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ABSTRACT: Internal gravity waves (GWs) are ubiquitous in the atmosphere, making significant

contributions to the mesoscale motions. Since the majority of their spectrum is unresolved in global

circulation models, their effects need to be parameterized. In recent decades GWs have been

increasingly studied in high-resolution simulations, which, unlike direct observations, allow us

to explore full spatio-temporal variations of the resolved wave field. In our study we analyze and

refine a traditional method for GW analysis in a high-resolution simulation on a regional domain

around the Drake Passage. We show that GW momentum drag estimates based on the Gaussian

high-pass filter method applied to separate GW perturbations from the background are sensitive

to the choice of a cutoff parameter. The impact of the cutoff parameter is higher for horizontal

fluxes of horizontal momentum, which indicates higher sensitivity for horizontally propagating

waves. Two modified methods, which choose the parameter value from spectral information,

are proposed. The dynamically determined cutoff is mostly higher than the traditional cutoff

values around 500 km, leading to larger GW fluxes and drag, and varies with time and altitude.

The differences between the traditional and the modified methods are especially pronounced during

events with significant drag contributions from horizontal momentum fluxes.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

2



SIGNIFICANCE STATEMENT: In this study, we highlight that the analysis of gravity wave ac-37

tivity from high-resolution datasets is a complex task with a pronounced sensitivity to the method-38

ology, and we propose modified versions of a classical statistical gravity wave detection method39

enhanced by the spectral information. Although no optimal methodology exists to date, we show40

that the modified methods improve the accuracy of the gravity wave activity estimates, especially41

when oblique propagation plays a role.42

1. Introduction43

Internal gravity waves (GWs) manifest themselves in the flow as oscillations supported by44

the buoyancy force within the fluid (Holton 2004). One of their crucial properties is the variety45

of temporal and spatial scales on which they emerge. Horizontal wavelengths of GWs range from46

thousands to a few kilometres (Fritts and Alexander 2003), being increasingly affected by rotation47

at the upper wavelength bound (e.g. inertia-GWs) and by nonhydrostatic effects with dominating48

vertical velocity component at the lower bound. They dominate the mesoscale wave spectrum49

(wavelengths in the order of 10 - 1000 km) in the middle atmosphere (Andrews et al. 1987), but50

they also impact the synoptic (Achatz et al. 2017) and planetary scale circulations (Andrews et al.51

1987) and can also directly influence the surface weather conditions including extreme weather52

events (Damiens et al. 2018). Furthermore, they impact the mesospheric circulation and are53

responsible for the upper mesospheric wind reversal, the cold summer mesopause and warm winter54

stratopause (Dunkerton 1978; Lindzen 1981).55

The fact that GWs exist and exert influence across a wide range of scales presents a challenge56

for numerical climate atmospheric models, as a significant portion of the GW spectrum is smaller57

than the scale of the computational grid. Hence, momentum deposition and other possible effects58

of the unresolved part of the spectrum have to be parameterized. GW parameterization schemes rely59

on various simplifications of the sourcing, propagation and dissipation processes and employ several60

tunable parameters, as reviewed recently in Plougonven et al. (2020). Given the importance of GW61

parameterizations for model circulation and dynamics (Polichtchouk et al. 2018; Van Niekerk et al.62

2018a; Eichinger et al. 2020; Sacha et al. 2021), this brings an undesirable level of uncertainty63

to the simulations.64
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Constraining the tunable parameters is complicated, because this requires general knowledge65

of GW global distribution, wavelengths, frequencies, momentum fluxes, etc. (Alexander et al.66

2010), which cannot be to date derived from global scale (satellite) observations. That said,67

increasing attention is being paid to high-resolution numerical models that are becoming capable68

of simulating the life-cycle of a broad spectrum GWs (Smith et al. 2007; Kruse et al. 2022).69

For deriving momentum flux (MF) and GW drag (GWD) estimates from such complex data sets70

(often in a bounded domain), Reynolds decomposition is usually applied and some type of a GW71

separation method has to be used.72

Many approaches exist to date ranging from theoretical approaches based on various forms of73

balanced-unbalanced flow separation (Mirzaei et al. 2017; Gaßmann 2019) including potential74

vorticity inversion techniques (Viúdez 2012), cosine (Denis et al. 2002), modal (Stephan et al.75

2021, 2022) or Helmholtz (Bühler et al. 2014; Lindborg 2015) decomposition or the Transformed76

Eulerian mean framework (Gupta et al. 2021) or its generalization (Kinoshita and Sato 2013), to77

approaches invoking various forms of spectral methods and transforms (Wright and Gille 2013;78

Preusse et al. 2014; Schoon and Zülicke 2018; Kruse and Smith 2015; Dörnbrack 2021). In our79

study, we apply two methods that have been used in the literature before for GW separation and80

consequent momentum flux evaluation in a limited model domain, that allow easy application and81

straightforward GWD computation, the S3D method (Lehmann et al. 2012) and high-pass filtering82

method of Kruse and Smith (2015). We demonstrate the sensitivity of the resulting GWD estimates83

on the method and propose two modifications of the high-pass filtering method based on underlying84

spectral analysis that can mitigate the uncertainty of GWD estimates connected with the subjective85

choice of the cutoff wavelength in the filter.86

In Section 2 of the paper, we first review the theory of the high-pass filter method for GW sepa-87

ration, the kinetic energy spectrum calculation and S3D method and we described the algorithms88

of the modified methods. In Section 3 the analysed dataset is described together with the method-89

ology for drag estimates. In Section 4, we first show the kinetic energy spectrum of the combined90

data (Section 4a) and the uncertainty of the standard high-pass filter method (Section 4b). The91

resulting drag estimates from different methods are compared in Section 4c. Finally, in Section 4d,92

the distribution of the error among the individual components of GWD is studied. The paper ends93

with discussion and concluding remarks in Section 5.94
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2. Methodology95

a. High-pass Filter Method96

We implement the high-pass filter method introduced in Kruse and Smith (2015) on a Cartesian97

domain with constant 3-km horizontal resolution. The method uses a Gaussian filter, which mod-98

ulates simulated fields of velocity components by convolution with a Gaussian function (Gonzalez99

and Woods 2008).100

In the first step, a low-pass filter is applied to the data to identify the non-mesoscale or GW101

part of the field. The scales of GWs to be filtered out are set by choosing a cutoff parameter102

! corresponding to the width of the Gaussian function in the Fourier/wavenumber space. GW103

perturbations are subsequently obtained as the difference between the original and low-pass filtered104

velocity fields.105

In practice, the fast Fourier transform (FFT) algorithm is used instead of convolution. The Fourier106

coefficients are multiplied by the response function107

Â (: , ;) = e�(:
2+;2) !

2
4⇡2

, (1)

where : and ; are zonal and meridional wavenumbers, respectively, and ! is the cutoff parameter.108

Finally, the inverse FFT algorithm is applied to the product.109

The exponential function in Eq. (1) is, up to a scaling factor, a Gaussian function with the variance110

f
2 = 2⇡2/!2. As 95 % of the filtered waves will have wavenumber smaller than 2f = 2⇡

p
2/!,111

the wavelengths _̃ that are filtered out fulfil112

_̃ <

!p
2
. (2)

After choosing an appropriate value to the parameter !, the perturbations with the wavelengths113

_̃ that are removed by the application of the low-pass response function in Eq. (1) are commonly114

assumed to consist exclusively of GWs.115
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The complete procedure with subtraction of the filtered field from the initial one is equivalent116

to the filtering with the response function117

Â⌘? (: , ;) = 1� e�(:
2+;2) !

