
NOTES ON OLA INVERSION

JAVORNIK

The OLA inversions are based on the Multichannel Three-Dimensional SOLA Inversions
of [Jackiewicz et al., 2012]. These notes begin with the simplest form of inversion, which
is two-dimensional. Three-dimensional inversions follow, and finally, the full 3D inver-
sion with multiple scatterers. Scatterers can be horizontal and vertical flow velocities, for
example.

0.1. Notation. M measurements, each denoted by a or c.
α and β are scatterers or perturbations to a wave field, such as flow velocities.
Kα
a (r, z) = effect of scatterer α on measurement, a.

qα(r, z) = 3D distribution of scatterer, α.
x = (r, z) = (x, y, z).
N = Number of horizontal positions, r.
Our Fourier transform is

(1) f(k) =
(

1
2π

)2∑
r
f(r)e−ikr

Our inverse transform is

(2) f(r) =
(

2π
N

)2∑
ki

f(ki)eikir

Assume dx = 1, which means the grid spacing in real space is equal to one.

(3) hk =
2π
N

1. 2D Inversions

Two-dimensional inversions are the first implementation:
• drop z-dependence; only 2D kernels(x,y)
• only one scatterer, α = 1
• K, Kernel data
• Noise covariance, matrix Λ, is the identity matrix
• τ , map data
• σh, the horizontal full-width at half-maximum of the target function.
• target function T .

At each wavenumber, k, the inversion finds a single scalar.

Date: September 17, 2012.

1



2 JAVORNIK

1.0.1. Approach. The forward equation calculates travel-time maps, δτ (dropping the α
index, since there is only one type of kernel):

(4) δτa(r) =
∫
d2r′Ka(r′ − r)q(r′) + na(r)

The inversion finds an estimate of the model

(5) qinv = wδτ,

given kernel data (K), noise (n), and an averaging kernel, K = wK.

(6) qinv(r) =
∫
d2r′K(r′ − r)q(r′) +

∑
i

wa(ri − r)na(ri)

The goal is to find a set of weights w that make the averaging kernel similar to a target
function while controlling the amount of noise.

1.0.2. Finding inversion weights. The inversion finds the weights, w, by minimizing the
cost function,

(7) X(µ) =
∫
d2x[K(x)− T (x)]2 + µ

∑
i,j,a,b

wa(ri)Λab(ri − rj)wb(rj)

The first term is the misfit between the averaging kernel and the target function. The
second term is the noise. µ is a regularization parameter and allows a trade-off between
the allowed misfit and the amount of noise.

Jackiewicz defines a linear set of equations, solving for w and a Lagrange multiplier, λ.
The target function, T , is

(8) T (x) = Cexp(
−‖r‖2

2σ2
h

)

1.0.3. Algorithm. For each wavenumber, k, calculate the weights, for each map, wa, using:

(9) h4
kN

2
x

∑
a

Ãca(k)w̃a(k) + δk,0Ccλ = h2
k t̃c(k),∀c,k

and

(10) h2
kN

2
x

∑
a

Caw̃a(0) = 1

Substituting definition of hk, the equations become

(11) (2π)2h2
k

∑
a

Ãca(k)w̃a(k) + δk,0Ccλ = h2
k t̃c(k), ∀c,k

and

(12) (2π)2
∑
a

Caw̃a(0) = 1

Matrix Ã(k) has c rows and a columns.



NOTES ON OLA INVERSION 3

• Calculate A in frequency space:

(13) Ãca(k) = (2π)2K̃∗c (k)K̃a(k) + µΛ̃ca(k)

Here, c and a are different measurements. Then, Kc(k) is row c, in the map-depth
matrix.

Construct Ã(k):

(14) Ã(k) = (2π)2K̃∗(k)K̃T (k) + µΛ̃(k)

Ã(k) has dimensions M ×M and is constructed in both cases (k = 0) and (k 6= 0).
• If (k = 0), Calculate C in real space:

(15) Cc =
∑
x

∑
y

Kc(x, y)

As long as the (kx = 0, ky = 0) element of the Fourier transformed kernel data is
the sum of the magnitude of the real-space matrix elements, then, we can use this
equation for C:

(16) C = K̃(kx = 0, ky = 0)

Dimensions of C submatrix are M × 1.
• Calculate t

(17) t̃c(k) = (2π)2K̃∗c (k)T̃ (k)

for k = 0 and k 6= 0
Q: Why are there different equations based on k?

