Green’s Function for Potential Field Extrapolation

1. Some Preliminaries on the Potential Magnetic Field

By definition, a potential magnetic field is one for which the electric current density
vanishes. That is,

J = SvxB
47
- 0. (1)

In addition, the magnetic field must also satisfy Maxwell’s equations, in particular Gauss’s
law:

V-B = 0. 2)

Any function which satisfies these two constraints is a valid potential field.

It is often convenient to write the magnetic field in terms of a scalar potential, ®, in the
following way:

B = -V&. (3)

This automatically satisfies the condition that the current density vanishes, since any scalar
has the property that the curl of the gradient vanishes. Thus one only has to take into
account the condition on the divergence, which can be written

V-B =
Ve = 0. (4)

This is Laplace’s equation for the scalar potential, which has been solved (in terms of various
special functions) in something like 11 coordinate systems. For this exercise, we will be using
only standard Cartesian coordinates. To define a unique solution in a volume, the normal
component of the magnetic field may be specified on the closed surface bounding the volume.
In some cases, this volume will be taken as semi-infinite, for example, the half-space above
a plane. In this case, the condition that the normal component of the field be specified “at
infinity” is satisfying by requiring that the magnitude of the field fall off rapidly enough with
distance above the plane.
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2. The Green’s Function

For a potential field, the Green’s function has a reasonably simple form:
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G. = = (7)

where r? = (z —2')? + (y — v')? + 22, and the boundary is assumed to be at 2’ = 0. The field
at any point is then constructed from

1
Bi(x) = %/dm’dy’Gi(a:,m’)Bz(m’,y’,O). (8)

3. Application to Discrete Data

Now comes the fun part: applying this to B measured at discrete points. It’s not as
simple as one might think, because one does not want the field due to a series of point sources
at each place there is a measurement. Instead, require that the vertical field be constant
across each pixel. That is, let

B.(z,y,0) = Z[@@—xi_&)_@(x_xﬁ%)]
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Use this expression for the field in the integral with the Green’s function.
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= 5_ Bz]/ di‘/ dg]Gl(x,y,z,x’,y/) (10)
2m ij z—xz;—Ax/2 y—y;—Ay/2

with 7 = (x — 2/ + (y —¢)> + 2%, tanf = (y — ) /(z —2/),and T =z — 2/, g =y — ¥/
Start with the z-component, and try to do the integrals explicitly.
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where Z; = x—ux;, y; = y—y;. This is rather unwieldy, but at least it’s an analytic expression
that does not involve integrals. Next, try the z-component.
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and this expression will also hold for the y-component by appropriately interchanging x and
Y.

+
+

4. Solution for a Box

Consider now the case in which one wishes to determine the field in the volume 0 <
r<a 0<y<b 0<z<c given the normal component of the field on all six of the
faces of the box. Following the discussion in Jackson (1975), construct six separate scalar
potentials, each of which has a non-vanishing normal derivative on only one of the walls.
Then the scalar potential for the solution will be simply the sum of the six. Try to construct
this in such a way that FFTs can be used, by taking the exponential solutions to be in the
direction normal to the face on which the derivative of the potential does not vanish. So, let

m2  n?

ZA cos(mmx/a) cos(nmy/b) cosh [ — t 5 7 (z — c)] (13)

which by construction satisfies V2®; = 0, and hence V-B = V-(=V®) = 0. With this
definition,
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Try to simplify at least the notation somewhat by starting with
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B.(z,y,c) = — Z Cos <m;rx) Cos <%> C.f . sinh [m/ m + Z—jc]
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Similarly, let

nie) = 15 [ ei] e () e (7T)
X{A;,Lm cosh [m/ Tg—; + n—2x] + A, cosh [7‘(‘ :,:22 n —(z — a)] } (23)
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Apn = P [W;W]/dy/ dz B,(0, v, )cos(m;;y) cos(mcm> (24)
At = — . Ma]/ody/o dz B.(a,y, z) cos <$) cos (?) (25)
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and
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and the vector potential for the complete solution is simply & = &, + &, + Ps.

4.1. Application to Discrete Data

The above formulation provides a general solution, given the normal component of the
field on all six faces of a box. Now consider the case in which the normal field is given at
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discrete (regularly spaced) points on each of the faces, with the goal of converting as much
as possible of this into Fourier Transforms. There are two ways we can proceed: turn the
sine and cosine expansions into discrete Fourier transforms by redefining the boundary over
a larger area, with the appropriate symmetry, or take the real part of each Fourier transform
as it is performed. Start with the latter, since it will use transforms of smaller array sizes,
which will be faster. Note that for the discrete case, the integrals will be represented as
sums, in the following form

L ; , N;—2
- L [ =0)+ f = L) .
| e~ . # 3 =) @)
where 27, = mL;/(N;—1). Note that this implies a particular choice for the walls of the box,

namely that the wall falls on the outermost grid point in each dimension. This assumption
is different from the “standard” periodic boundary conditions used in ££f.pro, for example,
and also different from the walls in Yuhong’s simulation, in which the wall is midway between
the last grid point and a “ghost” grid point outside the wall. So, the factor of a half in the
first and last grid points represents the fact that only half the pixel is contained within the
walls.

To begin with, change notation once again, this time using (1,2, 3) in place of (x,y, z).
With this notation, assume that the volume of interest is 0 < 2/ < L;, with j = 1,2, 3, and
let

Nj—=1N—1 9 _ j k
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Note that this expression is not really well defined for m = n = 0 (as is the expression for
®), but since this is the ® = constant term, and so does not contribute to the magnetic
field, I'm not going to treat it properly. It may need to be handled differently when coded,
however. Also, I am assuming flux balance, so there is no term of the form & = By-x

4.1.1.  Using Real Parts

This is not as straightforward as I thought, because one ends up with a “missing” factor
of 2 in the cosine terms. Numerical Recipes has a way (actually, several ways) to deal with
this, by constructing fast cosine transforms, but for now, proceed with the “slow” method
of doubling the dimensions. Thus, this section is not complete.

