GUIDE TO USING TIME-DISTANCE INVERSION SOFTWARE: RLS

JAVORNIK

The Time-Distance Inversion Software calculates inversions for local helioseismology us-
ing multi-channel deconvolution (MCD) Regularized Least Squares (RLS). This document
contains example parameter files along with an explanation of the input and output data
files. The document RLSNotes.pdf contains the equations and additional details about the
calculations.

1. GENERAL DIRECTIONS

These general directions apply to running all inversion problems. The inversion code
consists of a Python script, called invert, and several shared libraries for parsing input files
and calculating inversions. The invert script coordinates parsing of an input file, constructs
directories for the results, and passes the information to an inversion function written in C.
The shared libraries contain core operations such as matrix and linear equation operations,
Fourier transforms, reading and writing binary data files, and parsing input parameters.
The libraries provide wrappers for the external software packages: C FITS File Subroutine
Library (CFITSIO), Linear Algebra PACKage (LAPACK), Fastest Fourier Transform in
the West (FFTW), Sparse Least Squares (LSQR), Lex, and YACC. A software release
bundles the libraries, Python scripts, documentation, and sample data into tar files. All
installations require core.tar and then any combination of the specific tar files. Doc.tar
contains code documentation and the test.tar files contain sample data files along with the
expected results.

For RLS inversions download and expand, core.tar and rls.tar. To run the sample data,
download the rls_test.tar file. After expanding the tar files, follow the instructions in the
README file to build and run the inversion code.

Table 1 contains the possible problem dimensions along with a brief description of the
inversion method. Table 2 contains the input parameters for each dimension.

The command to run an inversion is:

invert parameterFile -p -c -d

The python script, invert, verifies files and directories exist, copies input files, finds an
empty version of the output directory, and calls the inversion code. Table 3 explains the
command-line flags.

1.1. Input and Output Data Files. Tables 4 and 5 contain a sample parameter file
and the corresponding output files. Input and output data files follow the Flexible Image
Transport System (FITS) format except the map file for 1-D RLS inversion, which can

Date: September 17, 2012.

2 JAVORNIK

TABLE 1. Possible Dimensions

Dimension | Description

RLS Solve RLS inversion for a number of .
1d One parameter, \i, contributes to A\Z such that
A2 =)\2.

3d-scalar | Two parameters, A\; and Ay, contribute to \?,
such that A = A+ A3 (k2 +k2), where k, =]2\,—7;1‘

and k, = %y

3d-vector | Generalize to the case where the model is a set of
values at each location (x,z) Examples include
inversions for a flow field, or for multiple struc-
ture variables (e.g. sound speed, density, pres-
sure). Three kernel files correspond to a single
map file.

TABLE 2. Parameter File Contents

Parameter RLS
dimension 1D, 3D-scalar,
3D-vector
output base directory yes
base dir for kernels yes
base dir for maps yes
kernel-map pairs M and d
noise covariance C
Regularization matrix R
Averaging Kernel & noise yes
regularization parameters A1, Ao

TABLE 3. Command-Line Flags

Flag Action

—p indicates parsing the input file only (no inversion)

—c copies all input files to the output directory

—d dumps inversion intermediate values for debugging

parameterFile | contains the name and location of all input data files
and all inversion parameters.

be a text file. If an input FITS file ends with (.gz), it is read as a compressed file and is
expanded in memory.

The parameter file contains directory paths, file names and parameter values. The
output base directory contains all the output files generated by the inversion program

GUIDE TO USING TIME-DISTANCE INVERSION SOFTWARE: RLS 3

TABLE 4. Parameter File for 3d_scalar RLS Inversion

3d_scalar rls
/data/cora/output
/data/cora/Kernels
/data/cora/Maps
Kernl.fits Mapl.fits
Kern2.fits Map2.fits
Kern3.fits Map3.fits
/full /path/C.fits
/full/path/R.fits
Avg Kernel 10 20
A1 A2
Min Max NSteps Min Max NSteps
0.5 1.0 2 0.0 1.0 1

