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ABSTRACT

A spectral parameterization of mean-flow forcing due to breaking gravity waves is described for application
in the equations of motion in atmospheric models. The parameterization is based on linear theory and adheres
closely to fundamental principles of conservation of wave action flux, linear stability, and wave–mean-flow
interaction. Because the details of wave breakdown and nonlinear interactions are known to be very complex
and are still poorly understood, only the simplest possible assumption is made: that the momentum fluxes carried
by the waves are deposited locally and entirely at the altitude of linear wave breaking. This simple assumption
allows a straightforward mapping of the momentum flux spectrum, input at a specified source altitude, into
vertical profiles of mean-flow force. A coefficient of eddy diffusion can also be estimated. The parameterization
can be used with any desired input spectrum of momentum flux. The results are sensitive to the details of this
spectrum and also realistically sensitive to the background vertical shear and stability profiles. These sensitivities
make the parameterization ideally suited for studying both the effects of gravity waves from unique sources
like topography and convection as well as generalized broad input spectra. Existing constraints on input param-
eters are also summarized from the available observations. With these constraints, the parameterization generates
realistic variations in gravity-wave-driven, mean-flow forcing.

1. Introduction

Gravity waves are mesoscale phenomena that have
important global effects on the circulation, temperature
structure, chemistry, and composition of the atmo-
sphere. Atmospheric gravity waves have typical hori-
zontal wavelengths of tens to thousands of kilometers
and periods ranging from minutes to many hours. Ob-
servations show these waves to be highly variable in
their properties, but they are ubiquitous features in high-
resolution data. Their small scales and short periods
make their global properties difficult to quantify in cur-
rently available meteorological data and difficult to re-
solve in most global models.

Gravity waves carry momentum and energy vertically
in the atmosphere leading to important forcing terms in
the momentum and energy budget equations in global
models. These forcing terms are accounted for via pa-
rameterizations of gravity wave effects that use the in-
formation on the larger-scale wind and stability fields.
Lindzen (1981) developed a successful parameterization
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of gravity wave effects that has been widely applied in
atmospheric models. Important modifications were
made by Holton (1982) and Lindzen (1985), and sub-
sequent application of these basic ideas to the effects
of waves forced by flow over topography were devel-
oped and applied in global models by Palmer et al.
(1986) and McFarlane (1987). These Lindzen-type pa-
rameterizations are based on the fundamental physical
principles of wave stability and momentum flux con-
servation for a monochromatic gravity wave. The use
of ‘‘monochromatic’’ here refers to a single ground-
relative phase speed and horizontal wavenumber com-
bination. The dissipation of the wave as a function of
height is based on the concept of ‘‘saturation’’ (Fritts
1984; Dunkerton 1989) and allows the wave to continue
propagating above the level of linear instability onset
by assuming enough dissipation for the wave to remain
stable. Parameterizations of this type are still in wide
use today (e.g., Keihl et al. 1996; Norton and Thuburn
1996).

The importance of realistically describing the effects
of the broad spectrum of gravity waves present in the
atmosphere is widely recognized and has led to the pro-
posal of several spectral parameterization schemes in
recent years (Fritts and VanZandt 1993; Fritts and Lu
1993; Medvedev and Klaassen 1995; Hines 1997). The
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first attempt at a spectral parameterization was described
in Lindzen and Holton (1968, hereafter LH68) and ap-
plied to the problem of forcing the quasi-biennial os-
cillation (QBO) in the tropical stratosphere. This pa-
rameterization assumes that the waves deposit all the
momentum they carry at their critical level: namely,
where the phase speed of the wave equals the back-
ground wind speed in the direction of wave propagation.
In the case of a monochromatic wave, this would lead
to a delta function of forcing in the vertical; but when
a full spectrum of waves is considered, it leads to a
simple formula for mapping the spectrum of momentum
flux carried by the waves onto the profile of background
winds as a function of height. This approach was largely
abandoned for its original purpose of explaining the
QBO in favor of the proposed planetary-scale wave
forcing mechanism of Holton and Lindzen (1972), but
was shown to be a reasonable, although oversimplified,
model of gravity wave mean-flow forcing in the lower
stratosphere by Dunkerton (1997) and Alexander and
Holton (1997). The waves cannot propagate to the the-
oretical critical level without suffering severe dissipa-
tion, but the typically low amplitudes in the stratosphere
result in this dissipation occuring near enough to the
critical level for the LH68 assumption to be reasonable.
In the mesosphere, the LH68 parameterization would
fail to describe the drag force responsible for reversing
the radiative equilibrium summer-to-winter temperature
gradient and the zonal-mean meridional circulation in-
ferred from observed temperatures and chemical com-
position because wave dissipation must occur far from
critical levels. LH68 also cannot describe mountain
wave drag on the midlatitude winter lower stratosphere
circulation.

The parameterization we propose here is a hybrid and
extension of the ideas and mathematics in Lindzen
(1981) and Lindzen and Holton (1968). We use the Lind-
zen (1981) breaking criterion, then deposit the wave
momentum flux locally and totally at the breaking level
in a manner analogous to Lindzen and Holton’s (1968)
assumption. We include the additional physical process
of total internal wave reflection at high frequencies.

A fundamental concept that underlies our spectral ap-
proach is that wave forcing is intermittent. We base our
assumption of intermittency on the combined con-
straints of observations and models described in the next
section. A spectrum of momentum flux must be input
to the parameterization as a function of phase speed (c).
This spectrum is meant to describe a collection of wave
packets of finite size in both horizontal area and in time.
The intermittency describes the fraction of time and
space that each wave packet is forced. It would be unity
if the forcing were continuous. The concept of inter-
mittency lies behind the use of an ‘‘efficiency factor’’
that is generally applied in Lindzen-type parameteri-
zations, and here is formally related to observable prop-
erties of the gravity wave spectrum. If the wave phase
speed spectrum is defined coarsely, then the parame-

terization resembles Lindzen-type parameterizations
that use a small number of phase speeds to describe the
gravity wave spectrum. Thus, at coarse resolution the
difference between this parameterization and various
Lindzen-type applications is in the manner by which the
momentum flux is distributed with height between the
breaking level and critical level. If the spectrum is in-
stead defined with fine phase speed resolution, then each
band Dc defines a smaller fraction of the spectrum and
naturally is accompanied by a smaller intermittency per
band. Put simply, one can imagine that some type of
gravity wave might always be forced somewhere within
a model grid box, but a wave with very specific prop-
erties might only occur very infrequently. So it is the
intermittency per band that changes with Dc in our for-
mulation, not the amplitudes of the waves. The latter
determine the breaking levels, are specified separately,
and can be constrained by observations of wave events.

