
Green’s Function for Potential Field Extrapolation

1. Some Preliminaries on the Potential Magnetic Field

By definition, a potential magnetic field is one for which the electric current density

vanishes. That is,

J =
c

4π
∇×B

= 0. (1)

In addition, the magnetic field must also satisfy Maxwell’s equations, in particular Gauss’s

law:

∇·B = 0. (2)

Any function which satisfies these two constraints is a valid potential field.

It is often convenient to write the magnetic field in terms of a scalar potential, Φ, in the

following way:

B = −∇Φ. (3)

This automatically satisfies the condition that the current density vanishes, since any scalar

has the property that the curl of the gradient vanishes. Thus one only has to take into

account the condition on the divergence, which can be written

∇·B = 0

∇
2Φ = 0. (4)

This is Laplace’s equation for the scalar potential, which has been solved (in terms of various

special functions) in something like 11 coordinate systems. For this exercise, we will be using

only standard Cartesian coordinates. To define a unique solution in a volume, the normal

component of the magnetic field may be specified on the closed surface bounding the volume.

In some cases, this volume will be taken as semi-infinite, for example, the half-space above

a plane. In this case, the condition that the normal component of the field be specified “at

infinity” is satisfying by requiring that the magnitude of the field fall off rapidly enough with

distance above the plane.
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2. The Green’s Function

For a potential field, the Green’s function has a reasonably simple form:

Gx =
x − x′

r3
, (5)

Gy =
y − y′

r3
, (6)

Gz =
z

r3
, (7)

where r2 = (x−x′)2 +(y− y′)2 + z2, and the boundary is assumed to be at z′ = 0. The field

at any point is then constructed from

Bi(x) =
1

2π

∫

dx′ dy′ Gi(x, x′)Bz(x
′, y′, 0). (8)

3. Application to Discrete Data

Now comes the fun part: applying this to B measured at discrete points. It’s not as

simple as one might think, because one does not want the field due to a series of point sources

at each place there is a measurement. Instead, require that the vertical field be constant

across each pixel. That is, let

Bz(x, y, 0) =
∑

i,j

[

Θ
(

x − xi −
∆x

2

)

− Θ
(

x − xi +
∆x

2

)]

×
[

Θ
(

y − yj −
∆y

2

)

− Θ
(

y − yj +
∆y

2

)]

Bij (9)

Use this expression for the field in the integral with the Green’s function.

Bl(x, y, z) =
1

2π

∫

∞

−∞

dx′

∫

∞

−∞

dy′Bz(x
′, y′, 0)Gl(x, y, z, x′, y′)

=
1

2π

∫

∞

−∞

dx′

∫

∞

−∞

dy′
∑

i,j

[

Θ
(

x − xi −
∆x

2

)

− Θ
(

x − xi +
∆x

2

)]

×
[

Θ
(

y − yj −
∆y

2

)

− Θ
(

y − yj +
∆y

2

)]

BijGl(x, y, z, x′, y′)

=
1

2π

∑

i,j

Bij

∫ xi+∆x/2

xi−∆x/2

dx′

∫ yj+∆y/2

yj−∆y/2

dy′ Gl(x, y, z, x′, y′)

=
1

2π

∑

i,j

Bij

∫ x−xi−∆x/2

x−xi+∆x/2

d(−x̃)

∫ y−yj−∆y/2

y−yj+∆y/2

d(−ỹ) Gl(x, y, z, x′, y′)
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=
1

2π

∑

i,j

Bij

∫ x−xi+∆x/2

x−xi−∆x/2

dx̃

∫ y−yj+∆y/2

y−yj−∆y/2

dỹ Gl(x, y, z, x′, y′) (10)

with r2 = (x − x′)2 + (y − y′)2 + z2, tan θ = (y − y′)/(x − x′), and x̃ = x − x′, ỹ = y − y′.

Start with the z-component, and try to do the integrals explicitly.