TABLE 5. Output Files for 3d_scalar RLS Inversion

File Names Description
A1 =0.5, A2 =0.0 A1 =1.0, A2 =0.0
1.1 b.fits 2_1_b.fits solution
1.1_d~1.fits.gz 2_1_d~1fits.gz estimate of first travel-time map
1.1_d~2.fits.gz 2_1_d~2 fits.gz estimate of second travel-time map
1.1_d~3.fits.gz 2_1_d~3 fits.gz estimate of third travel-time map

1.1_AvgKern_10.fits.gz | 2_.1_AvgKern_10.fits.gz | averaging kernel for z=10
1.1_AvgKern_20.fits.gz | 2_.1_AvgKern_20.fits.gz | averaging kernel for z=20
1.1 _Cov_10.fits.gz 2_1_Cov_10.fits.gz error covariance for z=10
1.1_Cov_20.fits.gz 2_1_Cov_20.fits.gz error covariance for z=20

along with a copy of the parameter file. The output base directory also contains copies of
all the files specified in the parameter file, if the ‘-¢’ flag is used. If the output directory
does not exist, the invert program creates it. If the output base directory exists and is
empty, then the invert program dumps the output files there. If the output directory is not
empty, then, the invert program adds a version (_v2) to the output directory name. The
invert program continues to append version numbers to the output directory name until
an empty directory is found or the directory does not exist. Averaging kernels and noise
covariances are calculated for every height (z-value) listed. For RLS inversions, the code
calculates averaging kernels and noise covariance at every height, selected heights, or none
at all. The inversion code computes the error covariance matrix by the formal propagation
of errors.

Output files include the solution, averaging kernels, noise/error covariance, and an es-
timate of the travel-time maps, (d~), which is calculated using the model found during
inversion. The header of each output FITS file contains the regularization parameters (

4 JAVORNIK

A1, A2) used to generate the data. The naming convention for the output files follows the
format A;_As_matriz. fits. Matrix names for RLS are b, d~, AvgKern, and Cov. Aver-
aging kernel and covariance file names have the associated height appended to the matrix
name for RLS inversions only. All averaging kernel, noise/error covariance and travel-time
map estimates are compressed FITS files, with the extension (.fits.gz).

The Examples/testdata directory contains example parameter files for each inversion
and dimension. The Examples/testdata/output directory contains sample output files for
each parameter file.

2. EXAMPLES OF RLS INVERSIONS

2.1. 1-D Problem. The 1-D problem has one kernel file and one map file and is an
inversion of the z-dimension only. The map file contains the travel-time measurement and
is a one-dimensional vector. All input files are in FITS (Flexible Image Transport System)
format. Only the 1-D problem takes either an ASCII file or a FITS file for the travel-time
map. A map file formatted as a comma or tab separated ASCII file must have a ‘.txt’
file extension, otherwise, a FITS file is expected. The looping parameters specify a range
of values for the lambda parameter in the RLS inversion. See the RLSNotes.pdf file for
equations explaining these matrices.

2.1.1. Contents of Input File. The input-file contains the following information:

(1) which problem (1d) which inversion method (rls)

(2) output base directory

(3) input map data file (d.txt or d.fits): input map data file is a vector and can be
either ASCII text file or .fits file.

(4) input noise covariance matrix (C.fits)

(5) input Kernel file (M.fits)

(6) input Regularization matrix file (R.fits)

(7) lambda range

The sample data for 1-D RLS inversion has N, = 30, M = 11, where N, is the size of
the z-dimension, and M is the number of travel-time measurements or maps. The map
file is (M,1) = (11,1) The noise covariance matrix is a diagonal matrix of (M, M) =
(11,11) elements. The kernel file is a two dimensional matrix, (M, N,) = (11,30) and the
regularization matrix is (N,, N,) = (30,30). For all the FITS files, the first element of a
matrix, M(X=0, Y=0) is equal to FITS Image (X=1,Y=1). The range of values for the
lambda parameter contains a minimum value, a maximum value and the number of steps
between the minimum and the maximum. If the keyword ‘log’ specifies the number of
steps, then the inversion code takes logarithmic steps from the minimum to the maximum.
For lambda set (0.5, 1.0, 2), the inversion is calculated at lambda = 0.5 and 1.0. For
lambda set (0, 1000, log), the inversion is calculated at lambda = 0.0, 1, 10, 100, and 1000.
An example input file is located in Examples/testdata/testInputFile and is shown below:

1d rls
./Examples/testdata/testOutput/1d

GUIDE TO USING TIME-DISTANCE INVERSION SOFTWARE: RLS 5

| For vector data, either .fits file or an ASCII text (.txt) file
I will work.