2
4⇡2

, (3)

instead of Eq. (1). Therefore, we are effectively applying a high-pass filter method, and, as GWs,118

we consider the waves with wavelengths shorter than !/
p

2.119

The periodization procedures applied before the FFT step will be discussed in Section 2c.120

b. Horizontal Energy Spectrum121

As the width of the spectrum of GWs on a local domain is variable (see Section 4c), we122

aim to modify the high-pass filter method introduced above, so that the cutoff parameter reflects123

the actual range of GW modes. To this end, we study the specific horizontal kinetic energy124

spectrum, which is computed at a given altitude as a sum of energies for individual horizontal125

modes126

⇢
I

: ,;
=

1
2#2

⇣
D̂: ,; D̂

⇤
: ,;

+ Ê: ,; Ê⇤: ,;
⌘
, (4)

where D̂: ,; and Ê: ,; are horizontal Fourier transforms of zonal and meridional velocities and # is127

number of points in both horizontal directions.128

Making explicit the divergent and vortical properties of the flow, the previous formula can be129

alternatively written in the form130

⇢
I

: ,;
=

1
2#2

Ẑ
I

: ,;
( Ẑ I
: ,;
)⇤ + X̂I

: ,;
(X̂I
: ,;
)⇤⇣

2⇡
#�G

⌘2 �
:

2 + ;2
� , (5)

where Ẑ I
: ,;

and X̂I
: ,;

are horizontal Fourier transforms of horizontal vorticity and divergence. The131

first summand in the expression can be viewed as the rotational part of the spectrum and the second132

one as the divergent part.133

The 2D spectrum described by Eq. (4) or (5) can be summed up to obtain a 1D spectrum. The134

exact procedure of the spectrum computation and the derivation of the second formula is described135

in detail in Appendix A.136
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By the theory, we can expect the horizontal kinetic energy spectrum being proportional to  �5/3
137

for GW-dominated mesoscale (Menchaca and Durran 2019) and proportional to  �3 for larger138

scales (Geller and Gong 2010; Vallis 2017; Gage and Nastrom 1986). The latter dependence,139

based on the quasi two-dimensional theory of turbulence at large scales, is related to the enstrophy.140

Such theoretical proportionalities were repeatedly confirmed by observational studies (Nastrom and141

Gage 1985; Lindborg 1999) and from high-resolution simulations (Blažica et al. 2013; Skamarock142

2004).143

c. Periodization Method144

For computation of the horizontal energy spectrum, we used discrete Fourier transform (DFT).145

However, DFT assumes that the data are periodic, which is not true for a local domain. Removal146

of these aperiodicities is essential to get a correct, unbiased spectrum (Bierdel et al. 2012).147

There are different approaches to this problem. The method we implemented for the spectrum148

computation is a detrending method presented by Errico (1985). It is based on subtracting the linear149

trend from each row and column of the data, where the slope is computed using the boundary values150

only. If the data values are denoted by 18, 9 , 8 = 1, . . . ,# , 9 = 1, . . . ," , we can write the slope of a line151

connecting the first and the last element in 9-th column as152

B 9 =
1# , 9 � 11, 9

# �1
. (6)

The values along the line are then modified by a line with the slope B 9 so that the resulting column153

is periodic,154

1
0
8, 9

= 18, 9 � 8B 9 +
1
2
# +1
# �1

�
1# , 9 � 11, 9

�
. (7)

The same procedure is applied also on rows.155

The drawback of this method is that it creates artificial small-scale structures (Denis et al. 2002).156

Hence, we only apply the method to obtain the horizontal kinetic energy spectrum and derived157

spectral characteristics. We do not use it for the high-pass filtering with a fixed cutoff parameter.158

In this case, we only subtract global linear trend in the data (evaluated by fitting a plane to the159

data). The boundary effects are assumed to be small (Kruse and Smith 2015), but we note that160

especially for larger cutoff values, the effect of non-periodicity can extend further in the domain161
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and project to our drag estimates. This effect can be mitigated by a replacement of DFT by discrete162

cosine transform (Denis et al. 2002). In our case the application of the discrete cosine transform163

resulted in negligible differences (see Fig. S1 in the Supplementary Material) with the DFT based164

results, confirming that the boundary effects are small in our study. For consistency with Kruse165

et al. (2022) we base our method on DFT.166

d. Methods for Dynamical Cutoff Selection167

Following the changepoint analysis of Burgess et al. (2013), we propose two modifications of168

the Gaussian high-pass filter method, in which we use horizontal kinetic energy spectra to estimate169

an optimal cutoff value variable with time and altitude. To get an integral information on GWs170

from the spectra, the spectra are smoothed by moving average with the length of 15 hours before171

applying any of the statistics described below.172

1) S������� S���� M�����173

The first modification of the high-pass filter method evaluates the cutoff parameter from the174

slopes in the energy spectrum.175

Based on the characteristic slopes, we can identify three parts of the spectrum - synoptic,176

mesoscale and for the shortest wavelengths, starting from the so-called effective resolution, we177

observe a steep descent of the kinetic energy. The exact value of the effective resolution of a model178

depends on a set of factors (horizontal and vertical resolution, numerical dissipation, filtering, etc.).179

Below this threshold specific GW modes can still be partially resolved, but as we go to smaller180

wavelengths, an increasing part of the modes are unresolved.181

By assuming that GWs dominate the mesoscale part of the spectrum in our domain, we choose the182

cutoff using the wavelength at which the spectrum slope changes from �5/3 (the exact connection183

of the wavelength to the cutoff value is through the Eq. (2)).184

The detection of the change-of-slope wavelength involves some non-trivial technical aspects:185

The algorithm subdivides the range of wavelengths in the logarithmic spectrum plot into two186

sequences, the first sequence well fitted by a line with an arbitrary slope and the second sequence187

well fitted by a line with the slope -5/3. The second sequence is then considered the range of188

GWs. The algorithm constructs the sequences iteratively in a greedy manner, always adding the189
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neighboring wavelength into the sequence into which its neighboring wavelength fits better. The190

error metric used for comparing the quality of the sequences is their line fitting error. The sequences191

are initialized by the wavelength corresponding to the effective resolution, which is assumed to192

lie in the GW range, and by the longest wavelength present, respectively, which is assumed to lie193

outside the GW range. The full algorithm is described in pseudocode in Appendix C.194

This process described above is applied on each of the smoothed spectra, resulting in a cutoff195

length for each time step (apart from the initial and final time steps that are discarded during the196

smoothing).197

Further on, we will refer to the high-pass filter method that uses cutoff specified by this algorithm198

as the spectral slope method.199

2) D��������� D�������� M�����200

According to Saujani and Shepherd (2006), a simple way to distinguish between balanced and201

unbalanced flow exists by comparing the relative magnitudes of divergent and rotational flow. For202

balanced dynamics, the divergent part is much weaker than the rotational motion and vice-versa.203

This motivates us to determine the cut-off based on the intersection of divergent and rotational204

spectra following Burgess et al. (2013), assuming that GWs (although partly also having the205

rotational component) dominate the spectrum, where the divergent part dominates. Detection of206

the wavelength at which the divergent spectrum equals the rotational is not straightforward, as207

there can be multiple intersections of the spectra. The applied algorithm therefore considers also208

distances between individual intersections and chooses a maximal wavelength of a divergence-209

dominated interval such that there is no divergence-dominated wavelength interval for larger210

wavelengths that would be longer than the vorticity-dominated interval for smaller wavelengths.211

To the high-pass filter method using cutoff specified at each time step (again apart from the212

initial and final time steps because of spectrum smoothing) by this algorithm, we will refer as the213

divergence dominated method.214
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e. S3D Method215

For comparison, we also derive GWD estimates using the widely used S3D method for GW216

detection (Lehmann et al. 2012; Stephan et al. 2019; Preusse et al. 2014; Ern et al. 2017; Krisch217

et al. 2017; Strube et al. 2021; Krasauskas et al. 2022).218

In the applied settings, temperature data are analyzed. Separation into background and GWs is219

performed by a FFT high-pass filter retaining all spectral components corresponding to wavelengths220

shorter than 500 km. The whole volume is then divided into overlapping cuboids of 100 km x221

100 km x 11 km (zonal x meridional x vertical direction) with cuboid centres every 0.39°in zonal222

and meridional direction and every 1 km in vertical direction. In the cuboids sinusoidal fits of223

the most and second significant wave component are performed resulting in the 3D wave vector,224

amplitude and phase for both wave components (Lehmann et al. 2012). Fit results where the225

wavelengths exceed 3 times the vertical or 3.5 times the horizontal cuboid size are suppressed226

in the fitting by adding a penalty to the j
2-values used in the fitting and, where still present,227

removed afterwards. According to Ern et al. (2004) GW momentum flux is then determined from228

the wave parameters.229

3. Data and Implementation230

We use data from a hindcast simulation of Weather Research and Forecasting (WRF) Model231

(Skamarock et al. 2019b) on a local domain covering parts of Southern America, Antarctica and232

the south-east of the Atlantic Ocean described in Kruse et al. (2022). The GW filtering is applied on233

the full simulation domain displayed in Fig. 1, described using the simplified Lambert Conformal234

map projection. Following Kruse et al. (2022), we subsequently divide the domain into three GW235

hotspots, see Fig. 1, Southern Andes (SA), Antarctic Peninsula (AP) and South Georgia (SG),236

where we estimate the mountain wave drag (MWD).237

After the initialization at 12 UTC on 8th October 2010, the model was integrated for 11 days with240

the output frequency of 15 minutes. The simulation was guided by 6-hourly operational IFS analyses241

via initial and boundary conditions. The model uses hybrid sigma-pressure vertical coordinate, but242

for the computations, the data (pressure, potential temperature and velocity components fields) were243

first linearly interpolated on equidistant vertical levels of geopotential height with 1 km spacing.244

To make the computation of horizontal derivatives easier, after the filtering, we interpolate the data245
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F��. 1. Horizontal domain with marked subdomains Southern Andes (SA), Antarctic Peninsula (AP) and

South Georgia (SG).

