile

One of the main reasons that the temperature profile
does not decay is that the heat flux becomes very small
at late times. We can observe the beginning of this de-
creasing heat flux by comparing figures 26 and 33.

The heat flux continues to decrease until, at the final
timestep, it is almost zero. Figure 34 shows the final
timestep of the DNS run, which explains the non-linear
temperature profile.

Figures 35 and 36 show similar heat flux profiles for
the LES as the DNS profiles above. Notice that the LES
profiles take significantly longer to decay to the same
heat flux. This is the clearest indication that the dissi-
pation is not as efficient for the LES as DNS and might

FIGURE 33. DNS late time heat flux profile

FIGURE 34. DNS final timestep heat
flux profile

explain why the temperature profile has not become lin-
ear in 32.

FIGURE 35. LES late time heat flux profile
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FIGURE 36. LES similar to final
timestep of DNS heat flux profile

7. CONCLUSION

Kelvin-Helmholtz instabilities are seen in a variety
of places in nature. Three dimensional simulations of
these instabilities has given us greater insight into their
properties.

Our examination of the Richardson number 0.05 case,
can help explore the parameters and try to connect nat-
ural events to the simulations that we can explore more
completely. For this low Richardson number we see
long lasting laminar structures with the billow overturn-
ing multiple times before turbulence can begin to dis-
rupt these structures. Even after the domain has become
completely turbulent we see persistent circular motion
where the billow used to be located. We also see rem-
nants of this instability in the nearly isothermal center
of the layer. Using these properties we can hopefully
better understand what makes these characterstic cloud
formations, and ocassionally causes our normally quiet
sky to give us a bumpy reminder of its dynamical be-
havior.
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