(18) k = (kx, ky)⇒ kx = ky = 0

Because k = 0 is a special case and enforces the constraint of averaging kernels integrating
to unity (for scatterer of interest) and zero (for other scatterers).
A, t, and C are elements of a matrix, B, which is part of a set of linear equations,

Bw = t. Solve for [w, λ]. Dimensions of w are M x 1.
Construct matrix [

(2π)2h2
kÃ(0) C

CT 0

] [
w̃(0)
λ

]
=
[
h2
k t̃(0)

1/(2π)2

]
Calculate q and solve for averaging kernel and noise.

1.0.4. Finding q. Once the weights, wa, are found, we can find q =
∑

awaδτa. q is the
model, or estimate of the flow velocities.

(19) q̃(k) = (2π)2w̃∗(k)δ̃τ(k)

(20) q̃(k)→IFFT q(r)



4 JAVORNIK

1.0.5. Calculate Averaging Kernel. Construct averaging kernel, K = wK.

(21) K(x) = h4
kN

2
x

∑
a

∑
k

w̃a(k)K̃a(k)eikr

Substituting hk = 2π
Nx

(22) K(x) = (2π)2h2
k

∑
a

∑
k

w̃a(k)K̃a(k)eikr

Performing calculation in frequency or wave space ...

(23) K̃(k) = (2π)2
∑
a

∑
k

w̃a(k)K̃a(k)

(24) K̃(k)→IFFT K(x)

K(x) has dimensions Nx ×Ny × 1× 1.

1.0.6. Calculate Noise. Construct the noise covariance using the weights and input covari-
ance, Λ.

(25) σ2 = h6
kN

4
x

∑
a,b

∑
k

w̃∗a(k)Λ̃ab(k)w̃b(k)

Substituting hk = 2π
Nx

and performing calculation in frequency (wave) space, The noise
covariance matrix is

(26) ˜Cov(k) = (2π)4
∑
a,b

w̃∗a(k)Λ̃ab(k)w̃b(k)

(27) ˜Cov(k)→IFFT Cov(x)

The noise covariance matrix has dimensions Nx ×Ny × 1× 1.

2. 3D Inversions

Second implementation:
• include z-dependence. Now, we can have 3D kernels(x,y,z)
• only one scatterer, α = 1
• K, Kernel data
• Noise covariance, matrix Λ, is the identity matrix
• τ , map data
• σh, the horizontal full-width at half-maximum of the target function.
• target function T .

There is no alpha index, because there is only one type of kernel. This is the 3d scalar
version.



NOTES ON OLA INVERSION 5

2.0.7. Approach. Equation from Jackiewicz with z-dependence is:

(28) δτa(r) =
∫
d2r′dzKa(r′ − r, z)q(r′, z) + na(r)

For OLA inversion, first find qinv, given δτ (measurement data), K (kernel data), and
n (noise) by constructing averaging kernel.

(29) qinv(r; z0) =
∫
d2r′dzK(r′ − r, z; z0)q(r′, z) +

∑
i

wa(ri − r; z0)na(ri)

Once the weights, w, are found, we can find q = wδτ .

2.0.8. Finding inversion weights. Find weights, w, by minimizing the cost function, X,

(30) X(µ) =
∫
d3x[K(x; z0)− T (x; z0)]2 + µ

∑
i,j,a,b

wa(ri; z0)Λab(ri − rj)wb(rj ; z0)

The first term is the misfit, the second term is the noise. Question: Is µ like λ in RLS
approach? Yes, they are both regularization parameters that help control the amount of
noise versus the misfit between the averaging kernel and the target function.

The target function, T , is

(31) T (x; z0) = Cexp(
−‖r‖2

2σ2
h

)× f(z; z0)

The target function is a 2D Gaussian, peaked at r = 0, multiplied by a 1D function of the
vertical coordinate. The target is possibly peaked at depth z = z0.

(32) f(z; z0) =
∑

fiφi(z)

fi is an input FITS file containing a matrix of dimensions Nz × 1. We don’t directly
calculate f(z; z0) because we don’t know the individual φi(z) values. f(z; z0) falls out of
the calculation for t (see equation (33)). Then, Gaussian (1 × 1) times f(z) produces a
map-depth matrix of 1×Nz at every kx, ky.