238

239

also horizontally from the simplified Lambert Conformal map projection of the model to a regular246

grid defined by values of latitude and longitude with the same horizontal resolution as the original247

data (the average distance between points along parallels and meridians is set to be 3 km). This248

regridding is performed using the ESMF regridding package in NCAR Command Language (NCL249

2019).250

The scripts and algorithms were implemented partly in Python and partly in NCL. They were251

parallelized using the Python multiprocessing package and the program GNU parallel (Tange et al.252

2011). The diagnostic algorithms are accessible through the link in Procházková (2021).253

Gravity Wave Drag254

As the wind blows against a mountainside, it excites mountain waves (MWs), and it exerts255

the pressure force on the mountain surface. In accordance with the Newton’s third law, this256

gives rise to a drag force acting in the opposite direction on the air, which is called mountain257

drag. The mountain drag is deposited not only locally in the vicinity of the mountain, but is also258

propagated by the MWs in a form of MFs to the free atmosphere, where the mountain wave drag259

(MWD, a subset of GWD) is deposited at the level of their dissipation (Kruse and Smith 2018),260

i.e. resulting in MF divergence. Estimating the drag exerted by GWs higher up from the surface261

is a complex task for which various approximations exist. Here we follow the method used by262

Kruse et al. (2022) and Kruse and Smith (2015) based on spatial averaging across the MW source263
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regions. The hotspot regions follow Kruse et al. (2022) and have been defined to contain as much264

of the wave activity from individual sources as possible, while while minimizing the influence265

of lateral propagation of large-scale waves through the subdomains. The assumption on the area266

of the subdomains is that D0 = 0, where (·) is an average over a 2D domain � and D0 denotes wave267

perturbation, while the synoptic scale variables do not vary considerably over the subdomains.268

Obviously, the choice of the area � can never be optimal, which can introduce another portion269

of uncertainty. Its quantification is however out of the scope of the current manuscript and we270

follow the choice of the subdomains from Kruse and Smith (2015) (the horizontal dimensions271

of the subdomains are approximately 1700 x 1700 km2 for SA, 1800 x 1400 km2 for AP and 700272

x 900 km2 for SG, Fig. 1).273

The resulting MFs form a rank-two tensor, whose divergence represents the MWD vector.274

In spherical coordinates, defined by the radial coordinate A, latitude i and longitude _, MWD275

components are computed as (taking into account the shallow atmosphere approximation implicit276

to the WRF model to substitute the radius A by the radius of Earth A4):277

MWDG = MWDGG +MWDHG +MWDIG , (8a)

MWDGG ⇡ �
A4

�

π
D
02 di

�
_2

_1

, (8b)

MWDHG ⇡ �
A4

�

π
D
0
E
0cosid_

�
i2

i1

� A4
�

∫
D
0
E
0 sinid_di, (8c)

MWDIG ⇡ �
A

2
4

�

1
d̂

mA

∫
d̂D
0
F
0cosid_di, (8d)

MWDH = MWDGH +MWDHH +MWDIH, (8e)

MWDGH ⇡ �
A4

�

π
D
0
E
0di

�
_2

_1

, (8f)

MWDHH ⇡ �
A4

�

π
E
02 cosid_

�
i2

i1

� A4
�

∫
E
02 sinid_di, (8g)

MWDIH ⇡ �
A

2
4

�

1
d̂

mA

∫
d̂E
0
F
0cosid_di, (8h)

where the dashed quantities D0, E0 and F0 are the perturbation components of flow velocity and d̂278

is the area average of the density. The area � bounded by latitudes i1 and i2 and longitudes _1279
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and _2 is given by280

� =
∫

A
2 cosid_di ⇡ A2

4
(_2�_1) (sini1� sini2) . (9)

The complete derivation of analogous formula for Cartesian coordinates is shown in Appendix281

B. The additional terms that appear in the equations for the spherical coordinates (compared to282

the equations in Cartesian coordinates) result from the differentiation of geometric factors such as283

sini.284

For the S3D method, only the vertical drag components are evaluated from temperature ampli-285

tudes using the approach described e.g. in Ern et al. (2017).286

4. Results287

a. Broad Spectrum of GWs288

First, we show the mean spectrum of horizontal kinetic energy for the altitude of 20 km in Fig. 2,289

evaluated for the whole WRF domain. To guide the reader’s eye, the theoretical slopes of -5/3,290

where we expect GWs to dominate the wave field, and -3 are illustrated by dashed curves below291

the spectral line. The spectrum follows approximately the -5/3 slope for horizontal wavelengths292

from approximately 25 km up to about 800 km in an average over the simulation period. By eye,293

the hypothetical upper bound for the GW dominated spectrum given by the spectral slope approach294

is larger than the wavelength of approximately 354 km, corresponding to the cutoff length 500 km295

(denoted in Fig. 2 by vertical line), used in the high-pass filter method by Kruse et al. (2022). The296

range up to which the spectrum follows the slope -5/3 is dependent on the altitude, which will297

be studied in more detail in Section 4c. For example, at the altitude of 40 km, the upper bound298

of the GW dominated spectrum is higher than 1000 km in average (plot of the mean spectrum299

of horizontal kinetic energy for 40 km is shown in the Supplementary Material in Fig. S2).300

The spectrum with its shape also varies in time. To illustrate this, we show the time evolution305

of a local spectral slope between neighbouring wave modes for the altitude of 20 km in Fig. 3306

(a similar plot for 40 km is in the Supplementary Material in Fig. S4). The presented local slopes307

in the figure, evaluated from adjacent data values, were calculated from immediate specific hor-308

izontal energy spectra after a noise reduction by the 15-point Savitzky–Golay filter (Ostertagova309
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F��. 2. Horizontal spectrum of specific horizontal kinetic energy at 20 km. Plot displays the median spectrum

over the time period, the filled region denotes the range between the lower and upper quartile. Vertical line denotes

the wavelength of about 354 km that corresponds to the cutoff 500 km. The dotted lines display the theoretical

slopes -3 and -5/3.

301

302

303

304

and Ostertag 2016). With a suitably chosen colour scale, we can see that the GW dominated part310

of the spectrum can be well distinguished during the whole simulation. The lower bound corre-311

sponding to the effective resolution is especially sharp and stable. However, the exact identification312

of the upper bound is more tricky (the developed algorithm is described in Subsection 4c), because313

at this region, the spectrum is often dominated by isolated peaks that are identifiable by zero slopes314

(yellow colour). Those peaks are often missed by the algorithm and also it cannot be said with315

certainty that those peaks belong to GW modes. This brings an inevitable uncertainty, however316

small, to our MF and MWD estimates presented in Subsections 4c and 4d.317

Next, we show in Fig. 4 the rotational and divergent components corresponding to spectrum of321

horizontal kinetic energy at the altitude of 20 km (Fig. S2 in Supplementary material for 40 km). As322

discussed in Section 2c, we can see the domination of the divergence component in the mesoscale323

part of the spectrum and the prevalence of the rotational component for longer wavelengths. Again,324

note that the median cut-off wavelength determined by the divergence dominated method is much325

larger than the wavelength corresponding to the 500 km cut-off, which is denoted by the grey326

vertical line in the figure.327
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F��. 3. Approximation of local slopes in the horizontal spectrum of specific horizontal kinetic energy at 20 km

(colours). The black lines visualise the time evolution of the effective resolution and of the upper bound for GWs

(described in Section 2d).

