
NOTES FOR THE INVERSION CODE

BIRCH

1. Inversions for a scalar model

We assume that the relationship between the input travel-time maps d, the kernels K,
the model m, and the noise n is given by

(1) di(x) = ni(x) +

∫ ∫ ∫
Ki(x

′ − x, z)m(x′, z) dx′dz ,∀i

where x = (x, y) denotes horizontal position and z is height with z = 0 labeling the
photosphere. Notice that this assumes translation invariance of the kernel functions. The
index i labels the different travel-time maps (i.e., different distances and/or filters).

The goal of the inversion is to use knowledge of d and K and the statistics of n to
estimate the model m. We will begin by applying the MCD approach (Jacobsen et al.
1999) to equation (1). In the horizontal Fourier domain we have:

(2) di(k) = ni(k) + (2π)2
∫
K∗i (k, z)m(k, z) dz ,∀i,∀k

where k = (kx, ky) is the horizontal wavevector and the superscript ∗ denotes the complex
conjugate.

Assume that at each k, the z dependence of the model can be reasonably approximated
as a sum over some basis functions φ(z) (e.g. b-splines)

(3) m(k, z) =
N∑
j=1

bj(k)φj(z) ,

where the choice of the set of basis functions will depend on the problem we are trying to
solve.

Equation (2) is then

(4) di(k) = ni(k) +
∑
j

M∗ij(k)bj(k) , ∀i,∀k

where the matrix M is given by the projection of the kernel of index i against the basis
function of index j:

(5) Mij(k) = (2π)2
∫
K∗i (k, z)φj(z)dz
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1.1. RLS inversion. In general, the matrix M will be very badly conditioned and we can’t
just solve the equations directly. There are a number of options. Here we will use the RLS
approach with a Tikhonov-type regularization (e.g. [Kosovichev, 1996], [S. Couvidat et al.,
2004] in the context of local helioseismology). We will look to minimize a combination of
the misfit between the model and data while simultaneously controlling some other aspect
of the model (e.g., amplitude or smoothness). Define a cost function

(6) X[b] =
∑
i

1

σ2i

di −∑
j

Mijbj

2

+ λ2
∑
ij

biRijbj

where λ is a regularization parameter, R is symmetric positive-definite matrix (more later
on this), and σi is the noise estimate on measurement di (in reality, we need to treat the
the full error covariance, this is a straightforward generalization and can be taken care of
later). The first term in the above equation is the misfit between the model and the data.
The second term is the ”regularization term”, which is a penalty against some property of
the solution b. The parameter λ controls the relative importance of these two terms.

We minimize X by demanding ∂bkX = 0,∀k. This gives

(7) 0 = −
∑
i

1

σ2i

di −∑
j

Mijbj

Mik + λ2
∑
j

Rkjbj

define for later the diagonal matrix C−1ij = 1/σ2i . Then the above reduces to the matrix
equation

(8)
[
MTC−1M + λ2R

]
b = MTC−1d

and

(9)
[
MHC−1M + λ2R

]
b = MHC−1d

This is the equation that we want to solve at each k. Note, MH is the transpose and
complex conjugate of M . Consider the case: K = i, where i =

√
−1, d = 1, and switching

notation, K = M , m = b, then minimizing

X2 = ||Km− d||22
= (Km− d)∗(Km− d)

= K∗Km∗m−K∗m∗d−Kmd∗ + d∗d

= m∗m− (−i)m∗ − im+ 1

= m = mr + imi

= m∗m+ im∗ − im+ 1

= m2
r +m2

i + 2mi + 1

= m2
r + (mi + 1)2,m = −i,mr = 0,mi = −1

1.2. The regularization matrix.
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1.2.1. amplitude. Suppose we want to control the amplitude of the solution m(x, z). We
want the cost function be an approximation to

(10) I[m] =

∫ ∫ ∫
[m(x, z)]2 dxdz .

In the horizontal Fourier domain, it is the same

(11) I[m] =

∫ ∫ ∫
[m(k, z)]2 dkdz .