(What does this 1D function look like? Can it just be a constant for now? For testing,
set f(z) = 1 for a single z, or for all z. During testing f(z), is a function peaked at some
point, z0.)

The inversion software calculates the value of C to ensure the target function integrates
to unity. (Should entire Target function be input file? Yes, this feature was added recently.
There are two options for the target function: fi or the entire target function T as an input
FITS file.) The target function has dimensions Nx ×Ny × 1×Nz.

2.0.9. Algorithm. The cost function can be written as a set of linear equations. An inversion
solves for w and the Lagrange multipliers, λ using:

(33) h4
kN

2
x

∑
a

Ãca(k)w̃a(k) + δk,0Ccλ = h2
k t̃c(k),∀c,k



6 JAVORNIK

and

(34) h2
kN

2
x

∑
a

Caw̃a(0) = 1

Substituting definition of hk the equations become

(35) (2π)2h2
k

∑
a

Ãca(k)w̃a(k) + δk,0Ccλ = h2
k t̃c(k), ∀c,k

and

(36) (2π)2
∑
a

Caw̃a(0) = 1

Matrix Ã(k) has c rows and a columns.

• Calculate A in frequency space:

(37) Ãca(k) = (2π)2
∫
dzK̃∗c (k, z)K̃a(k, z) + µΛ̃ca(k)

Here, c and a are different measurements. Then, Kc(k) is row c, in the map-depth
matrix. The integral becomes

(38)
∫ ∑

i′

Kii′φi′ (z)

∑
j′

Kjj′φj′ (z)

 dz =
∑
i′j′

Kii′Kjj′

∫
φi′ (z)φj′ (z)dz

The overlap matrix, Θ is

(39)
∫
φi′ (z)φj′ (z)dz = Θi′j′

Theta is an input file in FITS format and has dimension Nz ×Nz.

(40)∫
F (z)K(z)dz =

∫ ∑
i′

Fi′φi′ (z)

∑
j′

Kjj′φj′ (z)

 dz =
∑
i′j′

Fi′ Θi′j′Kj′ = F TΘK

Construct Ã(k):

(41) Ã(k) = (2π)2K̃∗(k)ΘK̃T (k) + µΛ̃(k)

When K(k) is extracted from MAP DEPTH MATRIX, K, the dimensions are M×
Nz. Ã(k) has dimensions M ×M and is constructed in both cases (k = 0) and
(k 6= 0).



NOTES ON OLA INVERSION 7

• If (k = 0), Calculate C in real space:

(42) Cc =
∫
Kc(x, y, z)

If

(43)

[
1 =

∑
i

φi(z)

]

C =
∫
K(z)dz

=
∫
K(z) · 1dz

=
∫
K(z)

∑
i

φi(z)dz

=
∫ ∑

j

Kjφj(z)

∑
i

φi(z)dz

= KΘ1

As long as the (kx = 0, ky = 0, kz = 0) element of the Fourier transformed kernel
data is the sum of the magnitude of the real-space matrix elements, then, we can
use this equation for C:

(44) C = K̃(kx = 0, ky = 0, kz = 0)

K is M×Nz, Theta is Nz×Nz, then, we need something that is Nz×1. Dimension
of C submatrix is M × 1.
• Calculate t

(45) t̃c(k) = (2π)2
∫
K̃∗c (k, z)T̃ (k, z)dz = KTΘT

K(k) has dimensions M ×Nz and T̃ (k) has dimensions 1×Nz. t̃(k) needs to have
dimensions M × 1. Then, we need to take the transpose of T̃ (k, z). In the code,
we’ll use this equation:

(46) t̃(k) = (2π)2K̃∗(k)ΘT̃ T (k)

for k = 0 and k 6= 0:
A, t, and C are elements of a matrix, B, which is part of a set of linear equations,

Bw = t. Solve for [w, λ]. Dimensions of w are M x 1.
Construct matrix [

(2π)2h2
kÃ(0) C

CT 0

] [
w̃(0)
λ

]
=
[
h2
k t̃(0)

1/(2π)2

]
Calculate q and solve for averaging kernel and noise.