318

319

320

F��. 4. Decomposition of horizontal spectrum of specific horizontal kinetic energy at 20 km into divergent

and rotational part. Plot displays the median rotational and divergent part of the spectrum over the time period.

Vertical line denotes the wavelength of about 354 km that corresponds to the cutoff 500 km.

328

329

330

b. Sensitivity of the MWD Estimates to the Cutoff331

Further motivation for a modification of the traditional high-pass filter method used for GW332

separation is its sensitivity to the choice of the cutoff length, which is demonstrated in Fig. 5 for333

the altitude of 20 km (for 40 km, it is shown in the Supplementary Material in Fig. S5). To obtain334

these figures, we computed multiple MWD estimates following Section 3 from the high-pass filtered335

data with constant cutoff, but for multiple cutoff choices ranging between 250 km and 1550 km336
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with a step size of 50 km. From the set of multiple MWD estimates for each time and domain,337

the derivative with respect to the cutoff length was computed using finite differences. For an easier338

interpretation of significance of the sensitivity, the derivatives are scaled by the median of the339

absolute value of the MWD component over the time and cutoff length, i.e. the sensitivity is340

plotted as:341

1�
medC,! ( |MWD|)

�
(I)

dMWD (C, !, I)
d!

. (10)

The high-pass filter method relies on the existence of a clear separation of the mesoscale modes342

from synoptic scale modes, i.e. the existence of a spectral band where the MWD and MF estimates343

do not significantly depend on the cutoff length is assumed. In Figure 5, we show the time evolution344

of the dependence of the zonal and meridional component of the MWD on the cutoff length at the345

altitude of 20 km for the three subdomains. Blue colours indicate that the drag decreases with346

cutoff, whereas red colours mean that it increases. Immediately we see that the desired band, where347

the MWD sensitivity to the cutoff length is near zero (indicated by white colour in the plots) is348

very narrow during some events and its location varies sharply over time.349

For the zonal MWD component, the constant cutoff of 500 km indeed falls into the low sensitivity350

region for the SA and AP subdomains producing unbiased MWD estimates during some periods351

of the simulation. However, at other instants the white band is very narrow and fluctuating over352

a large range of wavelengths (from around 400 km to more than 1000 km).353

As for the SG subdomain, the sensitivity here is generally stronger (in relative terms) than for AP354

and SA and the white band is even more variable over time, which might be related to the fact that355

the SG subdomain is the smallest one, as discussed in Section 5. Note that for SG in the first days356

of the analyzed period the sensitivity of the zonal MWD component shows red regions embedded357

between blue regions around the 800 km cutoff, meaning that the drag is increasing when allowing358

for both longer and shorter wavelengths besides the red region.359

For the meridional MWD component, the estimates show sensitivity similar to the sensitivity360

of the zonal component. Only for the AP domain, the sensitivity is relatively weak and the constant361

cutoff of 500 km is an almost ideal choice except for some intermittent events. However, these362

findings hold only for the studied period and can change especially with a different background363

wind field and its orientation with respect to the topography.364
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The sensitivity of MWD estimates to the cutoff is further dependent on the altitude in question.365

In the Supplementary Material, we show the sensitivity of MWD components at 40 km. Generally366

speaking, for the upper stratospheric altitudes the sensitivity is smaller (presumably due to the367

dominant importance of vertically propagating GWs, as will be discussed further in the text).368

At tropospheric levels, the sensitivity is far stronger, but the hypothesis of the existence of the GW369

dominated part of the specific horizontal kinetic energy spectrum is increasingly invalid.370

Altogether, the results suggest that the MWD estimates from the high-pass filter method may376

contain significant uncertainty due to the sensitivity on the cutoff value and it is generally not377

possible to choose a constant value of the parameter. For this reason, we propose two modifications378

to the method that sets the cutoff value in every time step using the information from the energy379

spectrum analysis.380

c. Comparison of the Methods381

The analysis of the total specific horizontal kinetic energy spectrum (averaged over 15 hours382

to eliminate local noise effects emerging from incomplete wave periods) provided two important383

natural bounds on the simulated GW spectrum. The first bound is the effective resolution, which384

is a limiting wavelength for the fully resolved waves by the model (the black bottom line in Fig. 3;385

Klaver et al. 2020). This bound is estimated as the wavelength at which the values in the horizontal386

spectrum of specific horizontal kinetic energy deviate significantly from a straight line fitted to the387

mesoscale part of the spectrum.388

Fig. 6 shows that the vertical profile of effective resolution follows the variations of vertical391

resolution with height suggesting that vertical resolution of the model can be an important factor392

in our simulation, controlling the effective horizontal resolution. The connection of vertical393

resolution and the horizontal scale of resolved processes was studied e.g. in Skamarock et al.394

(2019a).395

The effective resolution is evaluated from the spectrum for the entire domain and it does not396

necessarily mean that there are no waves with horizontal wavelengths shorter than this threshold.397

Locally, GW modes can be present with horizontal wavelengths smaller than the effective resolution398

that are resolved by the model due to the sufficiently long vertical wavelengths. By applying a low-399

pass filter to cut the shorter modes off, we would lose a part of the GW related information. Hence,400
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a) b)

c) d)

e) f)

F��. 5. Derivative of MWD components with respect to the cutoff for different subdomains: a) MWDG , SA, b)

MWDH , SA, c) MWDG , SG, d) MWDH , SG, e) MWDG , AP, f) MWDH , AP. The colours code the relative MWD

change with respect to the median of the absolute value of MWD computed over time and cutoff length. The two

colours close to white represent the change of the MWD component smaller than 10% of the median if the cutoff

length is increased by 100 km.

371

372

373

374

375

for means of the GW separation the removal of the wavelengths shorter than the effective resolution401

is not beneficial. This is confirmed by visual comparison of the filtered fields with and without402

the application of a low-pass filter (Fig. 7).403

The second bound, which can be derived from the total kinetic energy spectrum is the longest408

wavelength, until which the spectrum of horizontal kinetic energy follows the theoretical shape409
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F��. 6. Average vertical profile of effective resolution (blue line) with its variation (blue area) throughout

the simulation. The red line depicts the average distance between two neighbouring vertical model levels.

389

390

a) b)

F��. 7. Comparison of high-pass filter and a combination of high-pass and low pass filter. a) Perturbation

field of the pressure obtained by high-pass filter method with the cutoff length computed from the slopes

in the horizontal kinetic energy spectrum. b) Perturbation field of the pressure obtained by combination of high-

pass filter and low-pass filter with the cutoff length for the low-pass filter set on the basis of the effective resolution.

404

405

406

407

for the mesoscale spectrum (presumably GW dominated; upper black line in Fig. 3) introduced410

in the spectral slope method presented in Section 2c. An alternative natural bound is the intersection411

of divergent and rotational part from the spectrum decomposition introduced in the second part412
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F��. 8. GW range and effective resolution at 20 km. Example of spectra from nine randomly chosen time

instants. The black vertical line denotes the effective resolution, the orange vertical line denotes the upper bound

of the horizontal wavelengths with dominant GW.

426

427

428

of Section 2c. We argue that choosing a cutoff based on the spectral information is a physically413

optimal approach, although it turns out that determination of this bound brings along a decent level414

of uncertainty in both the spectral slope method and the divergence dominated method.415

The reason why determining the upper bound on the GW part of the spectrum from the slopes416

is complicated can be seen e.g. for the altitude of 20 km in Fig. 8 (or for the altitude of 40 km417

in Fig. S6 in the Supplementary Material). The problem is that the horizontal kinetic energy418

spectra are not smooth in the range of wavelengths for which the bound is sought, but, near the419

upper bound, are dominated by individual modes. Therefore, an application of a simple algorithm420

based on fitting a line to a part of the GW dominated spectrum, which would terminate on the421

first random departure, could result in too small cutoff values. As we cannot a priori rule out422

the possibility that the dominant modes in this uncertain region are connected to GWs (e.g. inertia-423

GWs sourced by the orography in the domain; see Section 5), we have to apply a more advanced424

greedy algorithm, as described in Section 2d.425

The mean vertical profiles and variability of the dynamically estimated cutoff for the analysed429

simulation using both methods are shown in Fig. 9. As for the spectral slope method (Fig. 9a),430

the mean cutoff is largest approximately between 20 km and 40 km, where it exceeds 1000 km.431