Our approach uses linear monochromatic theory to
describe propagation and instability onset of individual
small bands of the spectrum and takes this assumption
of intermittency to an extreme. However, dispersion of
wave packets can be observed in wave propagation
models (Alexander 1996; Prusa et al. 1996), and a high
degree of dispersion is implied by the nearly mono-
chromatic gravity wave events observed near the me-
sopause (Swenson and Espy 1995; Taylor et al. 1995).
These suggest that our approach may be considered an
oversimplified but not unreasonable approximation to
gravity wave behavior.

Our parameterization treats each wave in the spectrum
independently, neglecting wave–wave interactions. The
validity of this assumption is questionable for waves
with slow vertical group velocities (short vertical wave-
length, long period gravity waves) (Broutman et al.
1997; Eckermann 1997). These waves populate the high
vertical wavenumber (m) end of the energy spectrum.
Observed gravity wave spectra at short vertical wave-
lengths (O ; 1 km or less) typically display a char-
acteristic m23 shape called the ‘‘tail’’ of the the m spec-
trum. Wave theory suggests that these waves are likely
suffering dissipation because the amplitudes are close
to limits imposed by instability theory, and the decreas-
ing energy with increasing m has been related to various
instability and dissipation mechanisms (Dewan and
Good 1986; Smith et al. 1987; Fritts 1989; Hines 1991;
Zhu 1994). This high-m tail part of the spectrum is also
more likely to be affected by interactions with other
waves (Hines 1991; Broutman et al. 1997; Eckermann
1997). Waves at the other end of the spectrum, those
with long vertical wavelengths and high intrinsic fre-
quencies, will have fast vertical group velocities. These
waves are much better described by linear theory, are
generally observed with amplitudes substantially below
instability limits, and are much less likely to be affected
by wave–wave interactions.

Our parameterization approach treats these faster
waves, which likely carry a large fraction of the mo-
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mentum flux (Fritts and Vincent 1987), with linear the-
ory. Wave refraction to smaller vertical wavelengths and
lower intrinsic frequencies occurs in this approach
through interaction with a vertically varying back-
ground atmosphere. This part of the problem is given
careful treatment with linear theory, but when the wave
is refracted into the tail of the spectrum and reaches a
point where it is unstable, it is simply removed from
the spectrum for mathematical convenience. We there-
fore do not treat the details of dissipation realistically,
but by choosing a smooth function of momentum flux
versus phase speed as input, realistically smooth profiles
of mean-flow forcing are still achieved. The background
flow must be slowly varying according to our assump-
tions, but could be anything from low phase speed plan-
etary-scale waves to a simple seasonally varying zonal-
mean state. We use the onset of convective instability
derived from linear theory as the dissipation criterion,
but other criteria could be used in future applications
of the parameterization if our knowledge of the details
of wave dissipation mechanisms improves.

Our assumption that gravity waves occur only inter-
mittently is also most valid for this fast vertical group
velocity part of the spectrum. Our parameterization thus
emphasizes the importance of the long vertical wave-
length, short intrinsic period gravity waves outside the
tail of the spectrum to the momentum budget of the
problem. It also assumes that the short vertical wave-
length, long period waves will have slow enough ver-
tical group velocities that they are close to the altitude
where they will be dissipated. Then the approximation
of removing them from the budget is reasonable.

We first review the constraints on wave amplitudes
and total momentum flux that support intermittency, the
monochromatic linear theory for gravity wave instabil-
ity and wave–mean-flow interaction, and the background
ideas of Lindzen (1981), Holton (1982), and Lindzen
and Holton (1968) in section 2. The parameterization,
as described in section 3, is presented as a tool for
numerical models seeking to include the effects of a
spectrum of gravity waves on the background atmo-
sphere. Section 4 illustrates the kinds of results that can
be obtained. We end with some discussion in section 5.

2. Background

We seek to parameterize the vertical profile of mean-
flow forcing due to a spectrum of wave momentum flux
whose source is specified at height z0 somewhere below.
This forcing would be applied in the horizontal mo-
mentum balance equations in a model. For the zonal-
mean flow, for example,

du
2 f y 5 X, (1)

dt

where u , y are the zonal mean zonal and meridional
wind, f the Coriolis parameter, and X the zonal-mean
zonal force due to gravity wave dissipation (Andrews

et al. 1987). The wave propagation is treated as one-
dimensional, neglecting horizontal variations and wave-
packet distortions. Azimuthal spreading that would be
associated with waves emanating from a point source
(e.g., Dewan et al. 1998) is also neglected. These as-
sumptions will be most applicable to global models with
coarse horizontal resolution.

Our approach to parameterizing X is based on an
underlying assumption that the momentum transport re-
sponsible for the gravity wave dissipation occurs inter-
mittently in discrete events, but that the net effect of
interest to global modelers is a time- and space-averaged
envelope describing those events.

a. Constraints on gravity wave source amplitudes
and total momentum fluxes

We base our assumption of intermittency on the com-
bined constraints of observations and models. Obser-
vations of momentum fluxes just above the tropopause
carried by gravity waves and linked to specific sources
like topography (Palmer et al. 1986; Fritts et al. 1990;
Prichard et al. 1995; Sato 1990) and convection (Pfister
et al. 1993; Alexander and Pfister 1995; Sato 1993) often
show large values during wave ‘‘events’’ or ‘‘active
times.’’ These are commonly reported as u9w9 in meters
squared per second squared, but here we multiply by
density in order to compare observations at different
altitudes. Over topography, the magnitudes of these
event amplitudes are in the range ;0.03–0.5 Pa. Above
active convection, 0.03–0.15 Pa have been reported.
Conversely, long-term averages of wave momentum
fluxes or fluxes measured during ‘‘quiet times’’ are ob-
served to be much smaller. Over mountainous terrain,
values #0.06 Pa have been reported with values ;0.01
Pa most common (Prichard and Thomas 1993; Fritts et
al. 1990; Sato 1994; Sato et al. 1997; Murayama et al.
1994) and at other locations 0.001–0.02 Pa (Sato and
Dunkerton 1997; Chang et al. 1997). Since nonevents
are rarely reported, a better estimate of the long-term,
global-scale fluxes carried by gravity waves come from
model studies that estimate the gravity wave momentum
fluxes indirectly using constraints on the mean-flow
forcing due to gravity waves in the middle atmosphere
(Fritts 1989; Alexander and Rosenlof 1996; Ray et al.
1998; Dunkerton 1997). At extratropical latitudes, es-
timated average fluxes required to drive the mean me-
ridional residual circulation are 0.003–0.006 Pa (Al-
exander and Rosenlof 1996). At tropical latitudes, an
estimated momentum flux of 0.002–0.003 Pa is needed
to drive both the QBO (Dunkerton 1997) and strato-
pause semiannual oscillation (Ray et al. 1998) winds.
These are roughly 5–100 times smaller than the fluxes
observed directly over wave sources, supporting our
assumptions of highly intermittent wave sources. Inter-
mittency is also supported by wavelet analyses of ob-
servations (Sato and Yamada 1994) whereas traditional
Fourier analysis inherently averages away much of the
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information about intermittency that may be available.
Other gravity wave–generation mechanisms, such as
geostrophic adjustment, are likely associated with bar-
oclinic systems (O’Sullivan and Dunkerton 1995) and
weather fronts (Reeder and Griffiths 1996), and these
sources are also expected to be intermittent.