8 JAVORNIK

2.0.10. Finding q. The equation for the model remains the same because there is no z-
dependence.

(47) q̃(k) = (2π)2w̃∗(k)δ̃τ(k)

(48) q̃(k)→IFFT q(r)

2.0.11. Calculate Averaging Kernel. Construct averaging kernel, K = wK.

(49) K(x) = h4
kN

2
x

∑
a

∑
k

w̃a(k)K̃a(k, z)eikr

Substituting hk = 2π
Nx

(50) K(x) = (2π)2h2
k

∑
a

∑
k

w̃a(k)K̃a(k, z)eikr

Performing calculation in frequency (wave) space ...

(51) K̃(k) = (2π)2
∑
a

∑
k

w̃a(k)K̃a(k)

(52) K̃(k)→IFFT K(x)

Dimensions of K̃(k) are 1×Nz. Dimensions of w̃a(k) are M × 1. Dimensions of K̃a(k) are
M ×Nz.
K(x) has dimensions Nx × Ny × 1 × Nz. The spatial integral of an averaging kernel

should be one.

2.0.12. Calculate Noise. The noise variance and covariance calculations remain the same
because they have no z-dependence.

3. 3D Vector Inversions

Third implementation:
• multiple scatterers, α > 1
• K, Kernel data; three kernels for each map
• Noise covariance, matrix Λ, is the identity matrix
• τ , map data
• σh, the horizontal full-width at half-maximum of the target function.

The difference between RLS and OLA inversions for 3d vector is that RLS can calculate
all vx, vy, vz at the same time. With OLA, the inversion is performed for one scatterer at
a time, but using all the data, i.e. all the kernel files.

In the target function, T , include the alpha index. This is the 3d vector version. Be-
cause the OLA inversions are calculated separately for each scatterer (e.g. each vx, vy, vz),
three new problem dimensions (3d vector x, 3d vector y, and 3d vector z) distinguish the
scatterer of interest.



NOTES ON OLA INVERSION 9

3.0.13. Approach. Original equation from Jackiewicz is

(53) δτa(r) =
∫
�
d2r′dz

∑
α

Kα
a (r′ − r, z)qα(r′, z) + na(r)

For OLA inversion, first find q, given τ , K and n (noise) (Given δτ (measurement data),
K (kernel data), and n (noise)) by constructing averaging kernel.

qθinv(r; z0) =
∫
�
d2r′dzKθ(r′ − r, z; z0)qθ(r′, z)

+
∫
�
d2r′dz

∑
α,α 6=θ

Kα(r′ − r, z; z0)qα(r′, z)

+
∑
i,α

wa(ri − r; z0)na(ri)

Construct averaging kernel, K = wK. Indirectly. Actually, the averaging kernel defini-
tion is used in the equations to find w, when minimizing cost function X.

Once the weights, w, are found, we can find q = wδτ .

3.0.14. Finding inversion weights. Find weights, w, by minimizing a cost function, X,

(54) X(µ) =
∫
�
d3x

∑
α

[Kα(x; z0)− T α(x; z0)]2 + µ
∑
i,j,a,b

wa(ri; z0)Λab(ri − rj)wb(rj ; z0)

First term is the misfit, the second term is the noise.
These are linear set of equations, solving for w and λ, a Lagrange multiplier.
The target function changes slightly to include multiple scatterers.

(55) T α(x; z0) = Cexp(
−‖r‖2

2σ2
h

)× f(z; z0)δα,θ

The target function is a Gaussian, peaked at z0. σh controls the width of the Gaussian. C
is a constant to ensure that the spatial integral of the target is unity. All targets are zero
except for the scattter of interest, α = θ. σh is Full Width at Half Maximum (FWHM).
For a normal distribution, FWHM = 2

√
2ln2σ or σh ≈ 2.354σ. The input parameter is σh,

then σ = σh

2
√

2ln2
. With the factor C = 1√

2πσ2
, the spatial integral of the target function is

unity. The target function is a 2D Gaussian, peaked at r = 0, multiplied by a 1D function
of the vertical coordinate. The target is possibly peaked at depth z = z0.

(56) f(z; z0) =
∑

fiφi(z)

fi is an input FITS file which contains a matrix of dimensions (Nz × 1). The inversion
code does not directly calculate f(z; z0) because the individual φi(z) values are not known.
f(z; z0) falls out of the calculation for T and is not needed. Gaussian (1 × 1) times f(z)
produces a map-depth matrix of 1× (Nz × α).