The cutoff gets gradually smaller both above in the upper stratosphere and mesosphere and below432

in the lower stratosphere. The mean cutoff is smaller than 500 km only above 60 km and below433
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10 km. This is reflecting the mean zonal wind profile (see Fig. 14 in Kruse et al. (2022)) with434

a tentative explanation that the maximal wavelength of vertically propagating GWs is decreasing435

with the decreasing background winds in the upper stratosphere, numerical damping as cause for436

this effect can be excluded in this WRF configuration. In this lower to middle tropospheric region,437

it is generally not expected that GWs will dominate any part of the horizontal kinetic energy438

spectrum and we do not produce MWD estimates in this region. The time variability of the cutoff439

value at all levels in the stratosphere is large and the standard deviation is of a similar magnitude440

as the mean cutoff.441

The vertical profile of the cutoff value obtained by the divergence dominated method is shown442

in Fig. 9b. Similarly to the spectral slope method, the cutoff values are continuously rising from443

the troposphere. Above the altitude of approximately 15 km, the mean cutoff value remains about444

approximately 1000 km, with less pronounced altitude variability than in the spectral slope method.445

On the other hand, the shaded area in the plot still show high temporal variability. Within the range446

given by the standard deviation, the cutoff values obtained by this method vary mostly between447

750 and 1250 km. The agreement between the two methods further supports the choice of a GW448

separation method with a time varying cutoff.449

A significant difference between the cutoff profiles in Fig. 9 is the decrease of cutoff above the450

altitude of 60 – 65 km for the spectral slope method, that is not present in the plot for divergence451

dominated method. The reason is that the shape of the kinetic energy spectra at these altitudes452

changes so that there is no clear separation into parts with different slopes and the spectral slope453

method is therefore unreliable at the higher levels.454

Next, MWD estimates from the dynamical cutoff methods are compared with the original high-457

pass filter method for a constant value of the cutoff length 500 km, which is used in Kruse et al.458

(2022), and also with the S3D method. In Fig. 10, the zonal and meridional MWD estimates459

from the two methods with variable cutoff and a method with a constant cutoff are compared460

at 20 km for each hotspot (Fig. S7 in the Supplementary Material depicts the estimates at 40 km).461

As suggested by the sensitivity analysis in Fig. 5 and the large variability of the dynamical cutoff462

estimates in time, the difference between the methods depends on time and also on the hotspot463

region (and altitude). For AP, the episodes of larger differences between the MWD estimates are464
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a) b)

F��. 9. Mean vertical profile of the cutoff parameter. The filled region depicts the standard deviation

corresponding to the temporal variability. a) Spectral slopes method. b) Divergence dominated method.

455

456

rather sporadic. For SA and SG the differences have larger magnitude and are more frequent.465

For the meridional MWD component the differences are smaller.466
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a) b)

c) d)

e) f)

F��. 10. Comparison of the improved method and high-pass filter method with constant cutoff at 20 km:

a) MWDG , SA, b) MWDH , SA, c) MWDG , SG, d) MWDH , SG, e) MWDG , AP, f) MWDH , AP. The orange and

green lines visualize the time evolution of MWD computed using the wave perturbation from the methods with

dynamically changing cutoff. The blue lines describe the evolution of MWD using the high-pass filter method

with constant cutoff length 500 km. The filled blue regions represent the possible values of MWD in individual

times for the cutoff range 250 – 1550 km.

467

468

469

470

471

472
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Regarding the S3D method, vertical momentum fluxes that are derived from the S3D temperature473

perturbation are well correlated with the momentum fluxes obtained from perturbation separated474

by the methods with Gaussian filter, even though the values are lower. This is easily understandable475

as the wavelengths from S3D method in our configuration cannot be larger than 500 km and the476

contribution from long waves is therefore missing. However, S3D method encounters difficulties477

when evaluating the resulting drag, because the method is not continuous (different sines can be478

fitted in adjacent levels) and therefore the vertical derivative of momentum fluxes creates noise at479

some timesteps. Up to these noise perturbations, the time evolution of the vertical drag from the480

S3D method is similar to the other methods (not shown), but its magnitude is generally significantly481

lower.482

Statistical differences between the four methods at the altitude of 20 km are summarised in Table 1.483

Given the fact that the results derived from the S3D method contain a few nonphysical outliers and484

that the distributions of MWD are slightly distinct from the normal distribution (especially in the485

fact that they are showing much longer tails), we used the median and interquartile range (IQR)486

instead of the mean and the variance for the comparison in order to obtain more robust statistical487

description.488

The median drag component values range from -0.39 to 0.00 for the high-pass filter methodologies489

and from -0.08 to 0.06 for the S3D method, with the IQR larger than the median, signifying high490

variability and intermittency seen already in Fig. 10. Comparing the individual methods, we491

can generally see that the median and IQR differences between the methods are smaller between492

the dynamical cutoff methods than between each of them and the constant cut-off method. The493

pronounced differences between IQRs of MWD components (being generally smaller for the494

method with constant cutoff than for the spectral based) mean that for individual events the495

difference of actual drag estimates can be more than 100 % larger than the median difference496

suggests.497

Similar statistics are shown in Table 2 for the altitude of 40 km. Here the median MWD estimates498

for all methods and regions are larger than and hence IQR smaller than at 20 km in relative terms.499

The difference in median MWD values between the methods is around 10 % of the MWD median500

value and similarly for the IQR is estimates. The drag estimated by the constant cutoff methodology501
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MWDG MWDGG MWDHG MWDIG

Median IQR Median IQR Median IQR Median IQR

SA -0.26 0.49 -0.01 0.07 -0.01 0.06 -0.23 0.50

Constant cutoff AP -0.47 1.16 -0.03 0.07 -0.04 0.10 -0.39 1.00

SG -0.09 0.40 -0.01 0.13 0.00 0.10 -0.09 0.43

SA -0.22 0.63 0.00 0.17 0.00 0.14 -0.24 0.60

Spectral slopes AP -0.47 1.13 -0.05 0.15 -0.07 0.18 -0.36 0.95

SG -0.20 0.69 -0.09 0.30 0.00 0.38 -0.12 0.71

SA -0.27 0.60 0.00 0.17 -0.01 0.12 -0.28 0.61

Divergence dominated AP -0.58 1.49 -0.09 0.21 -0.03 0.12 -0.37 1.08

SG -0.31 0.87 -0.16 0.35 -0.02 0.52 -0.15 0.80

SA - - - - - - -0.06 0.74

S3D AP - - - - - - -0.08 0.35

SG - - - - - - 0.06 0.36

T���� 1. Medians and interquartile ranges (IQR) for zonal MWD and its components using different methods

at the altitude 20 km. Values are given in m s�1day�1.

513

514

is generally smaller than for the two variable cutoff methods for all regions and components, but502

its vertical component is still much stronger than from the S3D method.503

A notable aspect of the results for both altitudes is that the differences between high-pass filter504

methods in median MWDGG and MWDHG estimates are of comparable magnitude with the differences505

in MWDIG despite the median MWDIG drag being stronger by an order of magnitude. This means506

that the relative uncertainty in these MWD components connected with horizontal flux divergences507

is much bigger.508

To sum up, there are large differences between MWD estimates from S3D and high-pas filter509

methods and although the assumption of a constant cutoff does not result in pronounced systematic510

biases of the zonal MWD or its components, the estimates from the dynamic methods can lead at511

individual events to differences larger than the order of magnitude of the median MWD values.512

When we focus on individual events at 20 km, one of the most pronounced differences between517

the methods can be seen on 12th October for the zonal MWD component in SA (Fig. 10a).518

The MWDG estimate from the constant cutoff method was small but negative, whereas the spectral519

slope method (and with small time-shift also the divergent dominated method) estimated strong520

acceleration up to 2 m s�1day�1. This event is reflected also in differences of the meridional MWD521

in SA (Fig. 10b), even though the magnitude of the difference is not as pronounced as for the zonal522

component.523

25



MWDG MWDGG MWDHG MWDIG

Median IQR Median IQR Median IQR Median IQR

SA -15.8 20.8 -0.6 1.1 0.5 1.4 -15.5 23.5

Constant cutoff AP -11.6 22.1 -1.0 2.0 -0.3 0.8 -10.2 19.5

SG -5.3 12.3 -0.4 2.7 0.4 1.4 -5.8 11.1

SA -16.2 20.5 -0.9 1.9 0.4 1.3 -15.6 21.2

Spectral slopes AP -13.0 23.2 -1.3 3.1 -0.3 1.0 -9.7 18.9

SG -6.2 13.8 -0.7 4.6 0.4 2.0 -6.3 11.7

SA -16.4 20.6 -0.9 1.9 0.7 1.6 -15.9 24.3

Divergence dominated AP -12.9 23.8 -1.5 3.0 -0.4 1.4 -10.2 20.5

SG -6.3 13.8 -0.7 4.8 0.6 2.5 -6.4 12.0

SA - - - - - - -12.9 23.8

S3D AP - - - - - - -8.4 13.9

SG - - - - - - -3.4 17.7

T���� 2. Medians and interquartile ranges (IQR) for zonal MWD and its components using different methods

at the altitude 40 km. Values are given in m s�1day�1.