Bz(x, y, z) =
1

2π

∑

i,j

Bij

∫ x−xi+∆x/2

x−xi−∆x/2

dx̃

∫ y−yj+∆y/2

y−yj−∆y/2

dỹ
z

(x̃2 + ỹ2 + z2)3/2

=
z

2π

∑

i,j

Bij

∫ x−xi+∆x/2

x−xi−∆x/2

dx̃
ỹ

(x̃2 + z2)(x̃2 + ỹ2 + z2)1/2

∣

∣

∣

y−yj+∆y/2

y−yj−∆y/2

=
z

2π

∑

i,j

Bij

∫ x−xi+∆x/2

x−xi−∆x/2

dx̃
[ ỹj + ∆y/2

(x̃2 + z2)[x̃2 + (ỹj + ∆y/2)2 + z2]1/2

−
ỹj − ∆y/2

(x̃2 + z2)[x̃2 + (ỹj − ∆y/2)2 + z2]1/2

]

=
z

2π

∑

i,j

Bij

{ ỹj + ∆y/2

z(ỹj + ∆y/2)
tan−1

[ x̃(ỹj + ∆y/2)

z
√

x̃2 + (ỹj + ∆y/2)2 + z2

]
∣

∣

∣

x−xi+∆x/2

x−xi−∆x/2

−
ỹj − ∆y/2

z(ỹj − ∆y/2)
tan−1

[ x̃(ỹj − ∆y/2)

z[x̃2 + (ỹj − ∆y/2)2 + z2]1/2

]
∣

∣

∣

x−xi+∆x/2

x−xi−∆x/2

}

=
∑

i,j

Bij

2π

{

tan−1
[ (x̃i + ∆x/2)(ỹj + ∆y/2)

z
√

(x̃i + ∆x/2)2 + (ỹj + ∆y/2)2 + z2

]

− tan−1
[ (x̃i − ∆x/2)(ỹj + ∆y/2)

z
√

(x̃i − ∆x/2)2 + (ỹj + ∆y/2)2 + z2

]

+ tan−1
[ (x̃i − ∆x/2)(ỹj − ∆y/2)

z
√

(x̃i − ∆x/2)2 + (ỹj − ∆y/2)2 + z2

]

− tan−1
[ (x̃i + ∆x/2)(ỹj − ∆y/2)

z
√

(x̃i + ∆x/2)2 + (ỹj − ∆y/2)2 + z2

]}

(11)

where x̃i = x−xi, ỹj = y−yj. This is rather unwieldy, but at least it’s an analytic expression

that does not involve integrals. Next, try the x-component.

Bx(x, y, z) =
1

2π

∑

i,j

Bij

∫ x−xi+∆x/2

x−xi−∆x/2

dx̃

∫ y−yj+∆y/2

y−yj−∆y/2

dỹ
x̃

(x̃2 + ỹ2 + z2)3/2

= −
1

2π

∑

i,j

Bij

∫ y−yi+∆y/2

y−yi−∆y/2

dỹ
1

(ỹ2 + x̃2 + z2)1/2

∣

∣

∣

x−xj+∆x/2

x−xj−∆x/2

=
1

2π

∑

i,j

Bij

∫ y−yi+∆y/2

y−yi−∆y/2

dỹ
[ 1

(ỹ2 + (x̃i − ∆x/2)2 + z2)1/2
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−
1

(ỹ2 + (x̃i + ∆x/2)2 + z2)1/2

]

=
1

2π

∑

i,j

Bij

{

ln
[

ỹ + (ỹ2 + (x̃i − ∆x/2)2 + z2)1/2
]
∣

∣

∣

y−yi+∆y/2

y−yi−∆y/2

− ln
[

ỹ + (ỹ2 + (x̃i + ∆x/2)2 + z2)1/2
]
∣

∣

∣

y−yi+∆y/2

y−yi−∆y/2

}

=
∑

i,j

Bij

2π
ln

[ ỹ + (ỹ2 + (x̃i − ∆x/2)2 + z2)1/2

ỹ + (ỹ2 + (x̃i + ∆x/2)2 + z2)1/2

]
∣

∣

∣

y−yi+∆y/2

y−yi−∆y/2

=
∑

i,j

Bij

2π

{

ln
[(ỹj + ∆y/2) + [(ỹj + ∆y/2)2 + (x̃i − ∆x/2)2 + z2]1/2

(ỹj + ∆y/2) + [(ỹj + ∆y/2)2 + (x̃i + ∆x/2)2 + z2]1/2

]