10 JAVORNIK

Three dimensional vector inversions use the same fi(z) input file as 3D scalar inversion;
the dimension does not increase. Then the target function for each scatterer is zero ex-
cept for the one of interest. For example, with problem dimension 3d vector y, and flow
velocities vx, vy, vz for scatterers, the target functions, T vx = 0, T vz = 0, and T vy is the
Gaussian described in (55).

3.0.15. Algorithm. For each wave number, k, calculate the weights, wa, using:

(57) h4
kN

2
x

∑
a

Ãca(k)w̃a(k) + δk,0
∑
α

Cαc λ
α = h2

k t̃c(k), ∀c,k

and

(58) h2
kN

2
x

∑
a

Cαa w̃a(0) = δα,θ,∀α

Substituting definition of hk the equations become

(59) (2π)2h2
k

∑
a

Ãca(k)w̃a(k) + δk,0
∑
α

Cαc λ
α = h2

k t̃c(k),∀c,k

and

(60) (2π)2
∑
a

Cαa w̃a(0) = δα,θ, ∀α

Matrix Ã(k) has c rows and a columns.
• Calculate A in frequency space:

(61) Ãca(k) = (2π)2
∫
dz
∑
α

K̃α∗
c (k, z)K̃α

a (k, z) + µΛ̃ca(k)

Here, c and a are different measurements. Then, Kc(k) is row c, in the map-depth
matrix.

The integral becomes

(62)
∫ ∑

i′

Kii′φi′ (z)

∑
j′

Kjj′φj′ (z)

 dz =
∑
i′j′

Kii′Kjj′

∫
φi′ (z)φj′ (z)dz

The overlap matrix, Θ is

(63)
∫
φi′ (z)φj′ (z)dz = Θi′j′

Theta is an input file in FITS format and has dimension (Nz × α)× (Nz × α).

(64)∫
F (z)K(z)dz =

∫ ∑
i′

Fi′φi′ (z)

∑
j′

Kjj′φj′ (z)

 dz =
∑
i′j′

Fi′ Θi′j′Kj′ = F TΘK



NOTES ON OLA INVERSION 11

Construct Ã(k):

(65) Ã(k) = (2π)2
∑
α

K̃α∗(k)ΘK̃αT (k) + µΛ̃(k)

Consider keeping matrices as (α,M). Keeping α as the rows, then we don’t need
to transpose.

Aca =
∑
α

K∗α,cKα,a

A = KHΘK

When K(k) is extracted from MAP DEPTH MATRIX, K, the dimensions are
M×(Nz×α). Ã(k) has dimensions M×M and is constructed in both cases (k = 0)
and (k 6= 0).
• If (k = 0), Calculate C in real space:

(66) C = Cαa =
∫
�
Kα
a (x)d3x

If

(67)

[
1 =

∑
i

φi(z)

]

C =
∫
K(z)dz

=
∫
K(z) · 1dz

=
∫
K(z)

∑
i

φi(z)dz

=
∫ ∑

j

Kjφj(z)

∑
i

φi(z)dz

= KΘ1



12 JAVORNIK

C =
∫
d3xK(x, z)

K(x, z) =
(

2π
N

)2∑
ki

K(ki, z)eikix

C =
(

2π
N

)2 ∫
d3x

∑
ki

K(ki, z)eikix

=
(

2π
N

)2

(∆x)2
∑
j

∑
i

∫
dz
∑
ki

K(ki, z)eikix

∑
j

eikix = { N
2 ki = 0

0 else

C = (2π)2(∆x)2
∫
dzK(ki = 0, z)

With (∆x)2 = 1, we can use the ki = 0 element of the kernel and multiply it by
(2π)2 to get the spatial integral of the kernel.
K is M × (Nz ×α), Theta is (Nz ×α)× (Nz ×α), then, we need something that

is (Nz × α) × α. Dimension of C submatrix is M × α. For 3d vector, since δα,θ
switches between one and zero depending on the α of interest, we need to have the
different values present in the matrix solution for k = 0. δα,θ will have three values
instead of one (as in the 3d scalar case). Calculate C separately for each α. Need
to separate Cα from each other. Cα is the spatial integral of scatterer, α. A special
form of 1 could be ...

Cα=1 Cα=2 Cα=3

1 0 0
...

...
...

1 0 0
0 1 0
...

...
...

0 1 0
0 0 1
...

...
...

0 0 1


with dimension (Nz × α)× α.