515

516

For the SG subdomain (Figures 10c and 10d), a similar pronounced difference occurs slightly524

later, around 12th October, 20:00. A tentative hypothesis mentioned already in the previous section,525

is the horizontal propagation of waves with wavelengths larger than the wavelengths corresponding526

to the chosen constant cutoff value (probably downstream propagating inertia-GWs), which would527

not be captured by the method with constant cutoff in both subdomains. The fact that in the528

divergence dominated method the values are also not so high in this time period supports this529

hypothesis, as this method might also be able to capture inertia-GWs only to some extent because530

of their contribution to the rotational component. For the AP subdomain around 12th October, there531

are also visible differences between the estimates of both MWDG and MWDH, although smaller than532

for the other two subdomains due to the smaller sensitivity of the MWD around this date in AP.533

d. Impact of GWs with Larger Horizontal Wavelengths534

In this subsection, we study the sensitivity of individual parts contributing to the zonal MWD535

component, i.e. the zonal divergence of a zonal flux of zonal momentum (MWDGG), meridional536

divergence of a meridional flux of zonal momentum (MWDHG) and vertical divergence of a vertical537

flux of zonal momentum (MWDIG).538

The sensitivity of those contributions for each hotspot is shown in Fig. 11. Generally, for all539

subdomains, the dependence is much stronger for the parts with horizontal divergence MWDGG and540
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MWDHG than for MWDIG . Because the sensitivity expresses the fact that the choice of the cutoff541

length determines the accepted portion of GW modes, this means that the horizontal flux com-542

ponents are more exclusively connected with GW modes with longer horizontal wavelengths than543

the vertical flux components, as expected from linear theory and observed by aircraft (Smith and544

Kruse 2017) - the horizontal wave momentum flux components compared to the vertical fluxes are545

more exclusively connected with GW modes with longer horizontal wavelengths that are increas-546

ingly affected by rotation (Teixeira 2014). Another important aspect is that the sensitivity of the547

horizontal flux contributions has often an opposite sign, which means that the large sensitivities548

of those two components partially compensate and do not fully project to the net MWDG .549

The sensitivities are reflected in differences of MWDGG+ MWDHG and MWDIG estimates between550

the constant and dynamically determined cutoff methodologies (Fig. 12 for the altitude of 20 km).551

For the component MWDIG , all the compared methods produce very similar estimates, except552

for the period around 11th and 12th October, when the determined cutoff is exceptionally large553

(up to 2000 km for spectral slope mathod and 1500 km for divergence dominated method).554

The differences in the horizontal components are more pronounced during the whole simulation.555

Both the methods with the dynamically set cutoff generally lead to substantially higher magnitudes556

of the components MWDGG and MWDHG . For all hotspots, we can find large differences on 12th
557

October, but for each hotspot individually there are more events with pronounced differences.558

For example, for SA and AP we can see for the horizontal components large differences between559

the spectral slope method and the constant cutoff method between 17th and 19th October, but with560

only small differences in MWDIG . The fact that the sensitivity is, for some events, higher for561

the horizontal components even in the absolute numbers, is noticeable from the shaded regions562

in Fig 12.563

The different sensitivity to the methodology of the MWDGG , MWDHG and the MWDIG zonal drag564

components is confirmed and quantified by the correlations between the time series of the MWDG565

component estimates using the methods with dynamically changing cutoff and the method with566

constant cutoff. The Pearson correlation coefficient is for MWDIG for all subdomains and tested567

altitudes close to one (third column in Tab. 3), whereas for the components MWDGG and MWDHG ,568

the values are significantly lower (first two columns in Tab. 3).569
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MWDGG MWDHG MWDIG

SA 0.76 0.21 0.88

Spectral slopes AP 0.73 0.29 0.96

SG 0.52 0.68 0.91

SA 0.69 0.51 0.90

Divergence dominated AP 0.64 0.59 0.97

SG 0.36 0.51 0.81

T���� 3. Pearson correlation coefficient between the methods with constant and dynamically changing cutoff

for the components of zonal drag MWDG the altitude 20 km.

570

571

Regarding the sensitivity and differences between components of the meridional drag MWDH,572

the results are almost identical as for the zonal MWD components with sensitivity of the horizontal573

divergence parts being stronger and leading to larger differences in corresponding meridional574

MWD components (Figs. S10 and S12 in the Supplementary Material) Also, similar results can be575

derived for the level of 40 km (Figs. S8 and S9 for the zonal component and Figs. S11 and S13 for576

the meridional component).577
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a) b) c)

d) e) f)

g) h) i)

F��. 11. Derivative of MWDG components with respect to the cutoff, rescaled by the median, at the altitude

of 20 km for different subdomains: a) MWDGG , SA, b) MWDHG , SA, c) MWDIG , SA, d) MWDGG , SG, e) MWDHG ,

SG, f) MWDIG , SG, g) MWDGG , AP, h) MWDHG , AP, i) MWDIG , AP. The colours code the relative change

of MWD components with respect to the median of the absolute value of MWD components computed over time

and cutoff length. The two colours close to white represent the change of the MWD component smaller than

10% of the median if the cutoff length is increased by 100 km.
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a) b)

c) d)

e) f)

F��. 12. Comparison of the improved method and high-pass filter method with constant cutoff at 20 km

for horizontal and vertical part of MWDG and different subdomains: a) MWD⌘G=MWDGG+MWDHG , SA, b)

MWDIG , SA, c) MWD⌘G , SG, d) MWDIG , e) MWD⌘G , AP, f) MWDIG , AP. The orange lines visualize the time

evolution of MWD components computed using the wave perturbation from the improved method. The blue

lines describe the evolution of MWD components using the high-pass filter method with constant cutoff length

500 km. The filled blue regions represent the possible values of MWD components in individual times for the

cutoff range 250 – 1550 km.
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5. Discussion and Conclusions591

Due to their simplicity, high-pass filtering methods based on Fourier (Kruse and Smith 2015;592

Gisinger et al. 2017) or cosine (Van Niekerk et al. 2018b) transforms are widely used in atmospheric593

physics to identify GW perturbations in high-resolution simulation data. The uncertainty of the594

GWD estimates connected with the a priori choice of the cutoff parameter used in the methods has595

nevertheless not been studied to date. In the present study, we address this problem to show that it596

is not possible to choose a universal constant cutoff parameter.597

When studying the dependence of the zonal and meridional drag component MWDG and MWDH598

estimates on the cutoff length, the results are notably sensitive to the choice of the cutoff for the599

whole range of admissible cutoffs. However, when considering individual parts of the drag,600

the studied quantities can be divided into two groups - those including vertical velocity (i.e.601

vertical fluxes), and purely horizontal terms. The sensitivity of terms involving vertical velocity602

is generally lower than the sensitivity of terms without it. In Kruse and Smith (2015), such kind603

of behaviour is hypothesized to be caused by the shape of the vertical velocity spectrum. Also,604

these results support the hypothesis that the sensitivity of the high-pass filter method is caused605

mainly by the horizontally propagating GWs with large horizontal wavelengths, which contribute606

strongly to the horizontal drag components, modifying the net value of the drag.607

The sensitivity of the method on the cutoff length motivates modifying methods for a variable608

cutoff parameter. The horizontal energy spectra were analysed to estimate the optimal cutoff value.609

In general, the spectral analysis indicates that for the studied region and time the traditionally used610

cutoff is too small. The cutoff is dependent also on the altitude, hence we estimate it at each611

time step and altitude separately. This modification causes a decent slowdown of the methods but612

on the other hand, it arguably reduces the uncertainty of the traditional high-pass filter method613

drag estimates. Our comparisons show that in some cases the difference between MWD estimates614

of the constant and dynamically set-up cutoff methods can be of the same order of magnitude as615

the estimates.616

Compared to Kruse et al. (2022), inertia-GWs (Dunkerton 1984) and even internal Rossby-GWs617