4.1.2.  FExpanding the Boundary

In order to make use of the standard FF'T, and in fact, with the further goal of performing
this with repeated calls to fff.pro, which assumes only the lower boundary is given, and
that the boundary conditions are periodic with period L, define a symmetrized version of
B! in the volume 0 < z; < 2Ly, 0 < 25 < 2Ly, 0 < 23 < 2L3, and assume that B’ vanishes
outside of this region. Do this by letting

B*(2L, — 2%, 2%,0) = B!, 2%0), (32)
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B*(2Ly — x', 2%, Ly) B*(x',2?, L), (33)
B*(x', 2Ly — 2*,0) B*(x', 2%,0), (34)
B3(x172L2 _$27L3) Bg(x17$27L3)7 (35)

and similarly for B, B2. Note that this definition is a little different from the “standard”
periodic boundary conditions. With this definition, and making use of the vanishing of B?
outside the area of interest, evaluate

2mimat
/ de'B? (2!, 2%,0) exp ( 7r227£7,w )
0 1
I 2rmat 2mrmat
= dx B?’x :1: ,0 [cos( )—z’sin( )}
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1

I
FFT,(B%) = L_/ da:lB3(:U1,:U2,O)cos<
1Jo

which has been calculated without making the change to discrete data, but presumably must
also hold, provided the FFT is defined properly.

Now go back to the expressions for the coefficients in the cosine expansion,
2 — Omo
T / dxf/ da* B'(z' = 0, Ll)cos< )cos(mm )
L;Lj sinh [WLZ ’;;22 + 7= ”2 Ly
F(2 = 0m0)(2 — dno)
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where the FFT is taken in the forward direction to correspond to IDL’s normalization.

I+ _
Amn -
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In the discrete version, if B3, is given for m = 0,N; — 1, n = 0, Ny — 1, then the
expanded version of the field is given explicitly by

Bg(lel)fm,n = BS’LH’ (38)
BS’L,Z(lel)fn = Bgln’ (39)

Because of the expanded dimensions for B!, the coefficients are only meaningful for m < Nj,

n < Np. That is, the A= are not all independent. In particular, A% = Ali

mn
I+
Am 2(Ng—1)—n

N;j—-1)—m,n -

Having determined the coefficients in terms of FF'Ts, next tackle the series for the scalar
potential itself. To do this, it will be convenient to define a new set of coefficients, given by

] + A cosh [ 7222 Zz (2! — Llﬁ%(})

2 2

—1/2
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[ 2 77/2
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for m < N;j,n < Nj, and let

O/Q(Nl—l)—m,n = Oéinn’ (41)
06571’2(]\[1_1)_” = Oéinn (42)
Now evaluate
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which (basically) gives the expression for the scalar potential. Slightly redefine « in order to
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get the various components of B. So, for example, to get the component of the field normal
to the wall, let

2 2 2 2
i = {A” 'h[ EJrn—l]JrAl‘ 'h[ 1Jrn—(l—L)”
Oy, mn SInh (7 x mn SINh | x 1
\ 2 T 12 2 1z

X (14 mo + O, ) (1 + 0o + Oy (44)
for m < Nj,n < Nj, in which case
B' = FFT;/(a"). (45)

Note that this is only the contribution to one component from one wall, so still have to
sum over the other five walls, as well as calculate the other components. For a component
perpendicular to the wall under consideration, let

) 2 2,-1/2 2 2 2 2
oo E[ﬁ ”_] {l+ [ m- ”_l] - [ me
al . = + A,r cosh |7 + —a'| + A, cosh |7 + —(z' = Ly)
Ll " L2 L2 L2 L Ly
X (L + Omo + O, ) (1 4 Ono + nn,) (46)
for m < Nj,n < Nj, and let
al2(N1—l)—m,n = _Oéi‘mw (47)
0457172(]\[1,1),“ = afnn' (48)

in order to get a sin instead of a cos term. Note that now the expression for the field will be

B = —iFFT;/(a’). (49)

4.2. Flux Balance

The previous analysis requires that at least the flux through any pair of parallel walls
vanish. Consider adding the following scalar potential, suggested by Dana Longcope, to the
solution, to allow flux to exit through any combination of walls.

O = Aj(z? —y?) + Ax(2® — 2°) + As(y® — 27) (50)
with corresponding field components

Bx = —2(A1 + AQ).CL"
By = 2(A1— As)y
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Check that the diverence of this vanishes:

V-B = —2(A; + Ay) +2(A; — A3) + 2(As + A3)
= 0. (52)

The flux through the walls is given by

L, L.
q)x = / dy / dz Bx‘x:O,LI
0 0

Ly L,
= —2(A1+A2)/ dy/ dZI‘|$:07Lm

= —2 A1+A2LLI'|$ 0,Ls (53)

Ly L.
¢, = / dx/ dz Byly—o,L,
Ly L.
= 2(141-143)/ dx/ dzy‘y:07Ly

= — A3) L L.y|y—o,1, (54)
LI L,
b, = / dw/ dy B.|.—o,L.

Ly Ly
= 2(A2+A3)/ dx/ dy 2|.=o,1.
0 0
= 2(A2 + Ag)L$Ly2|z:07Lz (55)

In order to balance the flux, don’t need all of these terms, so deal with the flux in both the
x— and y— directions by adding/subtracting a corresponding amount to the flux through
the top boundary. Thus, keep only the terms involving As; and As, thus

O, = —24,L,L,L.
®, = —243L,L,L. (56)
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