• Calculate t

(68) t̃c(k) = (2π)2
∫
K̃θ∗
c (k, z)T̃ θ(k, z)dz = KTΘT



NOTES ON OLA INVERSION 13

K(k) has dimensions M × (Nz × α) and T̃ (k) has dimensions 1 × (Nz × α). t̃(k)
needs to have dimensions M × 1. Then, we need to take the transpose of T̃ (k, z).
In the code, we’ll use this equation:

(69) t̃(k) = (2π)2K̃∗(k)ΘT̃ T (k)

Remember, try to store matrices as (α, c) to avoid transpose of T . T̃ T (k) could be
...  T α=1

T α=2

T α=3


All elements will be zero except where α = θ (the scatterer of interest).

Linear Equation Solve. For k = 0 and k 6= 0: A, t, and C are elements of a matrix, B,
which is part of a set of linear equations, Bw = t. Solve for [w, λ]. Dimensions of w are M
x 1.

Construct matrix
(2π)2h2

kÃ(0) Cα=1 Cα=2 Cα=3

CTα=1 0 0 0
CTα=2 0 0 0
CTα=3 0 0 0



w̃(0)
λα=1

λα=2

λα=3

 =


h2
k t̃(0)

δα=1,θ/(2π)2

δα=2,θ/(2π)2

δα=3,θ/(2π)2


Calculate q and solve for averaging kernel and noise.

3.0.16. Finding q. With multiple scatterers, q does not change dimensions. Given the
weights, wa, the model is q =

∑
awaδτa.

(70) q̃(k) = (2π)2w̃∗(k)δ̃τ(k)

(71) q̃(k)→IFFT q(r)

3.0.17. Calculate Averaging Kernel. Construct averaging kernel, K = wK.

(72) Kα(x) = h4
kN

2
x

∑
a

∑
k

w̃a(k)K̃α
a (k, z)eikr

Substituting hk = 2π
Nx

(73) Kα(x) = (2π)2h2
k

∑
a

∑
k

w̃a(k)K̃α
a (k, z)eikr

Performing calculation in frequency (wave) space ...

(74) K̃α(k) = (2π)2
∑
a

∑
k

w̃a(k)K̃α
a (k)

(75) K̃α(k)→IFFT Kα(x)



14 JAVORNIK

Dimensions of K̃(k) are 1×Nz. Dimensions of w̃a(k) are M × 1. Dimensions of K̃a(k) are
M ×Nz.
K(x) has dimensions Nx × Ny × 1 × Nz. The spatial integral of an averaging kernel

should be one.

3.0.18. Calculate Noise. Construct Noise term, Cov.

(76) σ2 = h6
kN

4
x

∑
a,b

∑
k

w̃∗a(k)Λ̃ab(k)w̃b(k)

Substituting hk = 2π
Nx

and performing calculation in frequency (wave) space,

(77) ˜Cov(k) = (2π)4
∑
a,b

w̃∗a(k)Λ̃ab(k)w̃b(k)

The noise variance (σ2) is a single number and it is the value of the noise covariance at
(δx, δy) = 0, the center point of the noise covariance matrix.

(78) ˜Cov(k)→IFFT Cov(x)

The noise covariance matrix has dimensions Nx ×Ny × 1× 1.

3.0.19. Calculate d ∼. This calculation does not make sense in the 3d vector case because
we would need all three vx, vy, vz pieces of information to reconstruct the map. This
calculation could be performed as a separate task.

4. 3D Vector Plus Kernel Weight Vector (Experimental)

Fourth implementation:
• add a weight vector as input parameter to scale the individual Kα.

The input will be the same as in the OLA 3d vector inversion with the addition of a Kernel
weighting vector w1, w2, w3:

• M (RLS) = K (OLA), Kernel data; three kernels for each map
• Noise covariance, matrix Λ, is the identity matrix
• τ , map data
• σ, the horizontal full-width at half-maximum of the target function.

(79) w2
1(K1 − T1)2 + w2

2(K2 − T2)2 + w2
3(K3 − T3)2

which is the same as scaling the kernels and target function by the weights.

(80) = (w1K1 − wT1)2 + (w2K2 − w2T2)2 + (w3K3 − w3T3)2

Question: Are we using kernels K or averaging kernels K here? I think it is averaging
kernels?



