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ABSTRACT

The scattering of f-modes by magnetic tubes is analyzed using three-dimensional numerical simulations. An f-mode
wave packet is propagated through a solar atmosphere embedded with three different flux tube models that differ
in radius and total magnetic flux. A quiet-Sun simulation without a tube present is also performed as a reference.
Waves are excited inside the flux tube and propagate along the field lines, and jacket modes are generated in
the surroundings of the flux tube, carrying 40% as much energy as the tube modes. The resulting scattered wave
is mainly an f-mode composed of a mixture of m = 0 and m = ±1 modes. The amplitude of the scattered
wave approximately scales with the magnetic flux. A small amount of power is scattered into the p1-mode. We
have evaluated the absorption and phase shift from a Fourier–Hankel decomposition of the photospheric vertical
velocities. They are compared with the results obtained from the ensemble average of 3400 small magnetic elements
observed in high-resolution MDI Doppler datacubes. The comparison shows that the observed dependence of the
phase shift with wavenumber can be matched reasonably well with the simulated flux tube model. The observed
variation of the phase shifts with the azimuthal order m appears to depend on details of the ensemble averaging,
including possible motions of the magnetic elements and asymmetrically shaped elements.
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1. INTRODUCTION

The work by Braun et al. (1988) has shown that sunspots can
absorb up to half the power of incident p-modes. At the same
time, part of the wave flux is scattered. The p-mode absorption
and scattering phase shifts depend on the frequency, degree,
radial order, and azimuthal order of the incident mode (Bogdan
et al. 1993; Braun 1995) and also on the magnetic structure,
making the study of the scattering a promising way to infer the
subsurface structure of sunspots and other magnetic features. In
these studies, the authors used Hankel analysis, a method that
decomposes the p-modes into inward- and outward-propagating
waves in annuli surrounding the sunspot.

Several mechanisms have been proposed to explain the ob-
served absorption, mode conversion (Cally & Bogdan 1993)
being the principal candidate. When an acoustic wave encoun-
ters a magnetic field concentration, it is split into fast and slow
modes. This mode transformation occurs at the height where
the Alfvén and sound velocities are comparable, since at that
layer the distinction between the modes is small. Below this
height, the sound speed is higher than the Alfvén speed and the
modes are effectively decoupled. The fast mode is an acoustic-
like wave, while the slow mode is similar to an Alfvén wave and
propagates along field lines removing energy from the acoustic
wave. The observed absorption of f-modes can be accounted for
by a vertical magnetic field (Cally et al. 1994), but the p-mode
absorption obtained from this model is insufficient. However,
the presence of inclined magnetic field produces significant in-
creases in absorption with a peak at around 30◦ (Crouch &
Cally 2003), which are consistent with observed values (Cally
et al. 2003). Other mechanisms may also play a role. One of
them is resonant absorption (Hollweg 1988; Rosenthal 1992).
It may occur when the flux tube has a smooth variation of the
magnetic field rather than discontinuous, and it represents ab-
sorption of wave energy by the transition layer when the incident

acoustic waves resonantly excite MHD waves in the magnetic
structure. However, the amount of absorption achieved by this
mechanism cannot explain the observed loss of p-mode power.
D’Silva (1994) points out that apart from this absorption pro-
duced by the dissipation of the p-modes in resonant layers and
mode conversion, mode mixing also takes places. In this pro-
cess, the power of an incident p-mode with a certain frequency
and degree l can be dispersed into an outgoing p-mode with the
same frequency, but different degree.