b. Linear wave theory for slowly varying background
flows

Linear wave theory predicts that in the absence of
dissipation a wave will propagate, conserving wave ac-
tion flux through variable background winds (Lighthill
1978). If these background winds are presumed to be
horizontally uniform with only vertical shear, then both
the vertical components of the wave action flux FA and
the pseudomomentum flux FP are conserved:

E
F 5 r c 5 F /k 5 constant. (2)A gz Pv

Here r is the background density that decreases expo-
nentially with height z, E is the total wave energy per
unit mass, v is the intrinsic frequency, cgz is the vertical
group velocity, and the horizontal wavenumber k is a
constant under these conditions. The pseudomomentum
flux can be divided into zonal and meridional compo-
nents (FPl, FPf ) according to the direction of wave prop-
agation. The force X̃ on the local background flow due
to gravity wave dissipation is associated with the ver-
tical gradient of the pseudomomentum flux. For the zon-
al component,

21 ]
X̃ 5 (F ). (3)Plr ]z

An equation of this form applies to both horizontal co-
ordinates (e.g., longitude l and latitude f ). For waves
propagating westward relative to the mean flow, FPl is
negative, while it is positive for waves propagating east-
ward. The pseudomomentum flux is related to the Rey-
nold’s stress and momentum flux (Fritts and Vincent
1987),

2 2F 5 r u9w9(1 2 f /v ), (4)Pl

where u9w9 represents an average over a wavelength or
period of the horizontal (u9) and vertical (w9) wind per-
turbations associated with the wave. The pseudomo-
mentum flux in (4) is the negative of the vertical com-
ponent of the Eliassen–Palm flux for gravity waves (An-
drews et al. 1987). The momentum flux r u9w9 is the
quantity that can be determined from many observation
techniques. The intrinsic frequency v is generally dif-
ficult to determine from observations. Equation (4)
shows that the momentum flux is equivalent to the pseu-
domomentum flux for higher-frequency gravity waves
(v2 k f 2).

If there is intermittency in the wave forcing and grav-
ity waves travel in packets of finite size, the zonal-mean

force or force applied on some larger scale X must in-
clude a fractional coverage « of the breaking waves in
the space and time over which the force is to be applied:

2« ]
X 5 (F ). (5)Plr ]z

We call « the intermittency. An example of how « can
be computed for convectively generated gravity waves
in a numerical model appears in Alexander (1996). From
most currently available observations, « cannot be de-
termined, except perhaps from continuously operating
ST radars (e.g., Sato 1992; Sato et al. 1997). Until more
data on wave intermittency in the lower stratosphere are
available, « is a loosely constrained, free parameter in
these calculations. It may vary on a wide range of time-
scales, may vary with geography, and may be a function
of the wave packet properties as well, for example, «(l,
f, t, v, k). If treated as a constant, it can be estimated
indirectly by comparing amplitudes in wave events u9w
to estimates of the seasonally varying forcing in the
middle atmosphere (Alexander and Rosenlof 1996) de-
scribed in the beginning of this section.

c. Lindzen-type monochromatic parameterizations

Lindzen (1981, hereafter L81) described a parame-
terization for the force due to a monochromatic wave
based on the fundamental ideas of linear wave theory,
instability, and conservation of momentum flux. He as-
sumed conservative propagation of the wave up to the
level where the wave was convectively unstable. The
level of instability, called the breaking level zb, can be
defined as that height where the source flux FP0 matches
the criterion

r(z)k
3F 5 (c 2 u(z)) . (6)P0 [ ]2N(z) z5zb

Here, c is the phase speed and N is the buoyancy fre-
quency. This condition is derived assuming the waves
are hydrostatic, nonrotating, and breaking at vertical
wavelengths lz K 4pH, where H is the density-scale
height. Below zb, FP0 must be smaller than the right-
hand side of (6). L81 assumed that the gravity wave
force would be roughly constant with height between
the breaking level zb and the critical level zc. Holton
(1982) derived a vertical profile for this force by as-
suming that the wave is saturated, transferring enough
momentum and energy to the background atmosphere
to remain stable. This leads to a forcing profile above
zb with the form

2«k 1 3du/dz
3X 5 (u 2 c) 2 for z , z , z . (7)b c1 22N H u 2 c

The force X estimated from (7) is generally multiplied
by a scaling factor, or ‘‘efficiency factor,’’ of ;0.1 that
can be thought of as describing the intermittency in the
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wave forcing (Holton 1982). Multiple breaking levels
can be accomodated with modifications described in
McFarlane (1987) and Kiehl et al. (1996). In global
models, the Lindzen parameterization is applied with
some discrete set of phase speeds (e.g., Garcia and Sol-
omon 1985; Rind et al. 1988; Jackson and Gray 1994).
The breaking level is determined for each phase speed
zb(c), and the force profile computed with (7). Unless
a sufficiently large set of phase speeds is selected, the
parameterization predicts sudden jumps in the forcing
at the breaking levels zb(c), so some form of gradual
onset of the force may be included to facilitate its in-
clusion in numerical models. This has been justified as
either representing turbulence generated by nonbreaking
waves (Lindzen 1981) or as associated with breaking
of the broader spectrum of waves not treated in the
monochromatic formula (Holton 1982).