− ln
[(ỹj − ∆y/2) + [(ỹj − ∆y/2)2 + (x̃i − ∆x/2)2 + z2]1/2

(ỹj − ∆y/2) + [(ỹj − ∆y/2)2 + (x̃i + ∆x/2)2 + z2]1/2

]}

(12)

and this expression will also hold for the y-component by appropriately interchanging x and

y.

4. Solution for a Box

Consider now the case in which one wishes to determine the field in the volume 0 <

x < a, 0 < y < b, 0 < z < c, given the normal component of the field on all six of the

faces of the box. Following the discussion in Jackson (1975), construct six separate scalar

potentials, each of which has a non-vanishing normal derivative on only one of the walls.

Then the scalar potential for the solution will be simply the sum of the six. Try to construct

this in such a way that FFTs can be used, by taking the exponential solutions to be in the

direction normal to the face on which the derivative of the potential does not vanish. So, let

Φ0(x) =
∑

m,n

A0
mn cos(mπx/a) cos(nπy/b) cosh

[

π

√

m2

a2
+

n2

b2
(z − c)

]

(13)

which by construction satisfies ∇2Φ0 = 0, and hence ∇·B = ∇·(−∇Φ) = 0. With this

definition,

∂Φ0

∂x

∣

∣

∣

0,a
= −

∑

m,n

mπ

a
A0

mn sin(mπx/a) cos(nπy/b) cosh
[

π

√

m2

a2
+

n2

b2
(z − c)

]
∣

∣

∣

0,a

= 0 (14)

∂Φ0

∂y

∣

∣

∣

0,b
= −

∑

m,n

nπ

b
A0

mn cos(mπx/a) sin(nπy/b) cosh
[

π

√

m2

a2
+

n2

b2
(z − c)

]
∣

∣

∣

0,b
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= 0 (15)

∂Φ0

∂z

∣

∣

∣

c
=

∑

m,n

π

√

m2

a2
+

n2

b2
A0

mn cos(mπx/a) cos(nπy/b) sinh
[

π

√

m2

a2
+

n2

b2
(z − c)

]
∣

∣

∣

c

= 0 (16)

∂Φ0

∂z

∣

∣

∣

0
=

∑

m,n

π

√

m2

a2
+

n2

b2
A0

mn cos(mπx/a) cos(nπy/b) sinh
[

π

√

m2

a2
+

n2

b2
(z − c)

]
∣

∣

∣

0

Bz(x, y, 0) =
∑

m,n

π

√

m2

a2
+

n2

b2
A0

mn cos(mπx/a) cos(nπy/b) sinh
[

π

√

m2

a2
+

n2

b2
c
]

(17)

Try to simplify at least the notation somewhat by starting with

Φ3(x) =
1

π

∑

m,n

[m2

a2
+

n2

b2

]−1/2

cos
(mπx

a

)

cos
(nπy

b

)

×
{

C+
mn cosh

[

π

√

m2

a2
+

n2

b2
z
]

+ C−

mn cosh
[

π

√

m2

a2
+

n2

b2
(z − c)

]}

(18)

thus

∂Φ3

∂x

∣

∣

∣

0,a
= −

∑

m,n

m

a

[m2

a2
+

n2

b2

]−1/2

sin
(mπx

a

)

cos
(nπy

b

)
∣

∣

∣

x=0,a

×
{

C+
mn cosh

[

π

√

m2

a2
+

n2

b2
z
]

+ C−

mn cosh
[

π

√

m2

a2
+

n2

b2
(z − c)

]}

= 0 (19)