NOTES ON OLA INVERSION 15

Appendix A. Appendix: Design and Implementation Decisions

A.1. Requirements and Code Changes. tdinvert is replaced by OLA. So, tdinvert
should be RLSInvert. Then we can have OLAInvert. The matrix, linearEqSolve, fftw, read
and write FITS can be reused. Convert these to libraries.

Requirements:

• separate executables for OLAInvert and RLSInvert.

Need to do:

• LambdaSet should really be Range then, lambda (RLS) and mu (OLA) are in-
stances of Range.

A.2. Input File. Some design considerations: If we don’t use ’2D’ for OLA inversion and
infer either 2D or 3D from the z-dimension of the kernel file(s), then the same input file
can be used for OLAInvert and RLSInvert. The Regularization matrix (RLS) or Overlap
matrix (OLA) oops, they mean different things base on the type of inversion, so they
cannot be the same input file. Plus, µ and σ mean different things than λ1 and λ2. So,
there is no reason to try to keep the input files the same for RLS and OLA. The meaning
of the inputs are different. The code for parsing the input files can be the same, however.
The RLS/OLA code can then interpret the meaning of the parameters.

Parse the kernel-map pairs. Need to know if kernel-map pairs are:

• single kernel files (1D)
• kernel-map pairs (2D, 3D scalar)
• kernel1, kernel2, kernel3, map triples (3D vector)

Also, need to know where lambda parameters are located. Which line of input? Just parse
the input file into lines, send these lines to RLS/OLA. Let RLS and OLA determine the
meaning of the lines based on the problem dimension.

The python script, invert, verifies files and directories exist, copies input files, versions
the output directory, and calls the appropriate executable.

• σ, the horizontal full-width at half-maximum of the target function (input param-
eter).
• µ, input parameter.



16 JAVORNIK

Parameter OLA RLS
dimension 2d, 3d-scalar, 1d, 3d-scalar,

3d-vector x, y, z 3d-vector
output base directory yes yes
base dir for kernels yes yes
base dir for maps yes yes
kernel-map pairs K and τ M and d
noise covariance Λ C

Regularization matrix no R
Averaging Kernel and noise depth calculations yes yes

looping parameters µ, σ λ1, λ2

Full-width at half-maximum of
2D Gaussian for Target function σ no

overlap (3D scalar only) θ no
1D function of z, f(z)

for Target function (3D scalar only) f no

A.3. Libraries. Libraries or core should contain:

• matrix (uses fitsio object?)
• MapDepthMatrix (uses MATRIX object)
• linearEqSolve (uses MATRIX object)
• read and write FITS files (uses MATRIX, MAP DEPTH MATRIX, and fitsio ob-

jects)
• fftw (uses MATRIX and fitsio objects)
• Parser for input file (Parser)

Use shared libraries instead of static libraries, because shared libraries produce smaller
executable files and the library can be updated without recompiling the programs as long
as the interface to the libraries doesn’t change. Place libraries in

/usr/local/lib

Typedefs and structs are not part of a library, these header files are separate and need to
be placed in

/usr/include/coramf

Use gcc− Idir to compile with shared library headers. Think about how to structure code
for release with shared libraries.

Reference

http://www.network-theory.co.uk/docs/gccintro/gccintro_25.html

The simplest way to set the load path is through the environment variable

LD_LIBRARY_PATH.

Currently, Makefiles contain link command with

-Wl,-rpath,$(DEFAULT_LIB_INSTALL_PATH)



NOTES ON OLA INVERSION 17

“During development, there’s the potential problem of modifying a library that’s also used
by many other programs – and you don’t want the other programs to use the ‘developmen-
tal’ library, only a particular application that you’re testing against it. One link option
you might use is ld’s ‘rpath’ option, which specifies the runtime library search path of
that particular program being compiled. From gcc, you can invoke the rpath option by
specifying it this way:
-Wl,-rpath,$(DEFAULT_LIB_INSTALL_PATH)

If you use this option when building the library client program, you don’t need to bother
with LD LIBRARY PATH (described next) other than to ensure it’s not conflicting, or
using other techniques to hide the library.” From

http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html

References

J. Jackiewicz, A. C. Birch, L. Gizon, S. M. Hanasoge, T. Hohage, J.-B. Ruffio, and
M. Švanda. Multichannel Three-Dimensional SOLA Inversion for Local Helioseismol-
ogy. Solar Physics, 276:19–33, February 2012. doi: 10.1007/s11207-011-9873-8.