./Examples/testdata/input/1d/d.fits

% another comment

./Examples/testdata/input/1d/C.fits
./Examples/testdata/input/1d/M.fits
./Examples/testdata/input/1d/R.fits

! lambdaMin lambdaMax NLambda

0.51.0 2

! comments at end of file

2.1.2. Output Files. In the 1-D problem, there is one solution file, b.fits. B.fits contains
column vectors, b(\;), which are solution vectors for each lambda value, A;. The b.fits file
contains a 2-D matrix, (Ny, N,) = (2, 30),

[b(A1)---b(AN)]

The FITS file header contains the lambda value for each averaging kernel and error
covariance. For an input file containing lambda set (0.5, 1.0, 2) the output files are

/output/base/directory/b.fits
/output/base/directory/1_A.fits
/output/base/directory/1_Cov.fits
/output/base/directory/2_A.fits
/output/base/directory/2_Cov.fits

2.2. 3-D Scalar Problem. The 3-D problem can have multiple kernel files and multiple
map files, but there must be the same number of kernel files as map files, since they
are paired. Each kernel file contains a 3-dimensional matrix (NN, Ny, N,) and each map
file contains a 2-dimensional matrix (N, NV,). All input files are in FITS format. Since
calculating the averaging kernels and error covariance is costly for each lambda value,
an additional parameter specifies the frequency of averaging kernel calculations. Lambda
set specification is the same as the 1-D problem, with the additional of a second lambda
parameter.

2.2.1. Contents of Input File. The input-file contains the following information:

(1) which problem (3d_scalar)
2) output base directory
) base directory for Kernel files
) base directory for Map files
) kernel-map pairs
) input noise covariance matrix (C.fits)
) input Regularization matrix file (R.fits)
) Averaging Kernel specification
)

(

(3
(4
(5
(6
(7
(8
(9) lambdal lambda2

6 JAVORNIK

The order of the kernel-map pairs is important. The map numbers go from the first
kernel-map pair (1) to the last kernel-map pair (M). In the following example, the map
dimension goes from 1 to 3 and M = 3. The noise covariance file contains a unique
covariance matrix (M, M) for each (N, Ny). The noise covariance file is then a four
dimensional FITS file with dimensions (N, Ny, M, M).

‘Avg’ and ‘Kernel’ are keywords and begin the averaging kernel specification. The num-
bers following the keywords specify the target depths at which to calculate averaging ker-
nels. The target depths are the same as the kernel depth (N) and they begin at 1 and
end at N,. A depth of -1 means averaging kernel calculations are omitted. If no numbers
follow the keywords, then averaging kernel calculations occur at every depth. The error
covariance is calculated at the same target depths as the averaging kernels

Example input file:

I A1l lines beginning with a ! or a % are comments

! which problem

3d_scalar rls

!

! base directory for all output files

/data/cora/output

I

! base directory for Kernel files

/data/cora/Kernels

I

! base directory for Map files (input data files)
/data/cora/Maps

I

! input Kernel file and Map file pairs; relative paths
Kernl.fits Mapl.fits

Kern2.fits Map2.fits

Kern3.fits Map3.fits

!

! input noise covariance matrix (C.fits); Full path
/full/path/CI.fits

!

! input Regularization matrix file (R.fits); Full path
/full/path/R.fits

!

I -1 indicates don’t calculate averaging kernel and Cov
! Avg Kernel -1

! numbers indicate which depth to calculate Averaging Kernels and Cov
! the numbers correspond to the 3rd dimension in the M.fits files (e.g. 160x160x35)
! then Avg Kernel can range from 1 to 35

Avg Kernel 10 20

GUIDE TO USING TIME-DISTANCE INVERSION SOFTWARE: RLS 7

no values after ‘Avg Kernel’ keywords, indicates all averaging kernels are calculated
Avg Kernel

lambdal set 1lambda2 set
LambdalMin LambdalMax NLambdal Lambda2Min Lambda2Max NLambda2
0.5 1.0 2 0.0 1.0 1