∂Φ3

∂y

∣

∣

∣

0,b
= −

∑

m,n

n

b

[m2

a2
+

n2

b2

]−1/2

cos
(mπx

a

)

sin
(nπy

b

)
∣

∣

∣

y=0,b

×
{

C+
mn cosh

[

π

√

m2

a2
+

n2

b2
z
]

+ C−

mn cosh
[

π

√

m2

a2
+

n2

b2
(z − c)

]}

= 0 (20)

∂Φ3

∂z

∣

∣

∣

0,c
=

∑

m,n

cos
(mπx

a

)

cos
(nπy

b

)

×
{

C+
mn sinh

[

π

√

m2

a2
+

n2

b2
z
]

+ C−

mn sinh
[

π

√

m2

a2
+

n2

b2
(z − c)

]}

Bz(x, y, 0) =
∑

m,n

cos
(mπx

a

)

cos
(nπy

b

)

C−

mn sinh
[

π

√

m2

a2
+

n2

b2
c
]

C−

mn =
4

ab sinh
[

π
√

m2

a2 + n2

b2
c
]

∫ a

0

dx

∫ b

0

dy Bz(x, y, 0) cos
(mπx

a

)

cos
(nπy

b

)

(21)
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Bz(x, y, c) = −
∑

m,n

cos
(mπx

a

)

cos
(nπy

b

)

C+
mn sinh

[

π

√

m2

a2
+

n2

b2
c
]

C+
mn = −

4

ab sinh
[

π
√

m2

a2 + n2

b2
c
]

∫ a

0

dx

∫ b

0

dy Bz(x, y, c) cos
(mπx

a

)

cos
(nπy

b

)

(22)

Similarly, let

Φ1(x) =
1

π

∑

m,n

[m2

b2
+

n2

c2

]−1/2

cos
(mπy

b

)

cos
(nπz

c

)

×
{

A+
mn cosh

[

π

√

m2

b2
+

n2

c2
x
]

+ A−

mn cosh
[

π

√

m2

b2
+

n2

c2
(x − a)

]}

(23)

where

A−

mn =
4

bc sinh
[

π
√

m2

b2
+ n2

c2
a
]

∫ b

0

dy

∫ c

0

dz Bx(0, y, z) cos
(mπy

b

)

cos
(nπz

c

)

(24)

A+
mn = −

4

bc sinh
[

π
√

m2

b2
+ n2

c2
a
]

∫ b

0

dy

∫ c

0

dz Bx(a, y, z) cos
(mπy

b

)

cos
(nπz

c

)

(25)

and

Φ2(x) =
1

π

∑

m,n

[m2

a2
+

n2

c2

]−1/2

cos
(mπx

a

)

cos
(nπz

c

)

×
{

B+
mn cosh

[

π

√

m2

a2
+

n2

c2
y
]

+ B−

mn cosh
[

π

√

m2

a2
+

n2

c2
(y − b)

]}

(26)

where

B−

mn =
4

ac sinh
[

π
√

m2

a2 + n2

c2
b
]

∫ a

0

dx

∫ c

0

dz By(x, 0, z) cos
(mπx

a

)

cos
(nπz

c

)

(27)

B+
mn = −

4

ac sinh
[

π
√

m2

a2 + n2

c2
b
]

∫ a

0

dx

∫ c

0

dz By(x, b, z) cos
(mπx

a

)

cos
(nπz

c

)

(28)

and the vector potential for the complete solution is simply Φ = Φ1 + Φ2 + Φ3.

4.1. Application to Discrete Data

The above formulation provides a general solution, given the normal component of the

field on all six faces of a box. Now consider the case in which the normal field is given at
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discrete (regularly spaced) points on each of the faces, with the goal of converting as much

as possible of this into Fourier Transforms. There are two ways we can proceed: turn the

sine and cosine expansions into discrete Fourier transforms by redefining the boundary over

a larger area, with the appropriate symmetry, or take the real part of each Fourier transform

as it is performed. Start with the latter, since it will use transforms of smaller array sizes,

which will be faster. Note that for the discrete case, the integrals will be represented as

sums, in the following form

∫ Lj

0

dxj f(x) →
Lj

Nj − 1

[f(xj = 0) + f(xj = Lj)