(Teixeira and Grisogono 2008) sourced by the orography in the domain may be increasingly sampled618

as we allow for larger cut-off values. However, also these waves with larger horizontal wavelength619

are not fully represented in the current generation numerical weather prediction and climate models620
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due to the coarse vertical resolution (Skamarock et al. 2019a) and hence we incorporate them to621

our MWD estimates.622

There are several aspects that contaminate the accuracy of the modified methods as well. The most623

pressing drawback of the methods with dynamic cutoff is the uncertainty emerging during the cutoff624

specification. As already mentioned, the part of the horizontal kinetic energy spectrum between625

GWs and synoptic scale motions is dominated by individual modes that cannot be easily attributed626

as GWs/nonGWs but might be rather connected to e.g. inertia-GWs or Rossby-GWs. Also,627

the determination of the critical point is performed in a logarithmic plot. Hence, the effect628

of a small error of specification in the spectrum can result in relative large error in the cutoff length.629

This has negative impact on the accuracy of the MWD estimates. However, note that for decent630

detection algorithms the error from using a constant cutoff shall be always higher.631

Another issue is that the proposed modified methods use larger cutoff lengths. Therefore, one632

should pay attention to the choice of subdomains at which the quantities are evaluated. First,633

the subdomain size should be large enough, so that the present waves can be averaged over634

the subdomain. Otherwise, the assumptions of the technique applied for evaluation of MWDs and635

MFs might not be satisfied and the results might be affected by the presence of wave perturbations636

whose average over the subdomain is not zero. This can be the case for the smallest hotspot,637

SG, during events with large cutoffs. Nevertheless, the comparison of the modified and constant638

cutoff high-pass filter methods did not produce qualitatively different results between SG and other639

hotspots, which are large enough not to be affected. Second, in the applied filtering procedures,640

the use of a larger cutoff implies that artificial perturbations penetrate farther away from the domain641

boundaries (for a detailed discussion, see Kruse and Smith (2015)). The subdomains thus need642

to be distant enough from the outer boundary. Otherwise, the use of the cosine transform instead643

of the Fourier transform or the application of another periodization method that does not generate644

small-scale oscillation is advisable.645

Although we analyzed only a regional simulation with a limited time-span, it is reasonable646

to expect that the cutoff sensitivity of the GW momentum flux and drag estimates is a robust647

feature, which will be pronounced particularly in the presence of horizontally propagating GWs.648

Even though this effect might cancel out climatologically, in short-term studies, this can cause649

large uncertainties of the GW momentum flux and drag estimates.650
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The further improvement of the methods (especially precision of the cutoff specification) is object651

of further research. Alternatively, the filtering can be performed in the internal frequency domain652

with drag components evaluated by suitable time averaging of the equations of motion. Also, we653

plan to compare the MWD estimates with other methodologies that have not been used to estimate654

resolved GWD from simulations to date. Nevertheless, we argue that the dynamic cutoff methods655

proposed here based on the underlying spectral analysis presents a step forward in providing more656

accurate estimates of MWD from high-resolution model simulations.657
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APPENDIX A674

Specific Horizontal Kinetic Energy Computation675

Horizontal kinetic energy at an altitude I with a unitary density is given by676

⇢
I =

1
2

π π ⇣
D

2(G, H, I) + E2(G, H, I)
⌘
dG dH

⇡1
2

#�1’
8=0

#�1’
9=0

⇣
D

2
8, 9
+ E2

8, 9

⌘
(�G)2

,

(A1)

where D8, 9 = D(G8, H 9 ) and E8, 9 = E(G8, H 9 ) are the horizontal velocity components at individual grid677

points, # denotes number of grid point in each direction and �G is the horizontal distance between678

grid points for both G and H directions.679
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To evaluate the spectrum, it is convenient to describe the energy in the Fourier space. We use680

the definition of the two-dimensional discrete Fourier transform (DFT)681

0̂: ,; =
#�1’
==0

#�1’
<=0

0=,<e�2⇡i =:
# e�2⇡i <;

# , : , ; = 0, . . . ,# �1, (A2)

with its inverse682

0<,= =
1
#

2

#�1’
:=0

#�1’
;=0

0̂: ,;e2⇡i =:
# e2⇡i <;

# , <,= = 0, . . . ,# �1. (A3)

By the Parseval theorem for two-dimensional DFT given by equation (A2) (Sundararajan 2001),683

it holds684

#�1’
8=0

#�1’
9=0

⇣
D

2
8, 9
+ E2

8, 9

⌘
=

1
#

2

#�1’
:=0

#�1’
;=0

⇣
D̂: ,; D̂

⇤
: ,;

+ Ê: ,; Ê⇤: ,;
⌘

(A4)

with D̂: ,; and Ê: ,; obtained by the DFT of the velocity components. The symbol ⇤ denotes685

the complex conjugate. The latter expression can already be used to compute specific horizontal686

kinetic energy for individual wave numbers : , ; = 0, . . . ,# �1 as687

⇢
I

: ,;
=

1
2#2

⇣
D̂: ,; D̂

⇤
: ,;

+ Ê: ,; Ê⇤: ,;
⌘
. (A5)

This equality can be also rewritten to use the horizontal Fourier transform of the horizontal688

divergence X and the horizontal vorticity Z . As these quantities are defined as a sum of derivatives689

of velocity components, their Fourier transform can be evaluated from algebraic expressions690

Ẑ
I

: ,;
=

2⇡i
#�G

�
:Ê: ,; � ;D̂: ,;

�
, (A6)

691

X̂
I

: ,;
=

2⇡i
#�G

�
:D̂: ,; + ;Ê: ,;

�
. (A7)

These equations imply that692

Ẑ
I

: ,;
( Ẑ I
: ,;
)⇤ + X̂I

: ,;
(X̂I
: ,;
)⇤ =

✓
2⇡
#�G

◆2 ⇣
:

2 + ;2
⌘ ⇣
D̂: ,; D̂

⇤
: ,;

+ Ê: ,; Ê⇤: ,;
⌘
, (A8)
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which means, that Eq. (A5) can be replaced by equation693

⇢
I

: ,;
=

1
2#2

Ẑ
I

: ,;
( Ẑ I
: ,;
)⇤ + X̂I

: ,;
(X̂I
: ,;
)⇤⇣

2⇡
#�G

⌘2 �
:

2 + ;2
� (A9)

for : , ; = 0, . . . ,# �1, that can be simply decomposed into divergent and rotational part.694

To obtain a 1D spectrum (either from Eq. (A5), or for the divergent and rotational part from695

Eq. (A9)), we denote696

 
2 ⌘

✓
2⇡
#�G

◆2 ⇣
:

2 + ;2
⌘

(A10)

the square of the size of horizontal wave vector corresponding to the horizontal wavelength697

_ = 2⇡/ . As we need the spectrum with respect to the horizontal wavelength, we sum up698

the values ⇢I
: ,;

of specific energy with similar values of  (Blažica et al. 2013; Sun et al. 2017).699

More precisely, we consider the sequence of horizontal wavenumbers700

 = =
2⇡
#�G

=, = = 1,2, . . . ,

#

2

�
�1 (A11)

with the upper bound corresponding to the Nyquist frequency. We further denote701

� =
2⇡
#�G

(A12)

the difference between two consecutive wavenumbers of this sequence. The specific horizontal702

kinetic energy spectrum is then computed by Eq.703

⇢
I ( =) =

’
| (: ,;) |� 2�=

⇢
I

: ,;
, (A13)

where �= = ( =�� /2, = +� /2) is an interval around  =. The energy ⇢I ( =) is not the radial704

part of the 2D spectrum (in this case, the sum in the last equality would contain a factor  ), but705

rather an average of the energy over wavenumbers near  =.706

APPENDIX B707

Gravity Wave Drag in Cartesian Coordinates708
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We start by considering compressible inviscid flow on a rotating sphere. Using the standard709

scale-analysis argumentation (Cushman-Roisin and Beckers 2011), it is possible to write governing710

equation for the horizontal velocity components in the corotating coordinate system in the form711

mCD +DmGD + EmHD +FmID = �
1
d

mG ? + 5 E (B1a)

mCE +DmGE + EmHE +FmIE = �
1
d

mH ?� 5 D, (B1b)

where D, E and F are zonal, meridional and vertical wind components, ? is the pressure and 5 is712

the Coriolis parameter.713

We apply a linear perturbation method, assuming that the velocity components can be decom-714

posed into a slowly varying mean flow and a small perturbation corresponding to the wave motion,715