Holton (1982) also derived the relationship between
the eddy diffusion coefficient D and X for this param-
eterization:

(c 2 u )
D 5 X. (8)

2N

This coefficient has been applied to describe vertical
diffusive mixing terms in the momentum and energy
equations (e.g., Holton 1982). There is, however, still
considerable uncertainty in how the energy in the wave
breakdown process should be partitioned to vertical
mixing (Fritts and Dunkerton 1985; Coy and Fritts 1988;
McIntyre 1989; Lelong and Dunkerton 1998a,b). An
energy dissipation rate, (c 2 u)X, is also implied under
our assumptions (e.g., Fritts and VanZandt 1993).

d. Lindzen and Holton (1968) parameterization

Lindzen and Holton (1968) parameterized the effects
of breaking gravity waves in the QBO by assuming a
spectrum of phase speeds c and by assuming that break-
ing occurs at critical levels. The critical level zc is that
level where the phase speed equals the mean wind speed
in the direction of wave propagation, or for zonally
propagating waves c 5 u(zc). The waves were assumed
to propagate conservatively below zc but to deposit all
the momentum they carry at zc. For a monochromatic
gravity wave, this would lead to a step function in the
momentum flux profile and a Dirac delta function in the
forcing at height zc. In the case of a spectrum of wave
phase speeds defined at resolution Dc, these assumptions
lead to a simple mapping of the source momentum flux
spectrum per unit phase speed f̂ (c) onto the background
wind profile:

f̂ (c) ° f̂ [u(zc)], (9)

taking care to map the flux at c only once to the first
zc above z0. The wave-driven mean-flow force can then
be shown to be

r du0X 5 | f̂ (u )| , (10)
r dz

where r 0 is the density at the source level z0. The source
flux f̂ (c) can be related to the previous terminology for
monochromatic pseudomomentum flux via

«F (c)P0f̂ (c) 5 . (11)
r Dc0

Equation (10) predicts that the wave-driven force will
always have the same sign as the background shear and
the force will be zero if the shear goes to zero. The
force in (10) leads to descent of an existing shear zone,
but it cannot initiate one. Equation (10) also cannot
describe the inferred gravity wave–driven drag force in
the mesosphere nor the mountain wave drag in the lower
stratosphere above the winter midlatitude jet. Both of
these phenomena require wave breaking and momentum
deposition well below wave critical levels.

Dunkerton (1997) compared the LH68 result to a de-
tailed spectral line-by-line calculation of the forcing in
typical QBO-like shears in the lower stratosphere. Al-
exander and Holton (1997) compared the results of the
LH68 parameterization to the mean-flow forcing in a
two-dimensional nonlinear numerical model of the low-
er stratosphere. Their results show that the LH68 pa-
rameterization results are similar to those seen in the
nonlinear model, but that the momentum carried by the
waves deposited a finite distance below the critical level.
This result is expected because most wave instability
and dissipation mechanisms become more likely as a
wave approaches its critical level from below.

3. The spectral parameterization

The parameterization we propose here combines ideas
from both the LH68 and L81 parameterizations. The
spectrum is treated as a collection of monochromatic
wave packets. Each packet is assumed to propagate ver-
tically through varying background wind and stability
conserving pseudomomentum flux below the breaking
level. At the breaking levels zb, the waves are assumed
to deposit all the momentum they carry. No saturation
condition is applied above the breaking level. This as-
sumption sidesteps the details of the complex wave
breakdown process (Fritts and Dunkerton 1985; Dunk-
erton 1989; Andreassen et al. 1994; Fritts et al. 1994;
Lelong and Dunkerton 1998a,b) while permitting a sim-
ple mapping of the gravity wave pseudomomentum flux
in the vertical. This simplifying assumption implies that
the wave-induced force per unit phase speed is propor-
tional to a Dirac delta function peaking at zb, d(z 2 zb),
rather than d(z 2 zc) as in LH68, leading to a modified
version of (10) with (]zb/]c)21 in place of (]u /]z), as
shown by Dunkerton (1997). In the limit Dz, Dc → 0
the force can become singular, when ]zb/]c 5 0. This
could occur if several waves in the spectrum break at
the same altitude, but the problem is avoided in finite
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FIG. 1. Schematic diagram showing the relationships between (a)
breaking zb and critical zc levels for a monochromatic wave with
phase speed c propagating through mean wind profile U, and (b) the
wave-driven force predicted with the three gravity wave parameter-
ization assumptions described in sections 2 and 3.

grid box models where |Dz| . 0. Here we develop a
numerical solution embodying these same physical con-
cepts.

Let FP0(c) represent a discrete set of waves with phase
speeds {ci} specified at resolution Dc carrying momen-
tum flux {FP0(ci)}. Let FS represent the total momentum
flux in the gravity wave spectrum at some height z above
the source level z0:

F (z) 5 F (c ), for z (c ) . z. (12)OS P0 i b i
i

The monochromatic mean-flow force given by (5) can
be extended to a spectrum of waves by totaling contri-
butions from all the elements of the spectrum,

2« ]
X(z) 5 [F (z)]. (13)Sr(z) ]z

With our assumption of total momentum dissipation at
the breaking level, the gradient in the flux

]
(F ) 5 2 (F ) /Dz, for (z 2 Dz) , z (c ) # z,OS P0 j b j]z j

(14)

where the sum over index j represents a sum of mo-
mentum fluxes for waves in the spectrum that are break-
ing in a vertical grid interval Dz and (FP 0)j 5 FP 0(cj).
Let zh represent a half-interval step z 2 Dz/2. Then the
parameterized force is

«
X(z ) 5 (F ) for (z 2 Dz) , z (c ) # z,Oh P0 j b jr(z )Dz jh

(15)

summing over the j waves that break in the height in-
terval Dz. The factor « is the intermittency, assumed
constant here, but that could easily be allowed a phase
speed dependence by moving «j inside the sum in (15).
By analogy with (8),

«
D(z ) 5 [c 2 u(z )](F )Oh j h P0 j2r(z )N (z )Dz jh h

for (z 2 Dz) , z (c ) # z. (16)b j

To find the relationship between the breaking levels
zb and the amplitudes in the source spectrum FP0, the
L81 condition (6) is used. Nonhydrostatic and rotation
effects excluded in the derivation of (6) can be included
in the determination of the breaking level at the cost of
greater complexity, but the effect on the resulting forc-
ing estimates will be shown to be rather small. Neglect-
ing rotation also means the pseudomomentum flux (2)
is equivalent to the vertical flux of horizontal momen-
tum r u9w9 , which can be determined by observations.
Hereafter we will refer to FP as simply momentum flux.
The schematic diagrams in Fig. 1 illustrate the assump-
tions employed in LH68, Lindzen-type, and the present
parameterization considering only a single monochro-
matic wave.