2
+

Nj−2
∑

m=1

f(xj = xj
m)

]

(29)

where xj
m = mLj/(Nj−1). Note that this implies a particular choice for the walls of the box,

namely that the wall falls on the outermost grid point in each dimension. This assumption

is different from the “standard” periodic boundary conditions used in fff.pro, for example,

and also different from the walls in Yuhong’s simulation, in which the wall is midway between

the last grid point and a “ghost” grid point outside the wall. So, the factor of a half in the

first and last grid points represents the fact that only half the pixel is contained within the

walls.

To begin with, change notation once again, this time using (1, 2, 3) in place of (x, y, z).

With this notation, assume that the volume of interest is 0 ≤ xj ≤ Lj , with j = 1, 2, 3, and

let

Φl(x) =
1

π

Nj−1
∑

m=0

Nk−1
∑

n=0

[m2

L2
j

+
n2

L2
k

]−1/2

cos
(mπxj

Lj

)

cos
(nπxk

Lk

)

×
{

Al+
mn cosh

[

π

√

m2

L2
j

+
n2

L2
k

xl
]

+ Al−
mn cosh

[

π

√

m2

L2
j

+
n2

L2
k

(xl − Ll)
]}

(30)

hence

Bl± = −

Nj−1
∑

m=0

Nk−1
∑

n=0

cos
(mπxj

Lj

)

cos
(nπxk

Lk

)

×
{

Al+
mn sinh

[

π

√

m2

L2
j

+
n2

L2
k

xl
]

+ Al−
mn sinh

[

π

√

m2

L2
j

+
n2

L2
k

(xl − Ll)
]}

∣

∣

∣

xl=0,Ll

= ∓

Nj−1
∑

m=0

Nk−1
∑

n=0

Al±
mn sinh

[

πLl

√

m2

L2
j

+
n2

L2
k

]

cos
(mπxj

Lj

)

cos
(nπxk

Lk

)

∓

∫ Lj

0

dxj Bl± cos
(rπxj

Lj

)
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=

Nj−1
∑

m=0

Nk−1
∑

n=0

Al±
mn sinh

[

πLl

√

m2

L2
j

+
n2

L2
k

]

cos
(nπxk

Lk

)

∫ Lj

0

dxj cos
(mπxj

Lj

)

cos
(rπxj

Lj

)

∓

∫ Lj

0

dxj

∫ Lk

0

dxk Bl± cos
(rπxj

Lj

)

cos
(sπxk

Lk

)

=
Lj

2
(1 + δr0)

Nk−1
∑

n=0

Al±
rn sinh

[

πLl

√

m2

L2
j

+
n2

L2
k

]

∫ Lk

0

dxk cos
(nπxk

Lk

)

cos
(sπxk

Lk

)

∓

∫ Lj

0

dxj

∫ Lk

0

dxk Bl± cos
(rπxj

Lj

)

cos
(sπxk

Lk

)

=
LjLk

4
(1 + δr0)(1 + δs0)A

l±
rs sinh

[

πLl

√

m2

L2
j

+
n2

L2
k

]

Al±
mn = ∓

(2 − δm0)(2 − δn0)

LjLk sinh
[

πLl

√

m2

L2

j

+ n2

L2

k

]

∫ Lj

0

dxj

∫ Lk

0

dxk Bl± cos
(mπxj

Lj

)

cos
(nπxk

Lk

)

(31)

Note that this expression is not really well defined for m = n = 0 (as is the expression for

Φ), but since this is the Φ = constant term, and so does not contribute to the magnetic

field, I’m not going to treat it properly. It may need to be handled differently when coded,

however. Also, I am assuming flux balance, so there is no term of the form Φ = B0·x.

4.1.1. Using Real Parts

This is not as straightforward as I thought, because one ends up with a “missing” factor

of 2 in the cosine terms. Numerical Recipes has a way (actually, several ways) to deal with

this, by constructing fast cosine transforms, but for now, proceed with the “slow” method

of doubling the dimensions. Thus, this section is not complete.

