The "Flowers" Test Case

Believe it or not, this is a potential field!

- The normal (vertical) component of the field was specified on two horizontal squares a small distance apart.
 - By placing the two surfaces close together, the magnitude and direction of the horizontal field can be controlled to some extent.
- The normal component of the field was required to vanish on the sides.
- This uniquely determined the potential field in the volume between the planes. (Ask me if you really want to see what the solution looks like!)

The Boundary Fields

Each sunspot is constructed from three components at each height:

$$B_{z} = B_{0}e^{-(\boldsymbol{x}-\boldsymbol{x}_{0})^{2}/(a_{0}^{i})^{2}} + B_{1}(\boldsymbol{x}-\boldsymbol{x}_{0})^{2}e^{-(\boldsymbol{x}-\boldsymbol{x}_{0})^{2}/(a_{1}^{i})^{2}} \left[1 + \cos(n_{1}\theta + \phi_{1}^{i})\right] + B_{2}(\boldsymbol{x}-\boldsymbol{x}_{0})^{2}e^{-(\boldsymbol{x}-\boldsymbol{x}_{0})^{2}/(a_{2}^{i})^{2}} \left[1 + \cos(n_{2}\theta + \phi_{2}^{i})\right]$$

with (slightly) different values of some of the parameters at the two heights.

- Choosing $a_j^0 < a_j^1$ results in expanding field with height.
- Choosing $\phi_i^0 \neq \phi_i^1$ results in an apparent "twist" of the field.

Potential Field Solution in a Box

Solve for the scalar potential Φ , which determines the field as $B = -\nabla \Phi$, and satisfies $\nabla^2 \Phi = 0$.

Construct a scalar potential whose normal derivative vanishes on the "side" walls, but not on the top and bottom:

$$\Phi(\boldsymbol{x}) = \frac{1}{\pi} \sum_{m=0}^{N_x - 1} \sum_{n=0}^{N_y - 1} \left[\frac{m^2}{L_x^2} + \frac{n^2}{L_y^2} \right]^{-1/2} \cos\left(\frac{m\pi x}{L_x}\right) \cos\left(\frac{n\pi y}{L_y}\right) \\ \times \left\{ A_{mn}^+ \cosh\left[\pi \sqrt{\frac{m^2}{L_x^2} + \frac{n^2}{L_y^2}}z\right] + A_{mn}^- \cosh\left[\pi \sqrt{\frac{m^2}{L_x^2} + \frac{n^2}{L_y^2}}(z - L_z)\right] \right\}$$

with

$$A_{mn}^{\pm} = \frac{\mp (2 - \delta_{m0})(2 - \delta_{n0})}{L_x L_y \sinh\left[\pi L_z \sqrt{\frac{m^2}{L_x^2} + \frac{n^2}{L_y^2}}\right]} \int_0^{L_x} dx \int_0^{L_y} dy \, B^{\pm} \cos\left(\frac{m\pi x}{L_x}\right) \cos\left(\frac{n\pi y}{L_y}\right)$$

This can be expressed in terms of FFTs (or fast cosine transforms) of the "horizontal" ______ directions, and so is reasonably fast.
"Flowers" Test Case – p.4/