Although the hydrostatic approximation is appropri-
ate for determining the breaking level where intrinsic
frequencies are fairly low, the parameterization includes
the important nonhydrostatic process of total internal
reflection of gravity waves that occurs when waves are
Doppler shifted to high intrinsic frequencies. Total re-
flection severely limits propagation of the shorter hor-
izontal wavelength waves (,100 km) into the upper
stratosphere and mesosphere during solstice seasons. It
will be explained in more detail later in this section.

The parameterization can be applied in any azimuthal
direction. The examples developed in section 4 show
results for two azimuths (east and west) and the zonal
gravity wave–driven force based on zonal-mean wind
and stability fields.

a. The source spectrum

To begin, a discrete spectrum of wave momentum
flux versus phase speed must be specified at the source
level z0. We will work here primarily with the class of
functions

2F (c) c 2 cP0 0B (c) [ 5 sgn(ĉ)B exp 2 ln2 . (17)0 m 1 2[ ]r c0 w

Here c is the ground-relative phase speed; c0 is the phase
speed with maximum flux magnitude Bm; cw is the half-
width at half-maximum of the Gaussian; and ĉ is the
intrinsic phase speed at z0,

ĉ 5 c 2 u 0, (18)

where u 0 5 u(z0). As previously noted, FP 0(c) is a
discrete set of momentum flux amplitudes at the source
level composing a spectrum that will be used to deter-
mine breaking levels. Here Bm and B0(c) (units of m2
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s22) can be constrained with observations of u9w9 and
y9w9 in local wave events. The amplitudes during active
times, contained in B0(c), together with the mean-flow
profile largely determine at what level the waves will
break.

The total momentum flux in the spectrum is specified
with a separate parameter FS0, which can be constrained
with long-term averages of observed u9w9 and y9w9 .
Such long-term averages give a measure of the average
flux crossing the surface at height z0 including both
wave events as well as quiet times. If Bm, FS0, and cw

are all input to the model, this implies an average in-
termittency factor, «, via

F DcS0« 5 . (19)
r |B (c)|DcO0 0

c

Written this way, Eq. (19) states that the intermittency
« is proportional to the ratio of the total time average
momentum flux FS0 to the integral of the momentum
flux amplitude spectrum. The dependence of « on Dc
is also explicit here. For the example amplitude spec-
trum given by Eq. (17), the intermittency « 5 2(ln2/
p)1/2[FS0/(r 0Bm)](Dc/cw) if the range of phase speeds is
large enough to approximate the sum in (19) as an in-
tegral from 6`.

Parameters « and cw are the least well constrained by
observations. Here we will choose to specify Bm, FS0,
and cw to define the source spectrum. A value of k or
set of k values must also be chosen and the flux FS0

partitioned among them. These together will imply an
« if it is treated as a constant, but note that « could
instead be a specified parameter, and it could vary as
«(l, f, t, c, k) within the formulation described here.
The value of « will in general be proportional to the
phase speed resolution Dc specified in the source spec-
trum since a wave with properties described by a narrow
band width Dc should occur much less frequently than
one within a broad Dc band. Note that the parameteri-
zation can accomodate any arbitrarily shaped source
spectrum, although source spectra that contain sharp
peaks of momentum flux will lead to peaks in the ver-
tical profile of forcing at the breaking level that may be
unrealistically narrow if the ideas of saturation are more
realistic than our assumption of shallow dissipation
within a grid interval.

b. Mapping FP 0 into the vertical profile of mean-flow
forcing and eddy diffusion

Instead of computing breaking levels and forcing pro-
files for each member of the phase speed spectrum (as
in Lindzen-type parameterizations), we instead ask
which phase speeds are unstable at each model grid
level. The answer gives the portion of the momentum
flux in the source spectrum that is to be deposited at
each level that leads to a simple measure of the mo-
mentum flux convergence in each altitude interval.

The following procedures describe the numerical de-
tails of the momentum budget. Let zn be the set of model
grid points equally spaced at resolution Dz. At the spec-
ified source level zn 5 z0, we check whether the mag-
nitude of the intrinsic frequency,

|v| 5 k|c 2 u 0|, (20)

is less than the reflection frequency

1/22 2N k
v 5 . (21)r 2 21 2k 1 a

Waves with |v| $ vr would have undergone total in-
ternal reflection somewhere below and are eliminated
from the spectrum. This reflection frequency neglects
acoustic gravity wave properties, but these are minor
corrections (Marks and Eckermann 1995). The term a
5 1/(2H) is an important correction term at the high
intrinsic frequencies where total internal reflection oc-
curs [see Fig. 1 of Marks and Eckermann (1995)]. Next,
we check the remainder of the spectrum for stability
with the condition

2N(z )B (c)0 0Q (c) 5 , 1. (22)0 3k(c 2 u )0

Any waves with Q0 $ 1 are not stable at the source
level. These waves are also removed from the spectrum.
The remaining waves that are propagating and stable
define the input momentum flux spectrum at the source
level z0.

Now working upward in altitude, we test the re-
maining waves at level zn for total internal reflection by
computing

|v| 5 k|c 2 u(zn)|, (23)

and vr with (21) using values at zn. Waves for which
|v| $ vr are reflected and eliminated. Next we compute

r 2N(z )B (c)0 n 0Q (c) 5 . (24)n 3r(z ) k[c 2 u(z )]n n

Breaking waves are those for which Qn $ 1. This portion
of the spectrum was dissipated between levels zn21 and
zn. Summing over any waves (j) that have not been
reflected, that had not previously broken at lower levels,
and for which Qn $ 1 yields

«
X(z ) 5 (F )On21/2 P0 jr(z )Dz jn21/2

for (z 2 Dz) , z (c ) # z (25)n b j n

« (c 2 u(z ))(F )O j n21/2 P0 j
j

D(z ) 5n21/2 2r(z )N (z )Dzn21/2 n21/2

for (z 2 Dz) , z (c ) # z , (26)n b j n

where zn21/2 5 zn 2 Dz/2. These are the mean-flow
forcing and eddy diffusion coefficient estimates due to
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FIG. 2. Maximum intrinsic phase speed that can propagate as a
gravity wave as a function of horizontal wavelength. A scale height
of 7 km and buoyancy frequency of 0.02 s21 have been assumed.

