
Discriminant Analysis and Probability Forecasts

The goal of discriminant analysis is to classify a new object, with a given set of prop-

erties, as belonging to one of (at least) two mutually exclusive populations in a way that

maximizes the rate of correct classifications (e.g., Kendall et al. 1983). One of the advantages

to discriminant analysis is that it can simultaneously consider multiple variables (measure-

ments). The first step in calculating the discriminant function is to estimate the probability

density function, f , defined as

P (xa < x < xb) =

∫

xb

xa

f(x) dx, (1)

where P (xa < x < xb) is the probability that a measurement falls between xa and xb. A

new object is classified as belonging to the population with the higher probability density:

q1f1(x) ≥ n2f2(x) ⇒ predict population 1.

q1f1(x) < n2f2(x) ⇒ predict population 2.

where qj is the prior probability of belonging to population j. That is, given some mea-

surements of an object, the discriminant function predicts to which population the object is

most like to belong.

The discriminant boundary occurs where there is equal probability of belonging to each

population. This can be thought of as a 50% probability forecast. Instead of making a

binary prediction that a new object will belong to a particular population, one can instead

estimate the probability that the object will belong to a given population. Using Bayes’s

theorem, the probability that an object belongs to population 1 when it is observed to have

properties x is

P1(x) =
q1f1(x)

q1f1(x) + q2f2(x)
. (2)

In practice, one estimates the properties of the populations from finite samples, and

uses the properties of the samples to estimate the probability density function and construct

the discriminant function. This can be done by either making an assumption about the

functional form of the probability density function (parametric discriminant analysis) or by

estimating the probability density function directly (nonparametric discriminant analysis).

For the cases we will be considering, typically the two populations will be active regions

which produce an event (flare, CME, etc.) within a given time, and those which do not.

The measurements of the active regions will characterize their photospheric and/or sub-

photospheric properties.
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1. Linear Two-Population Discriminant Analysis

The simplest form of discriminant analysis assumes that each variable has a normal

(Gaussian) distribution, and that the populations have the same covariance matrices (essen-

tially that both populations have the same standard deviation for a given variable). In this

case, the discriminant function is linear in all the variables, so the phase space is divided

into two by a plane. In more sophisticated implementations of discriminant analysis, more

general forms for the distribution are assumed, or a nonparametric estimate is made for the

probability density function (Silverman 1986). In practice, the results of discriminant analy-

sis tend not to be very sensitive to assumptions about the functional form of the probability

density (see Leka & Barnes 2007, for some examples in flare forecasting).

Given i = 1, . . . , nl measurements {x
(l)
ik }, of variables k = 1, . . . , p in groups l = 1, 2, the

probability density function is given by a normalized multivariate Gaussian:

f̂j(x) =
|C|−1/2

(2π)p/2
exp

[

−
1

2
(x − x̄

(j))′C−1(x − x̄
(j))

]

(3)

and the linear discriminant function is given by

f(x) = xC−1(x̄(1) − x̄
(2)) −

1

2
(x̄(1) + x̄

(2))C−1(x̄(1) − x̄
(2)) − log

(q2

q1

)

(4)

where ql is the prior probability of belonging to population l and is usually estimated as

ql = nl, x̄
(l) is the mean of the measurements in group l, and C−1 is the inverse of the

covariance matrix,

C =
n1C

(1) + n2C
(2)

n1 + n2 − 2
(5)

with C(l) the covariance matrix for population l, which is estimated from the samples as

C
(l)
ij =

p
∑

k=1

(x
(l)
ik − x̄

(l)
k )(x

(l)
jk − x̄

(l)
k )/(nl − 1). (6)

The phase space is divided into two regions bounded by f(x) = 0. A new case at x is then

classified based on whether the discriminant function at that point is positive or negative.

Examples of linear discriminant analysis are shown in Figure 1.

A related quantity is the Mahalanobis distance, which is a measure of the distance

between the means of the two samples, and is given by

D2 = (x̄(1) − x̄
(2))C−1(x̄(1) − x̄

(2)). (7)
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Fig. 1.— Example linear discriminant functions. Left: Single variable discriminant analysis.