4.1.2. Expanding the Boundary

In order to make use of the standard FFT, and in fact, with the further goal of performing

this with repeated calls to fff.pro, which assumes only the lower boundary is given, and

that the boundary conditions are periodic with period L, define a symmetrized version of

Bl in the volume 0 ≤ x1 < 2L1, 0 ≤ x2 < 2L2, 0 ≤ x3 < 2L3, and assume that Bl vanishes

outside of this region. Do this by letting

B3(2L1 − x1, x2, 0) = B3(x1, x2, 0), (32)
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B3(2L1 − x1, x2, L3) = B3(x1, x2, L3), (33)

B3(x1, 2L2 − x2, 0) = B3(x1, x2, 0), (34)

B3(x1, 2L2 − x2, L3) = B3(x1, x2, L3), (35)

and similarly for B1, B2. Note that this definition is a little different from the “standard”

periodic boundary conditions. With this definition, and making use of the vanishing of B3

outside the area of interest, evaluate

∫ 2L1

0

dx1B3(x1, x2, 0) exp
(

−
2πimx1

2L1

)

=

∫ L1

0

dx1B3(x1, x2, 0)
[

cos
(2πmx1

2L1

)

− i sin
(2πmx1

2L1

)]

+

∫ 2L1

L1

dx1B3(x1, x2, 0)
[

cos
(2πmx1

2L1

)

− i sin
(2πmx1

2L1

)]

2L1

∫

∞

−∞

d
( x1

2L1

)

B3(x1, x2, 0) exp
(

−
2πimx1

2L1

)

=

∫ L1

0

dx1B3(x1, x2, 0)
[

cos
(2πmx1

2L1

)

− i sin
(2πmx1

2L1

)]

+

∫ L1

0

dx̃1B3(2L1 − x̃1, x2, 0)
[

cos
(

2πm −
2πmx̃1

2L1

)

− i sin
(

2πm −
2πmx̃1

2L1

)]

2L1FFT1(B
3) =

∫ L1

0

dx1B3(x1, x2, 0)
[

cos
(2πmx1

2L1

)

− i sin
(2πmx1

2L1

)]

+

∫ L1

0

dx1B3(x1, x2, 0)
[

cos
(2πmx1

2L1

)

+ i sin
(2πmx1

2L1

)]

FFT1(B
3) =

1

L1

∫ L1

0

dx1B3(x1, x2, 0) cos
(πmx1

L1

)

(36)

which has been calculated without making the change to discrete data, but presumably must

also hold, provided the FFT is defined properly.

Now go back to the expressions for the coefficients in the cosine expansion,

Al±
mn =

∓(2 − δm0)(2 − δn0)

LjLk sinh
[

πLl

√

m2

L2

j

+ n2

L2

k

]

∫ Lj

0

dxj

∫ Lk

0

dxk Bl(xl = 0, Ll) cos
(mπxj

Lj

)

cos
(nπxk

Lk

)

=
∓(2 − δm0)(2 − δn0)

sinh
[

πLl

√

m2

L2

j

+ n2

L2

k

]FFTjk(B
l(xl = 0, Ll)) (37)

where the FFT is taken in the forward direction to correspond to IDL’s normalization.
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In the discrete version, if B3
mn is given for m = 0, N1 − 1, n = 0, N2 − 1, then the

expanded version of the field is given explicitly by

B3
2(N1−1)−m,n = B3

mn, (38)

B3
m,2(N1−1)−n = B3

mn, (39)

Because of the expanded dimensions for Bl, the coefficients are only meaningful for m < Nj ,

n < Nk. That is, the Al±
mn are not all independent. In particular, Al±

mn = Al±
2(Nj−1)−m,n =

Al±
m,2(Nk−1)−n.