waves that broke between levels zn21 and zn. It is there-
fore appropriate to average these values with those
stored at the previous level, which represented the force
and diffusion at level zn23/2. So we back-substitute:

1
X(z ) 5 [X(z ) 1 X(z )] (27)n21 n23/2 n21/22

1
D(z ) 5 [D(z ) 1 D(z )]. (28)n21 n23/2 n21/22

Note that some source shapes are amenable to ana-
lytical integration over finite phase speed limits. For
these functions, analytical formulas may replace the nu-
merical integrations given here for potential time sav-
ings. We anticipate that the value of a parameterization
that can treat any input spectral shape will override such
computing-time benefits in the long run.

c. Horizontal wavelengths and total internal
reflection

The effects of total internal reflection of waves Dopp-
ler-shifted to high intrinsic frequency have not been
treated in previous parameterization schemes employed
to date. Marks and Eckermann (1995) developed the
criterion for reflection of waves propagating in an at-
mosphere with variable winds, stability, and finite scale
height H. Their criterion, simplified to two-dimensional
wave propagation, is employed in (21). This is the con-
dition used in the linear model with saturation by Al-
exander (1998). In Alexander (1996) and Warner and
McIntyre (1996) a similar condition was used, but the
effects of the finite scale height were neglected so that
a2 ù 0, and the reflection frequency vr was equal to
the buoyancy frequency N in these models. Marks and
Eckermann (1995) describe differences between these
criteria as a function of horizontal wavenumber k. Figure
2 shows the maximum intrinsic phase speed (vr/k) al-

lowed before reflection occurs as a function of hori-
zontal wavelength. Only low intrinsic phase speeds less
than 30 m s21 are allowed for horizontal wavelengths
as short as 10 km. It is these smaller-scale waves ,100
km that are most seriously affected by reflection.

Figures 3, 4, and 5 compare the results of the param-
eterization, with and without the process of total internal
reflection, to the linear model with saturation used by
Alexander (1998). The linear model is similar to Lind-
zen-type parameterizations, but it includes rotation, non-
hydrostatic, and reflection effects. The same spectrum
of waves is applied in both the linear model and the
parameterization. Background winds and stability are
taken from CIRA (COSPAR International Reference At-
mosphere, Fleming et al. 1990) for January at 408N
latitude. The input parameters for these examples are
listed in Table 1 (‘‘broad’’). Figure 3 assumes a single
horizontal wavelength of 10 km and a spectrum of phase
speeds c. Neglecting reflection (dashed line) leads to a
prediction of a large force of ;2500 m s21 day21 near
the mesopause (Fig. 3a). The force at these altitudes is
exactly zero when reflection is included (solid line in
Figs. 3a,c) because all westward-propagating waves
have been reflected at altitudes in the stratosphere below
(Fig. 3b). Figure 3c shows the force in the stratosphere
on an expanded scale. Reflection also limits vertical
propagation of high positive phase speeds and reduces
the force predicted in the upper stratosphere for this
case.

Figure 4 shows the same calculation assuming a 100-
km horizontal wavelength. At this longer horizontal
wavelength, total internal reflection is no longer im-
portant for the range of wind speeds considered here.
The parameterized force (solid lines in Figs. 4a,c) is
similar in magnitude and vertical structure to the linear
model with saturation (dotted lines). The differences in
the mesosphere (Fig. 4a) are mainly attributable to the
difference between the saturation assumption and the
parameterized breaking assumption. Saturation leads to
deposition of more momentum at higher altitudes where
the density is lower. This leads to a higher and larger
peak in the force according to (3). In the stratosphere
(Fig. 4c), the differences between the parameterization
and the linear model are again small.

For even longer wavelength waves, k 5 2p/(1000
km) shown in Fig. 5, breaking occurs at lower altitudes
than for waves with the same source amplitudes but
larger k [Eq. (6)]. Now waves break far below their
critical levels (Fig. 5b) and the differences between the
parameterized dissipation and the saturation condition
are even more apparent in the mesosphere. Note that
breaking levels for all the waves in Figs. 3–5 are very
similar in the parameterization and the linear model (cf.
panels b and d in each). This result shows that the hy-
drostatic approximation and the neglect of rotation in
the determination of the breaking levels have only minor
effects on the results, although models wishing to treat
large-amplitude, long-wavelength gravity waves may



15 DECEMBER 1999 4175A L E X A N D E R A N D D U N K E R T O N

FIG. 3. Forcing, zonal wind, and breaking levels for 10-km horizontal wavelength waves. (a), (c) Profiles
of parameterized gravity wave–driven zonal force neglecting reflection (dashed line), including reflection
(solid), and comparison to a linear model with a saturation condition (dotted); (b) zonal wind profile for this
case (solid) and breaking levels vs phase speed for the parameterization neglecting reflection (both open and
filled circles) and including reflection (filled circles only); (d) same as (b) but for the linear model that includes
nonhydrostatic and rotation effects.

find it necessary to include the effects of rotation and
consider the shear instability mechanism for the deter-
mination of the breaking levels.

Figures 3, 4, and 5 demonstrate that waves of different
horizontal scales have some fundamental differences in
their interactions with the background atmosphere. In
the future, if warranted, nonhydrostatic and rotation ef-
fects could be included at the cost of increased com-
plexity in the calculations. The effects of total internal
reflection will be included here, because the results in
this section show that these can be substantial for hor-
izontal wavelengths less than 50 km or for longer waves
if the background wind speeds are larger than in these
examples.

Figure 6 compares the force predicted by the param-
eterization and the linear model with saturation if the
momentum flux (FS0) was equipartioned between three
horizontal wavelength bands at 10, 100, and 1000 km
using the same January background atmosphere as well
as examples from April and July. Both the parameter-
ization and the linear model include total internal re-
flection. Profiles of mean-flow forcing in Fig. 6 calcu-
lated from the two methods are qualitatively similar, but
the forcing obtained from the parameterization is usually
shifted downward in altitude a bit, as might be expected,
since the forcing due to each spectral component is con-

centrated at the breaking level rather than spread be-
tween the breaking level and higher altitudes. Tests with
a single wavelength of 100 km have also been performed
and can produce reasonable results with a factor of 3
savings in computation time; however, the parameter-
ized forcing can then display more sudden onsets in z
that may be problematic in some models.