716

D = hDi +D0, (B2a)

E = hEi + E0, (B2b)

F = F0, (B2c)

where the mean vertical velocity component is taken zero. We further assume that the density717

is a function of altitude only. In computations, this is achieved by taking integral mean value718

of density d̂(I) over respective levels.719

Next, we demonstrate the derivation for zonal momentum equation (B1a) only, the steps for the720

meridional component are analogous. With use of the continuity equation721

mC d + mG (dD) + mH (dE) + mI (dF) = 0, (B3)

it is possible to pass from (B1a) to the equation in the flux form722

mC (dD) + mG (dD2) + mH (dDE) + mI (dDF) = �mG ? + d 5 E. (B4)
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Substituting the decomposition (B2) and the assumption on density, we get723

mC (hDi +D0) + mG
⇣
(hDi +D0)2

⌘
+mH ((hDi +D0) (hEi + E0))

+1
d̂

mI ( d̂ (hDi +D0)F0)

= �1
d̂

mG ? + 5 (hEi + E0) .

(B5)

At this stage, we average (B5) over area � of the selected horizontal domain, which will be denoted724

by line over the quantities.725

With the assumption that the perturbations of velocity components have zero average over726

the domain at every altitude and that the velocity field is such that the interchange of derivative and727

integral is possible, the first term is averaged to728

mC (hDi +D0) = mC hDi. (B6)

Using the fundamental theorem of calculus, the averages of the second and the third term in (B5)729

are730

mG

⇣
(hDi +D0)2

⌘
=

1
�

π
(hDi +D0)2 dH

�
G2

G1

, (B7)

731

mH ((hDi +D0) (hEi + E0)) =
1
�

π
(hDi +D0) (hEi + E0) dG

�
H2

H1

. (B8)

For the last integral on the left-hand side of (B5), we have732

1
d̂

mI ( d̂ (hDi +D0)F0) =
1
�

1
d̂

mI

∫
d̂ (hDi +D0)F0dG dH. (B9)

If we further consider the average of h·i (·)0 over faces to be zero, the previous three averaged733

terms can be thus simplified to734

mG

⇣
(hDi +D0)2

⌘
=

1
�

π ⇣
hDi2 + (D0)2

⌘
dH

�
G2

G1

, (B10)

735

mH ((hDi +D0) (hEi + E0)) =
1
�

π
(hDi hEi +D0E0) dG

�
H2

H1

, (B11)
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1
d̂

mI ( d̂ (hDi +D0)F0) =
1
�

1
d̂

mI

∫
d̂D
0
F
0dG dH. (B12)

To deal with the right-hand size of equation (B5), we write the velocity as a sum of velocities736

of geostrophic and ageostrophic flow, D = D6 + D0, E = E6 + E0. Geostrophic flow is an idealized737

stationary flow described by the balance of pressure and Coriolis force, considering advective terms738

to be negligible. From equations (B1), we have739

D6 = �
mH ?

d 5

, E6 =
mG ?

d 5

. (B13)

Therefore, averaged right-hand side of equation (B5) can be written as740

�1
d̂

mG ? + 5 (hEi + E0) = � 5 E6 + 5 E = 5 E0 . (B14)

Altogether, the averaged equation (B5) has the form741

mC hDi =�
1
�
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hDi2 + (D0)2

⌘
dH

�
G2

G1

� 1
�
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�
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� 1
�

1
d̂
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d̂D
0
F
0dG dH + 5 E0 .

(B15)

The terms on the right-hand side can be divided into terms corresponding to the wave motion742

and terms corresponding to motions on larger scale. In particular, it is possible to identify three743

terms that add up to the zonal component of MWD,744

MWDGG = �
1
�

π
(D0)2 dH

�
G2

G1

, (B16a)

MWDHG = �
1
�

π
D
0
E
0dG

�
H2

H1

, (B16b)

MWDIG = �
1
�

1
d̂

mI

∫
d̂D
0
F
0dG dH. (B16c)
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The quantity MWDGG is zonal derivative of zonal flux of zonal wave momentum, MWDHG is745

meridional derivative of meridional flux of zonal wave momentum and MWDIG is vertical derivative746

of vertical flux of zonal wave momentum.747

Analogously, for the meridional velocity component, it is possible to get equation748

mC hEi =�
1
�

π
(hDi hEi +D0E0) dH

�
G2

G1

� 1
�

π ⇣
hEi2 + (E0)2

⌘
dG

�
H2

H1

� 1
�

1
d̂

mI

∫
d̂E
0
F
0dG dH� 5 D0 .

(B17)

We get terms of the meridional component of MWD,749

MWDGH = �
1
�

π
D
0
E
0dH

�
G2

G1

, (B18a)

MWDHH = �
1
�

π
(E0)2 dG

�
H2

H1

, (B18b)

MWDIH = �
1
�

1
d̂

mI

∫
d̂E
0
F
0dG dH. (B18c)

APPENDIX C750

Pseudocode for Cutoff Specification in Spectral Slope Method751

Functions:752

adjacent left(point) ! returns the point in the log spectrum to the left of the given point753

adjacent right(point) ! returns the point in the log spectrum to the right of the given point754

fit line(set of points) ! returns the line fit error755

fit line slope(set of points, slope) ! returns the line fit error with the given slope756

algorithm(spectrum plot) ! maximal wavelength considered as GWs:757

_1, ⇢1  the leftmost point in plot758

_#, ⇢#  the rightmost point in plot759

setL = {[_1, ⇢1]}760

setR = {[_#, ⇢#]}761
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_1, ⇢1  adjacent right([_1, ⇢1])762

_#, ⇢#  adjacent left([_#, ⇢#])763

while (setL [ setR < all points)764

fit errL = fit line(setL [ {[_#, ⇢#]})765

fit errR = fit line slope(setR [766

{[_', ⇢']}, -5/3)767

if (fit errL < fit errR):768

setL  setL [ {[_!, ⇢!]}769

_!, ⇢!  adjacent right([_!, ⇢!])770

else771

setR  setR [ [_', ⇢']772

_', ⇢'  adjacent left([_', ⇢'])773

return max(setR)774
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Blažica, V., N. Žagar, B. Strajnar, and J. Cedilnik, 2013: Rotational and divergent kinetic energy787

in the mesoscale model ALADIN. Tellus A: Dynamic Meteorology and Oceanography, 65 (1),788

18 918.789

Bühler, O., J. Callies, and R. Ferrari, 2014: Wave–vortex decomposition of one-dimensional790

ship-track data. Journal of Fluid Mechanics, 756, 1007–1026.791

Burgess, B. H., A. R. Erler, and T. G. Shepherd, 2013: The troposphere-to-stratosphere transition792

in kinetic energy spectra and nonlinear spectral fluxes as seen in ecmwf analyses. Journal of the793

atmospheric sciences, 70 (2), 669–687.794

Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to geophysical fluid dynamics: physi-795

cal and numerical aspects. Academic press.796

Damiens, F., F. Lott, C. Millet, and R. Plougonven, 2018: An adiabatic foehn mechanism. Quarterly797

Journal of the Royal Meteorological Society, 144 (714), 1369–1381.798
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Mirzaei, M., A. R. Mohebalhojeh, C. Zülicke, and R. Plougonven, 2017: On the quantification871

of imbalance and inertia–gravity waves generated in numerical simulations of moist baroclinic872

waves using the WRF Model. Journal of the Atmospheric Sciences, 74 (12), 4241–4263.873

Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind874

and temperature observed by commercial aircraft. Journal of the atmospheric sciences, 42 (9),875

950–960.876

NCL, 2019: The NCAR Command Language (Version 6.6.2) [Software]. Boulder, Colorado:877

UCAR/NCAR/CISL/TDD, http://dx.doi.org/10.5065/D6WD3XH5.878

Ostertagova, E., and O. Ostertag, 2016: Methodology and application of Savitzky-Golay moving879

average polynomial smoother. Global J. Pure Appl. Math, 12, 3201–3210.880

45
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