The histograms show the flaring (green) and non-flaring (black) probability densities. The

normal distribution fits to the data (dashed lines), and the means (vertical dotted lines) are

also shown. The point at which the two density estimates are equal is shown with a blue

line that corresponds to the location of the discriminant boundary. An active region with a

measured value of Φtot falling to the right of the discriminant boundary would be predicted

to flare; for a measurement falling to the left, the active region would be predicted to be

flare-quiet. Right: Two variable discriminant analysis. Non-flaring regions (×) and flaring

regions (⋄) are shown, with the largest flare in any 24 hr period (C, M, X) indicated by color

(green, yellow, red respectively). The mean of each sample is shown as a blue circle, and the

discriminant boundary is the blue line. An active region with measured values of Φtot and

Itot falling above and to the right of the discriminant boundary would be predicted to flare;

for a measurement falling below and to the left, the active region would be predicted to be

flare-quiet. [Adapted from Leka & Barnes (2007).]
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From the Mahalanobis distance, construct the quantity

T 2 =
n1n2

n1 + n2

D2, (8)

which has Hotelling’s T 2-distribution with n1+n2−2 degrees of freedom (Kendall et al. 1983).

Under the same assumptions as the linear discriminant function is calculated, this quantity

can be used to test the hypothesis that the two samples come from the same population.

2. Judging the Results: Verification Statistics

Given samples from known populations, one would like to determine how successful a

discriminant function is in classifying new objects. The most straightforward way to do

this is to use the discriminant function to classify each point in the samples, to produce

a classification table. The i, j element of the classification table is the number of objects

predicted to be in population i and known to be in population j. Thus the number of correct

predictions is given by the sum of the diagonal elements of the table, n11 + n22, while the

number of incorrect predictions is given by the sum of the off-diagonal elements, n12 + n21,

and the success rate is given by (n11 + n22)/(n11 + n22 + n12 + n21).

In our typical example, the elements will be as follows:

n11: the number of active regions predicted to flare which did produce a flare.

n12: the number of active regions predicted to flare which did not produce a flare.

n21: the number of active regions predicted to not flare which did produce a flare.

n22: the number of active regions predicted to not flare which did not produce a flare.

Because each data point is used in classifying itself, this approach is biased (will tend

to give a higher success rate than is really attainable). An unbiased way to construct the

classification table is to remove one object from the samples, use the remaining objects to

construct a discriminant function, and classify the excluded point using this discriminant

function. By repeating this procedure, excluding each object in turn, one arrives at an

unbiased classification table (Hills 1966).

The success rate is frequently quoted as a measure of how well a forecasting method

works. In the case that events are rare (i.e., n1 ≪ n2), this can be misleading. It is easy to

get a high success rate by simply forecasting that no event will ever occur. There are many

alternative ways of evaluating the success of a forecasting method (see Murphy 1996, for a

summary of some ways, and why they are needed). One possibility is the Heidke skill score,

which indicates the improvement of the forecasts over always predicting that no event will

occur. In terms of the elements of the classification table (and assuming n1 < n2), the skill
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score is given by

SS =
n11 + n22 − n2

n1
. (9)

It is normalized so that perfect forecasts give a skill score of 1, and uniform forecasts (i.e.,

always forecasting no event) give a skill score of 0. Negative skill scores are possible, and

indicate worse performance than a uniform forecast.

A similar skill score can be constructed for probability forecasts:

SS(f, x) = 1 − MSE(f, x)/MSE(〈x〉, x)

= 1 − MSE(f, x)/σ2
x, (10)

where MSE(f, x) is the mean square error,

MSE(f, x) = 〈(f − x)2〉. (11)

This skill score has the same properties as the Heidke skill score for binary classifications

except that it measures the improvements of the forecasting method over climatology, which

always predicts the same (non-zero) probability of an event occurring. The climatological

probability of an event occurring is n1/(n1 + n2).