In general, when the shear and the range of wind
speeds in the background profile is small, higher phase
speed resolution is required for the source spectrum in-
put to the parameterization than when these are large.
Spectral resolution should therefore be selected with
weak shear profiles in mind. For maximum accuracy
and computation speed, the spectral resolution would
be variable depending on the total range of background
wind velocity in the vertical profile, choosing (a) a wide
range of phase speeds at coarse resolution when the
range of wind speeds in the profile is large (strong shear)
and (b) a narrower range of phase speeds at fine reso-
lution when the range of wind speeds in the profile is
small (weak shear). Courser vertical resolution in a mod-
el allows proportional decreases in the spectral reso-
lution needed in the parameterization. For the examples
shown, Dc 5 0.6 m s21 and Dz 5 1 km. Much of the
vertical structure in Fig. 6 results from the real sensi-
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FIG. 4. Same as Fig. 3 but for waves with 100-km horizontal wavelengths.

FIG. 5. Same as Fig. 3 but for waves with 1000-km horizontal wavelengths.
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TABLE 1. Gravity wave source input parameters.

Source Shape
Amplitude
Bm (m2 s22)

Net flux
FS0 (Pa)

Imput altitude
(km)

Topography
(Fig. 7)

Broad
(Fig. 8)

Convection
(Fig. 9)

Eq. (17)
cw 5 1 m s21

Eq. (17)
cw 5 60 m s21

Eq. (29)
cp 5 25 m s21

1.0

0.4

1.2

0.5*

4 3 1023

4 3 1023

average

3

15

15

*Local flux over mountains. The zonal mean flux is further mul-
tiplied by the fractional coverage (Fig. 7b).

FIG. 6. Parameterization results with the background atmosphere from CIRA zonal means at 408N lat: (a) zonal wind, Jan; (b), (c) Jan
parameterized force (solid line) and the force from the linear model with saturation (dotted line); (d) zonal wind, Apr; (e), (f ) Apr parameterized
force (solid line) and the force from the linear model with saturation (dotted line); (g) zonal wind, Jul; (h), (i) Jul parameterized force (solid
line) and the force from the linear model with saturation (dotted line).

tivity of the parameterization to subtle variations in wind
shear and stability with height.

4. Parameterization results

In this section, we show some simple applications of
the parameterization for illustration.

a. Mountain wave source

To represent topographically generated waves, a nar-
row spectrum peaking at c 5 0 is input to the param-
eterization (Fig. 7a). This spectrum follows the common
wisdom that topographic waves are approximately sta-
tionary, but allows for some nonstationary waves as well
(Nance and Durran 1997; Worthington and Thomas
1998). January zone-mean wind and temperature fields
from CIRA (Fleming et al. 1990) are used to specify
the background atmosphere. For this zonal-mean esti-
mate, the net gravity wave momentum flux FS0 input at
the source level is multiplied by an additional fraction
(Fig. 7b) representing a fractional coverage of topo-
graphic slopes derived from the National Center for At-
mospheric Research 2.58 3 2.58 topography database.
This is used to estimate the fractional area of each lat-
itude band covered by mountains, a factor included in
the intermittency that will now vary with latitude. No
variations in wave amplitudes Bm are included, and only



4178 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 7. An example application of the parameterization for topo-
graphic waves (see also Table 1): (a) mountain wave source mo-
mentum flux vs phase speed; (b) fractional coverage of mountain
slopes vs lat; (c) parameterized zonal-mean force (thick lines) vs
latitude and height. Dashed contours represent westward forcing, sol-
id eastward. Contours are chosen at pseudologarithmic intervals:
60.5, 1, 2, 5, 10, 50 m s21 day21. The thin lines show the background
wind for this January case at 20 m s21 intervals. Shading shows
regions of westward background winds.

FIG. 8. Example application of the parameterization for a broad
nonstationary source spectrum and Jan zonal mean winds (see also
Table 1). (a) Momentum flux spectrum vs phase speed. Note that the
phase speed where the flux changes sign will vary with the zonal
wind u 0 at each latitude. (b) Parameterized zonal mean force as a
function of latitude and height. Dashed contours represent westward
forcing, solid eastward. Contours are chosen at pseudologarithmic
intervals: 60.5, 1, 2, 5, 10, 50 m s21 day21. The zonal winds are the
same as those in Fig. 7c.

zonally propagating waves are considered in this cal-
culation. Table 1 lists the parameter values chosen. A
cross section of the parameterized January zonal-mean
gravity-wave-driven force for the mountain wave source
is shown in Fig. 7c. With these simple assumptions and
the observationally constrained input parameters, the
zonal-mean force predicted is 1–2 m s21 day21 above
the subtropical tropospheric jets, and a peak force of 50
m s21 day21 at 408N appears in the winter mesosphere.
In three-dimensional global models, the parameteriza-
tion should be coupled to more realistic three-dimen-
sional topographic source parameter variations such as
those in Bacmeister (1993) and used to calculate the
wave-driven force on the atmosphere aloft.

b. Nonstationary wave sources

Figure 8b shows the parameterized zonal-mean grav-
ity-wave-driven force using the broad source spectrum
described in Fig. 8a and Table 1. The same January
CIRA background atmosphere is specified (see Fig. 7c).
(Note that the CIRA standard does not include the large-
amplitude QBO variations in the equatorial region. The
shear associated with the QBO will substantially modify
gravity wave interactions with the mean flow at the
equator, so equatorial features in Fig. 8 are not likely
to be very realistic.) In the extratropics, this broad
source generates the drag forces needed in the meso-
sphere (Holton 1982; Fritts 1989) and an accelerative
westward force in the summer stratosphere that may be
important to the stratospheric residual circulation (Al-
exander and Rosenlof 1996). In these regions, gravity
waves may dominate the wave-driven forcing in the
atmosphere. In the winter stratosphere, planetary waves
and topographic gravity waves are likely to dominate
the wave-driven forcing, while the nonstationary waves
that went into Fig. 8 likely play a relatively minor role.
The effects of these nonstationary gravity waves on the
residual circulation in the stratosphere have yet to be
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FIG. 9. Example illustrating equatorial time–height maps of forcing
in the stratosphere: (a) forcing for the broad source in Table 1 and
Fig. 8a with no time variations in the momentum flux; (b) forcing
for the convection source in Table 1 and shown in (c). The source
momentum flux varies in time according to the fractional coverage
of high clouds at the equator (d), but the time-average flux input is
the same as that for (a). The contours plotted in (a) and (b) are 60.1,
0.2, 0.5, 1, 2, 5, 10 m s21 day21. Shading shows regions where the
background zonal winds are westward showing the QBO and semi-
annual oscillation variations in the winds.