2.2.2. Output Files. The output files are the same as in the 1-D problem, except the

solution, b, is now a matrix and written to a separate FITS file for each lambda value. An

additional output file, d~, contains the map data calculated from the input kernel and the

solution, b. FITS file headers record the specific lambda values used to generate the data.
For the example input file above, the output files are

/output/base/directory/1_1_b.fits
/output/base/directory/1_1_d~1.fits
/output/base/directory/1_1_d~2.fits
/output/base/directory/1_1_d~3.fits
/output/base/directory/1_1_AvgKern_ 10.fits
/output/base/directory/1_1_Cov_10.fits
/output/base/directory/1_1_AvgKern 20.fits
/output/base/directory/1_1_Cov_20.fits

/output/base/directory/2_1_b.fits
/output/base/directory/2_1_d~1.fits
/output/base/directory/2_1_d~2.fits
/output/base/directory/2_1_d~3.fits
/output/base/directory/2_1_Cov_20.fits
/output/base/directory/2_1_AvgKern_10.fits
/output/base/directory/2_1_Cov_10.fits
/output/base/directory/2_1_AvgKern_20.fits
/output/base/directory/2_1_Cov_20.fits

2.3. 3-D Vector Problem. In the 3-D Vector problem, instead of each point being a
single numeric value (a scalar), it is a vector with three numeric values. The vector is
spread across three kernel files. The first kernel file contains values for the first element in
the vector, the second kernel file contains the second element of the vector, and so on. Each
kernel-map pair now has three kernel files associated with a single map and a kernel-map
pair is really a quadruple instead of a pair. For example, if a flow vector has dimensions
x,y, and z, then a kernel-map quadruple might look like this:

kernell_x.fits kernell_y.fits kernell_z.fits mapl.fits

Each kernel file is a 3-dimensional matrix (N, Ny, IV.) and each map file is a 2-dimensional
matrix (N, Ny) — the same as the 3-D scalar problems. The difference for 3-D vector

8 JAVORNIK

problems is in the number of kernel files for each map. The noise covariance matrix has
dimension (Ng, Ny, M, M), where M is the number of maps. The regularization file has
dimensions (3(N.),3(N,)). All input files are in FITS format. Lambda set, averaging
kernel and error covariance specifications remain the same as in the 3-D scalar problem.

2.3.1. Contents of Input File. The input-file contains the following information:

)
) output base directory

) base directory for Kernel files

) base directory for Map files

) kernel-map quadruples

) input noise covariance matrix (C.fits)

) input Regularization matrix file (R.fits)
) Averaging Kernel specification

(9) lambda sets

The order of the kernel-map quadruples is important and follows the same convention
as the 3-D scalar problem.
Example input file:

I A1l lines beginning with a ! or a % are comments
! which problem

3d_vector rls

I

| base directory for all output files
/data/cora/output

I

| base directory for Kernel files
/data/cora/Kernels

!

| base directory for Map files (input data files)
/data/cora/Maps

!

! input Kernel file and Map file pairs; relative paths
Kernl_x.fits Kernl_y.fits Kernl_z.fits Mapl.fits
Kern2_x.fits Kern2_y.fits Kern2_z.fits Map2.fits
Kern3_x.fits Kern3_y.fits Kern3_z.fits Map3.fits

!

| input noise covariance matrix (C.fits); Full path
/full/path/C.fits

!

! input Regularization matrix file (R.fits); Full path
/full/path/R.fits

!

I -1 indicates don’t calculate averaging kernel and Cov

GUIDE TO USING TIME-DISTANCE INVERSION SOFTWARE: RLS 9

Avg Kernel -1

numbers indicate which depth to calculate Averaging Kernels and Cov

the numbers correspond to the 3rd dimension in the M.fits files (e.g. 160x160x35)
then Avg Kernmel can range from 1 to 35

Avg Kernmel 10

no values after ‘Avg Kernel’ keywords, indicates all averaging kernels are calculated
Avg Kernel

lambda sets ...
LambdalMin LambdalMax NLambdal Lambda2Min Lambda2Max NLambda2
0.5 1.0 2 0.0 1.0 1

2.3.2. Output Files. The output files are similar to the output files in the 3-D scalar prob-
lem with each dimension of the vector broken into separate output files.