A graphical way to represent the performance of the probability forecasts is a reliability

plot, which shows the observed probability as a function of the forecast probability. A

reliability plot is constructed by first dividing the forecasts into probability bins. For a

bin containing S total forecasts, of which R were observed to have at least one event, then

the observed probability is p = (R + 1)/(S + 2), with an associated uncertainty δp =

[p(1 − p)/(S + 3)]1/2. With this definition, a perfect forecasting scheme would result in the

diagonal line of observed probability equal to forecast probability. The reliability plot shows

where the forecasting method is likely to underpredict (points lying above the diagonal)

or overpredict (points lying below the diagonal). Note, however, that the climatological

(uniform probability) forecast will result in one point lying on the diagonal. Qualitatively,

a good forecasting method will have most forecast probabilities close to either one or zero

and will have points in the reliability plot close to the diagonal. An example reliability plot

is shown in Figure 2.

3. Notes on Code

This documentation should be accompanied by two IDL procedures: da.pro and df.pro,

plus an example IDL saved structure, da.sav. The procedure da.pro calls the function
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Fig. 2.— Reliability plot for vector magnetic field forecasts of M1.0 and greater flares.

For a perfect forecast, all points lie along the line; points lying above the line (most of

the small forecast probability bins) indicate an underprediction, points lying below the line

(large forecast probability bins) indicate an overprediction. Error bars reflect the number

of datapoints in each bin. The large number of forecasts in the smallest probability bin is

a sign of a good forecast, but the relatively small number in the largest bin suggests that

there is not much improvement over climatology. [Adapted from Barnes et al. (2007).]
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df.pro to evaluate the discriminant function, and calculates a range of verification statistics

and produces plots. An IDL session using the example data might look something like the

following:

IDL> restore,/verb,’da.sav’

% RESTORE: Portable (XDR) SAVE/RESTORE file.

% RESTORE: Save file written by graham@pueo, Tue Jun 3 11:09:40 2008.

% RESTORE: IDL version 7.0 (linux, x86).

% RESTORE: Restored variable: STRUC.

IDL> da,struc,tags=["FLUX_TOT"],/color

pop 0 mean pop 1 mean

FLUX_TOT 129.436 267.245

discriminant function coefficients

FLUX_TOT 0.00952898

constant 2.75542

Mahalanobis distance squared 1.31319

probability that samples are from different populations: 1.00000

rate of correct classification: 0.772277

classification table

134 225

51 802

Heidke skill score (climatology): 0.231198

Heidke skill score (random): 0.364647

rate of correct classification (n-1): 0.772277

classification table (n-1)

134 225

51 802

Heidke skill score (climatology, n-1): 0.231198

Heidke skill score (random, n-1): 0.364647

sample 0 size 853

sample 1 size 359

<f> 0.270881

<x> 0.296205

Median f 0.179486
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sigma_f 0.220306

sigma_x 0.456772

<f|x=1> 0.429713

<f|x=0> 0.204034

SD f|x=1 0.268208

SD f|x=0 0.153802

MAE(f,x)=<|f-x|> 0.312520

MSE(f,x)=<|f-x|^2> 0.163510

SS(f,x) 0.216309

The results of this should match §4.2 of Leka & Barnes (2007) (for a C1.0 threshold), although

some of the scaling of the plots will differ. For explanation of the verification statistics printed

at the end, see Wheatland (2005); Barnes et al. (2007).

4. Acknowledgements

If you publish results using this code, please acknowledge G. Barnes and K.D. Leka, and

that the code was developed with funding from AFOSR under contracts F49620-00-C-0004,

F49620-03-C-0019, and from NASA under contract NNH07CD25C.

REFERENCES

Barnes, G., Leka, K. D., Schumer, E. A., & Della-Rose, D. J. 2007, Space Weather, 5, 9002

Hills, M. 1966, J. R. Statist. Soc. B, 28, 1

Kendall, M., Stuart, A., & Ord, J. K. 1983, The Advanced Theory of Statistics, 4th edn.,

Vol. 3 (New York: Macmillan Publishing Co., Inc)

Leka, K. D. & Barnes, G. 2007, ApJ, 656, 1173

Murphy, A. H. 1996, Wea. Forecasting, 11, 3

Silverman, B. W. 1986, Density Estimation for Statistics and Data Analysis (London: Chap-

man and Hall)

Wheatland, M. S. 2005, Space Weather J., 3, S07003

This preprint was prepared with the AAS LATEX macros v5.0.