Flux tubes are a key feature to understand solar magnetic
activity. They are spread all over the solar surface and couple
different layers of the solar atmosphere. It has been proposed
that magnetic flux tubes can act as wave guides, being one of
the possible sources that supply energy to the upper layers to ac-
count for the chromospheric and coronal heating (Jefferies et al.
2006). The interaction of p-modes with thin flux tubes excites
tube waves, including sausage waves, which are axisymmetric,
longitudinal waves driven by variations in the total pressure, and
kink waves, whose restoring force is magnetic tension and buoy-
ancy, producing transversal oscillations. These waves propagate
upward or downward and extract energy from the p-modes of
the acoustic cavity (Bogdan et al. 1996; Hindman & Jain 2008;
Jain et al. 2009). The kink mode is driven by the distortion of
the tube produced by the harmonic flow field of the p-modes,
while the sausage wave is excited by the pressure perturbations
associated with the acoustic waves (Bogdan et al. 1996). These
mechanisms are different from mode conversion, discussed in
the previous paragraph, where fast and slow magnetoacoustic
waves exchange energy due to their strong coupling in the region
where the sound and Alfvén speeds are comparable. Recently,
Daiffallah et al. (2011) used numerical simulations to study the
scattering of an f-mode by vertical flux tubes of different sizes,
finding that the scattering by tubes with small radius is domi-
nated by the kink mode, while the sausage mode is dominant
for large tubes. This result coincides with the earlier work by
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Bogdan et al. (1996), who studied analytically the nature of
wave interactions with thin flux tubes (Spruit 1981) and found
that the kink mode is the dominant tube wave. The thin flux tube
approximation assumes that the diameter of the tube is smaller
in comparison to the pressure scale height, and thus the horizon-
tal variations inside it can be neglected. Hanasoge et al. (2008)
evaluated the scattering matrix associated with an f-mode that
interacts with a thin flux tube in a stratified atmosphere, focusing
on the kink mode excited in the magnetic tube. They found that
most of the scattered wave corresponds to an f-mode with am-
plitude of 1.17% and with a phase shift of about 50◦ relative to
the incident wave, overestimating the observed value by a factor
of 8.8 (Duvall et al. 2006). On the other hand, the recent work by
Hindman & Jain (2012) analyzed the axisymmetric scattering of
p-modes, mediated through the excitation of sausage waves on
the flux tube, instead of the kink mode. They obtained a small
absorption due to the poor coupling between the f-mode and the
sausage mode for thin flux tubes, as pointed out by some of the
works previously described in this paragraph.

Although these theoretical works have provided the first
predictions about the modification of the solar wave field
produced by flux tubes, as far as our concern no attempt has
been made to observationally measure the detailed properties
of the scattering produced by these small magnetic elements,
with the exception of the estimates of amplitude and phase of
monopole and dipole scattering by Duvall et al. (2006). One
of the objectives of this work is to present the measurement of
the phase shift and its variations with the azimuthal orders m
and degree L. These data are a fundamental input to confront
with the theory. On the other hand, most theoretical studies of
this topic have been based on an analytical development. All
of them have been restricted by some limitations, including
the use of the thin flux tube approximation, the lack of the
gravitational stratification, the analysis of a polytrope instead
of a realistic solar atmosphere, or some constraints in the
process that mediates the scattering. Numerical simulations are
a more versatile approach and allow us to study more general
situations.

In this work, we study the scattering of an f-mode by flux tubes
of different radius and magnetic flux using numerical simula-
tions. As discussed previously, it is well known that thin flux
tubes support sausage and kink modes (Roberts & Webb 1978;
Spruit 1981). On the other hand, in unstratified atmospheres
permeated by homogeneous magnetic fields one would expect
the propagation of pure fast and slow magnetoacoustic waves
and Alfvén mode. In atmosphere stratified by gravity (for ex-
ample) the fast, slow, and Alfvén waves are coupled in general
and this distinction between modes no longer applies, but even
in these cases it is useful to refer to this simple picture to discuss
the properties of fast and slow magnetoacoustic-like waves (in
regions where the sound and Alfvén speed differ greatly). In
the case of thick flux tube models, representative of a sunspot,
for example, acoustic waves can be converted into these modes
by means of mode conversion. The flux tube models presented
in this paper correspond to an intermediate case between these
two extremes. We expect a smooth transition (with increasing
radius) from mostly excitation of the kink and sausage modes
at small radius to excitation of waves that look like the fast
and slow magnetoacoustic waves of a thick flux tube (at large
radius). However, in this study we made no attempt to distin-
guish between either the different wave modes that are present
or the mechanisms that generate them. Instead, we will refer to
“tube modes” or “tube waves excitation” indistinctly. We aim