For the example input file above, the output files are

/output/base/directory/1_1_bv_x.fits
/output/base/directory/1_1_bv_y.fits
/output/base/directory/1_1_bv_z.fits
/output/base/directory/1_1_d~1.fits
/output/base/directory/1_1_d~2.fits
/output/base/directory/1_1_d~3.fits

/output/base/directory/1_1_AvgKern_10_xx.
/output/base/directory/1_1_AvgKern_10_xy.
/output/base/directory/1_1_AvgKern_10_xz.
/output/base/directory/1_1_AvgKern_10_yx.
/output/base/directory/1_1_AvgKern_10_yy.
/output/base/directory/1_1_AvgKern_10_yz.
/output/base/directory/1_1_AvgKern_10_zx.
/output/base/directory/1_1_AvgKern_10_zy.
/output/base/directory/1_1_AvgKern_10_zz.

/output/base/directory/1_1_Cov_10_xx.
/output/base/directory/1_1_Cov_10_xy.
/output/base/directory/1_1_Cov_10_xz.
/output/base/directory/1_1_Cov_10_yx.
/output/base/directory/1_1_Cov_10_yy.
/output/base/directory/1_1_Cov_10_yz.
/output/base/directory/1_1_Cov_10_zx.
/output/base/directory/1_1_Cov_10_zy.
/output/base/directory/1_1_Cov_10_zz.

/output/base/directory/2_1_bv_x.fits

fits
fits
fits
fits
fits
fits
fits
fits
fits

fits
fits
fits
fits
fits
fits
fits
fits
fits

10 JAVORNIK

/output/base/directory/2_1_bv_y.fits
/output/base/directory/2_1_bv_z.fits
/output/base/directory/2_1_d~1.fits
/output/base/directory/2_1_d~2.fits
/output/base/directory/2_1_d~3.fits
/output/base/directory/2_1_AvgKern_10_xx.fits
/output/base/directory/2_1_AvgKern_10_xy.fits
/output/base/directory/2_1_AvgKern_10_xz.fits
/output/base/directory/2_1_AvgKern_10_yx.fits
/output/base/directory/2_1_AvgKern_10_yy.fits
/output/base/directory/2_1_AvgKern_10_yz.fits
/output/base/directory/2_1_AvgKern_10_zx.fits
/output/base/directory/2_1_AvgKern_10_zy.fits
/output/base/directory/2_1_AvgKern_10_zz.fits
/output/base/directory/2_1_Cov_10_xx.fits
/output/base/directory/2_1_Cov_10_xy.fits
/output/base/directory/2_1_Cov_10_xz.fits
/output/base/directory/2_1_Cov_10_yx.fits
/output/base/directory/2_1_Cov_10_yy.fits
/output/base/directory/2_1_Cov_10_yz.fits
/output/base/directory/2_1_Cov_10_zx.fits
/output/base/directory/2_1_Cov_10_zy.fits
/output/base/directory/2_1_Cov_10_zz.fits

Notice, there are now nine files for each averaging kernel target depth. The important
averaging kernels are the diagonal ones (xx, _yy, and zz). The off-diagonal averaging
kernels (_xy, _zx, etc.) do not really make sense and may be removed in a future release.

GUIDE TO USING TIME-DISTANCE INVERSION SOFTWARE: RLS 11

3. POSSIBLE ERRORS

The files errorHandler.h *ErrorMessages.h, and scripts/messages.py contain most of the
errors reported by the software. Third party software packages report a few additional
errors. These include error messages from CFITSIO, LAPACK, and FFTW which the
inversion software catches and replaces with error messages contained in errorHandler.h.
Some error messages from CFITSIO library propagate without wrapping or replacement.

Generally, the errors come from unexpected input, runtime complications or a problem
writing to files.

e Unexpected input:
— matrix and vectors of incompatible sizes
— matrix and vectors are too large
— input files don’t exist
e Run-time complications:
— Linear equation solve fails to converge. The resulting output is NaN and an
error message is reported.
— Out of memory error; check that all mallocs are successful, otherwise, report
error and abort.
e Problems with output:
— cannot write output files
— directory does not exist