Having determined the coefficients in terms of FFTs, next tackle the series for the scalar

potential itself. To do this, it will be convenient to define a new set of coefficients, given by

αl
mn =

[m2

L2
j

+
n2

L2
k

]−1/2{

Al+
mn cosh

[

π

√

m2

L2
j

+
n2

L2
k

xl
]

+ Al−
mn cosh

[

π

√

m2

L2
j

+
n2

L2
k

(xl − Ll)
]}

(40)

for m < Nj, n < Nk, and let

αl
2(N1−1)−m,n = αl

mn, (41)

αl
m,2(N1−1)−n = αl

mn. (42)

Now evaluate

FFT−1
jk (αl) =

1

4(Nj − 1)(Nk − 1)

2Nj−1
∑

m=0

2Nk−1
∑

n=0

αl
mn exp

[ 2πimp

2(Nj − 1)

]

exp
[ 2πinq

2(Nk − 1)

]

=
1

4(Nj − 1)(Nk − 1)

2Nj−3
∑

m=0

exp
[ iπmp

Nj − 1

]

2Nk−3
∑

n=0

αl
mn

[

cos
( πnq

Nk − 1

)

+ i sin
( πnq

Nk − 1

)]

=
1

4(Nj − 1)(Nk − 1)

2Nj−3
∑

m=0

exp
[ iπmp

Nj − 1

]{

Nk−2
∑

n=1

αl
mn

[

cos
( πnq

Nk − 1

)

+ i sin
( πnq

Nk − 1

)]

+αl
m0 + αl

m,Nk−1 cos(πq) +

2Nk−3
∑

n=Nk

αl
mn

[

cos
( πnq

Nk − 1

)

+ i sin
( πnq

Nk − 1

)]}

=
1

4(Nj − 1)(Nk − 1)

2Nj−3
∑

m=0

exp
[ iπmp

Nj − 1

]{

Nk−2
∑

n=1

αl
mn

[

cos
( πnq

Nk − 1

)

+ i sin
( πnq

Nk − 1

)]

+

Nk−2
∑

ñ=1

αl
m,2(Nk−1)−ñ

[

cos
(

2πq −
πñq

Nk − 1

)

+ i sin
(

2πq −
πñq

Nk − 1

)]

+αl
m0 + αl

m,Nk−1 cos(πq)
}
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=
1

4(Nj − 1)(Nk − 1)

2Nj−3
∑

m=0

exp
[ iπmp

Nj − 1

]{

Nk−2
∑

n=1

2αl
mn cos

( πnq

Nk − 1

)

+αl
m0 + αl

m,Nk−1 cos(πq)
}

=
1

4(Nj − 1)(Nk − 1)

2Nj−3
∑

m=0

exp
[ iπmp

Nj − 1

]

Nk−1
∑

n=0

(2 − δn0 − δnNk
)αl

mn cos
( πnq

Nk − 1

)

=
1

4(Nj − 1)(Nk − 1)

Nk−1
∑

n=0

(2 − δn0 − δnNk
) cos

( πnq

Nk − 1

)

×
{

2Nj−3
∑

m=0

αl
mn cos

( πmp

Nj − 1

)

+ i sin
( πmp

Nj − 1

)}

=
1

4(Nj − 1)(Nk − 1)

Nk−1
∑

n=0

(2 − δn0 − δnNk
) cos

( πnq

Nk − 1

)

×
{

Nj−2
∑

m=1

αl
mn cos

( πmp

Nj − 1

)

+ i sin
( πmp

Nj − 1

)

+ αl
0,n + αl

Nj−1,n cos(πp)

+

2Nj−3
∑

m=Nj

αl
mn cos

( πmp

Nj − 1

)

+ i sin
( πmp

Nj − 1

)}

=
1

4(Nj − 1)(Nk − 1)

Nk−1
∑

n=0

(2 − δn0 − δnNk
) cos

( πnq

Nk − 1

)

×
{

Nj−2
∑

m=1

αl
mn cos

( πmp

Nj − 1

)

+ i sin
( πmp

Nj − 1

)

+ αl
0,n + αl

Nj−1,n cos(πp)

+

Nj−2
∑

m̃=1

αl
2(Nj−1)−m̃,n cos

(

2πp −
πm̃p

Nj − 1

)