examined in global models, but such studies are in pro-
gress.

c. Tropical convectively generated gravity waves

The effects of convective gravity wave sources can
be studied with the parameterization. The nature of con-
vectively generated gravity waves is still poorly con-
strained by observations, but as such details become
available, the parameterization should be a useful tool
for studying their effects aloft. As an illustration, time–
altitude cross sections of gravity-wave-driven zonal-
mean force at the equator are shown in Fig. 9. The

shading shows regions where the background wind is
westward. The winds here were derived from the Upper
Atmosphere Research Satellite program (see Ray et al.
1998). Figure 9a shows the parameterized gravity-wave-
driven force using the broad spectrum in Fig. 8a and
Table 1 input at 15-km altitude. The source spectrum
changes slightly in time as the mean wind changes and
moves the position of zero intrinsic phase speed (u 2
c 5 0) within the spectrum. The force in Fig. 9a is quite
similar to the results shown in Ray et al. (1998) using
the same background atmosphere, and similar gravity
wave source characteristics input to the linear model
described earlier (Alexander 1998).

For Fig. 9b, a convection-based gravity wave source
was instead specified. The source spectrum is plotted in
Fig. 9c for u 5 0 conditions. The central phase speed
will shift with the winds at 15 km. This source spectrum
is loosely based on the results of numerical simulations
(Alexander and Holton 1997) and has the analytical
form (Dunkerton 1997)

ĉ
B (ĉ) 5 B exp(1 2 |ĉ/c |). (29)0 m p1 2cp

The input parameters are summarized in Table 1. The
net flux in the gravity wave spectrum at 15 km is varied
in time according to a fraction of areal coverage of high
clouds in the 3.758S–3.758N latitude band (Fig. 9d) de-
rived from the record of monthly mean 2.58 3 2.58
interpolated outgoing longwave radiation (OLR , 215
W m22). Let xc represent this fraction. The net flux input
at 15 km at each time into the parameterization is

23(4 3 10 Pa)
F (t) 5 x , (30)S0 c txc

where is the time-averaged fraction. The 5-yr av-
t

(x )c

erage flux input is then the same in both Figs. 9a and
9b, the convection source in Fig. 9b is seasonally var-
iable, so the net flux and wave intermittency vary in
time.

Comparing Figs. 9a and 9b, the two results are qual-
itatively very similar. Quasi-biennial and semiannual os-
cillations in forcing appear in both with similar mag-
nitudes. The QBO forcing in particular is not very sen-
sitive to the shape of the spectrum, but only to the total
flux in the spectrum carried by waves with the range of
phase speeds equal to the range of wind speeds (Dunk-
erton 1997). The primary difference in the convection
case is an enhancement in the semiannual variability in
the upper stratosphere caused by the time variations in
xc. These forcing estimates have not yet been tested in
models, so no conclusions can be drawn here about the
effects of the parameterized estimates. The parameter-
ization should be well suited to studying, predicting,
and analyzing the effects of different details of gravity
wave sources that we can learn from future observa-
tions.
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5. Discussion

The parameterized gravity-wave-driven forcing esti-
mates presented here were restricted to single vertical
profiles or zonal means. The parameterization is meant
to apply to three-dimensional global models as well.
This can be accomplished by simple application of the
parameterization as a one-dimensional calculation using
wind and stability profiles at each geographic point in
the model. Studying the interactions between gravity
waves and planetary-scale waves, including tides, will
be a natural extension and can be accomplished by treat-
ing the sum of the mean plus large-scale wave pertur-
bations as the background atmosphere through which
the waves propagate. The appropriateness of such an
approach should be considered carefully, however. The
parameterization relies on linear theory to describe the
wave propagation. By definition, the ‘‘background’’ at-
mosphere is slowly varying in space and time compared
to the scales of the wave propagation and dissipation.
Group velocities of the members of the gravity wave
spectrum can vary widely across the spectrum and will
vary for each member of the spectrum with height. The
underlying assumption in including large-scale waves
in the background is that those larger waves vary slowly
over the interaction time interval with the waves. Eck-
ermann (1997) suggests that this may be a poor as-
sumption in some cases. In the stratosphere, waves tend
to break at altitudes where their group velocities may
be quite slow, so the approximation will be more ques-
tionable there. In the mesosphere, group velocities of
breaking waves tend to be much larger. The parame-
terization assumes that waves propagate only vertically
from their sources in the lower atmosphere. For ray
paths to be truly vertical, fast vertical group propagation
would be required, and wave refraction would have to
be negligible [see Dunkerton (1984) for illustration].
These assumptions could become inappropriate for
gravity waves propagating through larger-scale waves
treated as the background wind (Eckermann and Marks
1996).

Global models will likely continue to improve their
horizontal resolutions in the future. At high resolution,
the application of unique vertical profiles of the force
at each geographic point may become inappropriate, in
part because of the horizontal dispersion of the waves
as they propagate from the troposphere vertically, but
also in part due to nonlinear effects. In nonlinear sim-
ulations that resolve gravity wave breaking (Durran
1995), it has been shown that, although momentum dis-
sipation may be very localized in the horizontal, the
mean-flow response occurs over much larger areas on
very short timescales. Apparently the momentum in the
wave–mean-flow interaction in Durran’s (1995) simu-
lation is transported horizontally by very high-speed
gravity waves and/or infrasound waves away from the
primary wave-breaking region. Zhu and Holton (1987)
studied emission of low-frequency waves through geo-

strophic adjustment in the region of localized forcing,
a process that would also delocalize the mean-flow ef-
fects. It may be necessary in future higher-resolution
GCMs to apply a horizontal smoothing function to the
force to approximate these effects before applying it in
the momentum equation. We may, in fact, have already
reached these limits in the application of spatially vary-
ing topographic gravity wave drag in some higher-res-
olution global models. Klinker and Sardeshmukh (1992)
have shown that initial tendency errors in the European
Centre for Medium-Range Weather Forecasts assimi-
lation are closely tied to the geographic patterns in grav-
ity wave drag.

The parameterization assumes that waves propagate
without dissipation until breaking occurs. This assump-
tion will certainly be violated above the homopause
where molecular diffusion becomes important. To apply
this parameterization above 100-km altitude, some kind
of dissipation should be applied across the parameter-
ized gravity wave spectrum to account for the effects
of molecular diffusion at those altitudes (Pitteway and
Hines 1963).
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