At each k, we need to control
∫
m(k, z)2dz. Insert the expansion in terms of basis functions,

and we get

(12) I[b] =
∑
ij

bi

[∫
φi(z)φj(z)dz

]
bj

which is in the form we want, and we see that R is given by

(13) Rij =

∫
φi(z)φj(z)dz

1.2.2. first derivative.

1.2.3. second derivative.

1.3. First Project for RLS inversion of scalar. First thing to look at is given a matrix
M , and set of data d, a set of errors σ, and regularization matrix R, solve equation (8) for
a number of λ. Here we are working at a single k (each k has z-dimension only). Compute
averaging kernels (see below) and error estimates for the output models (see below).

1.4. Second project for RLS inversion of scalar. Generalize the code from previous
section to solve for many k. we need to talk about formats for the input files, etc.

Solve equation (9) for a number of λ. Compute averaging kernels (see below) and error
estimates for the output models (see below).

1.5. Third project. Generalize to a full noise covariance matrix.

(14) x = (x, y)

(15) ni(x)

The noise covariance is an input file and it contains Cij(x, y). Here, i is an index into the
different travel-time maps.

(16) Cij(x, y) = Cij(x) = E[ni(x
′)nj(x

′ + x)]

or

(17) C(r2 − r1) = E[n(r2)n(r1)]

which is the expected input file for the noise covariance. From here, there are two options
for transforming and inverting the noise covariance.
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(1) C(1)(k) = FFT [C(r2 − r1)]
(2) C(2)(k) = E[n∗(k)n(k)] = factorC(1)(k)

We follow the second option and find the factor,

Cij(k) = E[n∗i (k)nj(k)]

=
1

(2π)4

∑
x1

∑
x2

E[ni(x1)nj(x2)]e
ik·(x1−x2)

=
N2

(2π)2
1

(2π)2

∑
x

Λij(x)e−ik·x

Cij(n) =
N2

(2π)2
Λij(k)

The factor is N2

(2π)2

1.6. Averaging Kernels. Averaging kernels A describe the way in which the output
model m is expected to be related to the actual (true) model m̃. The expected value of b
is given by

(18) E[b] = FMb̃

with F =
[
MHC−1M + λ2R

]−1
MHC−1. The operator E denotes expected value (ensem-

ble average) and b̃ is the true model. The above shows that even if we average together

many inversion results, we don’t in general recover the true expansion coefficients b̃. The
relationship between the expectation for b and the true coefficients is E[b] = Ab̃ with
A = FM . The matrices A are the averaging kernels. In an inversion that we did not have
to regularize, we would have the A equal to the identity (insert λ = 0 into the above)

1.7. Noise Propagation. Look for the formal error in b due to the noise n:

(19) bi − E[bi] = Fijnj

so then, old equation,

(20) Cov [bi, bj ] = E[Fiknk, Fjl, nl] = FikCklFjl

New equation,

(21) Cov [bi, bj ] = E[F ∗ikn
∗
k, Fjl, nl] = F ∗ikCklFjl

so the full error covariance of the output FCFH . This is missing a factor since C(2)(k) =

E[n∗(k)n(k)] = N2

(2π)2
C(1)(k).
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[
MHC−1M + λ2R

]
b = MHC−1d

b(k) = F (k)n(k)

C(x′) = E[b(x)b(x+ x′)] =

(
2π

N

)4∑
k1

∑
k2

F ∗(k1)F (k2)E [n∗(k1)n(k2)] e
ik2(x+x′)−ik1x

E [n∗(k1)n(k2)] = C(k1)δk1,k2

=

(
2π

N

)4∑
k

F ∗CFeikx
′

=

(
2π

N

)2(2π

N

)2∑
k

F ∗CFeikx

=

(
2π

N

)2

FFT [F ∗CF ]

Now, the full error covariance of the output is
(
2π
N

)2 [
FCFH

]
.
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2. MCD RLS inversion for many model params

Now generalize to the case where the model is a set of values at each location (x, z).
Examples include inversions for a flow field, or for multiple structure variables (e.g. sound
speed, density, pressure).
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