+ i sin
(

2πp −
πm̃p

Nj − 1

)}

=
1

4(Nj − 1)(Nk − 1)

Nk−1
∑

n=0

(2 − δn0 − δnNk
) cos

( πnq

Nk − 1

)

×
{

Nj−2
∑

m=1

2αl
mn cos

( πmp

Nj − 1

)

+ αl
0,n + αl

Nj−1,n cos(πp)
}

=
1

4(Nj − 1)(Nk − 1)

Nj−1
∑

m=0

Nk−1
∑

n=0

cos
( πmp

Nj − 1

)

cos
( πnq

Nk − 1

)

×αl
mn(2 − δn0 − δnNk

)(2 − δm0 − δmNj
) (43)

which (basically) gives the expression for the scalar potential. Slightly redefine α in order to
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get the various components of B. So, for example, to get the component of the field normal

to the wall, let

αll
mn =

{

Al+
mn sinh

[

π

√

m2

L2
j

+
n2

L2
k

xl
]

+ Al−
mn sinh

[

π

√

m2

L2
j

+
n2

L2
k

(xl − Ll)
]}

×(1 + δm0 + δmNj
)(1 + δn0 + δnNk

) (44)

for m < Nj, n < Nk, in which case

Bl = FFT−1
jk (αll). (45)

Note that this is only the contribution to one component from one wall, so still have to

sum over the other five walls, as well as calculate the other components. For a component

perpendicular to the wall under consideration, let

αlj
mn =

m

Lj

[m2

L2
j

+
n2

L2
k

]−1/2{

Al+
mn cosh

[

π

√

m2

L2
j

+
n2

L2
k

xl
]

+ Al−
mn cosh

[

π

√

m2

L2
j

+
n2

L2
k

(xl − Ll)
]}

×(1 + δm0 + δmNj
)(1 + δn0 + δnNk

) (46)

for m < Nj, n < Nk, and let

αl
2(N1−1)−m,n = −αl

mn, (47)

αl
m,2(N1−1)−n = αl

mn. (48)

in order to get a sin instead of a cos term. Note that now the expression for the field will be

Bj = −iFFT−1
jk (αjl). (49)

4.2. Flux Balance

The previous analysis requires that at least the flux through any pair of parallel walls

vanish. Consider adding the following scalar potential, suggested by Dana Longcope, to the

solution, to allow flux to exit through any combination of walls.

Φ = A1(x
2 − y2) + A2(x

2 − z2) + A3(y
2 − z2) (50)

with corresponding field components

Bx = −2(A1 + A2)x

By = 2(A1 − A3)y

Bz = 2(A2 + A3)z (51)
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Check that the diverence of this vanishes:

∇·B = −2(A1 + A2) + 2(A1 − A3) + 2(A2 + A3)

= 0. (52)

The flux through the walls is given by

Φx =

∫ Ly

0

dy

∫ Lz

0

dz Bx|x=0,Lx

= −2(A1 + A2)

∫ Ly

0

dy

∫ Lz

0

dz x|x=0,Lx

= −2(A1 + A2)LyLzx|x=0,Lx
(53)

Φy =

∫ Lx

0

dx

∫ Lz

0

dz By|y=0,Ly

= 2(A1 − A3)

∫ Lx

0

dx

∫ Lz

0

dz y|y=0,Ly

= 2(A1 − A3)LxLzy|y=0,Ly
(54)

Φz =

∫ Lx

0

dx

∫ Ly

0

dy Bz|z=0,Lz

= 2(A2 + A3)

∫ Lx

0

dx

∫ Ly

0

dy z|z=0,Lz

= 2(A2 + A3)LxLyz|z=0,Lz
(55)

In order to balance the flux, don’t need all of these terms, so deal with the flux in both the

x− and y− directions by adding/subtracting a corresponding amount to the flux through

the top boundary. Thus, keep only the terms involving A2 and A3, thus

Φx = −2A2LxLyLz

Φy = −2A3LxLyLz (56)
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