to carry out a direct comparison between the numerical and
observational results by performing a Hankel analysis of the
data obtained from the interaction of an f-mode with flux tubes.
The organization of the paper is as follows. In Section 2, we
introduce the observations used in this study. Section 3 briefly
describes the numerical code and the setup of the simulations. In
Sections 4 and 5, we present the tube mode excitation, the scat-
tering, and the jacket modes produced in these simulations. The
results of the Hankel analysis are shown in Section 6, includ-
ing a comparison with observations, and finally we conclude
with a summary of our calculations and a discussion of their
applicability to understanding observations.

2. OBSERVATIONS

The motivation of this paper is to understand how small mag-
netic elements affect f-mode wave propagation. The comparison
of observations of magnetic elements on the Sun with equiva-
lent measurements obtained from numerical simulations can
help infer the properties of the solar magnetic elements. These
comparisons can also be used to assess the limitations of, and
potentially improve, the observational techniques.

Observations of solar magnetic elements, using Doppler-
grams obtained from the Michelson Doppler Imager (MDI;
Scherrer et al. 1995) on board the Solar and Heliospheric Ob-
servatory, were analyzed using the Fourier–Hankel spectral de-
composition method, as described in detail by Braun (1995).
The goal of the analysis is the decomposition of the observed
line-of-sight velocities into inward- and outward-propagating
waves in an annular region centered on the flux tubes. This al-
lows us to detect the effect of a magnetic feature on the wave
field through the difference between the outward and inward
radially propagating Hankel components. In a spherical polar
coordinate system (θ, φ) the wave components take the form

Ψm(θ, φ, t) = ei(mφ+2πνt)

× [
Am(L, ν)H (1)

m (Lθ ) + Bm(L, ν)H (2)
m (Lθ )

]
,

(1)

where m is the polar azimuthal order, H (1)
m and H (2)

m are Hankel
functions of the first and second kind, respectively, t is time, ν is
the temporal frequency, L ≡ [l(l+1)]1/2, where l is the spherical
harmonic degree of the mode, and Am and Bm are the complex
amplitudes of incoming and outgoing waves, respectively. For
small fields of view, such as the data we consider in this paper,
the expansion is well approximated in terms of Hankel functions
as opposed to Legendre functions.

The Hankel analysis was centered on the locations of small
magnetic elements, as well as a larger set of control locations
offset by fixed distances from each magnetic element. There
were no active regions present in the MDI observations used. We
hereafter refer to the control locations as “quiet-Sun” regions,
although no attempt was made to select (or exclude) these
locations based on magnetic properties of the MDI pixels.
Thus, the primary difference between the “magnetic feature”
and “quiet-Sun” locations is that the former coincide with the
peaks of small magnetic flux regions while the latter are pseudo-
random locations. The data consist of the set of 102 “high-
resolution” MDI Doppler and magnetogram datacubes, each
with a 4 hr interval, which has been previously used by Duvall
et al. (2006) to measure travel-time kernels for time–distance
helioseismology. Each of the 102 regions is confined to the
MDI “high-resolution field,” which spans 11 × 11 arcmin and
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Figure 1. Absolute value of the magnetic flux density, after averaging over
4 hr, for one of the 102 MDI regions. White circles indicate the position of the
magnetic elements used for the Hankel analysis, and their size corresponds to
the outer annulus.

is centered about 160 arcsec north of disk center (Scherrer et al.
1995). The data are obtained from all of the MDI full-resolution
observations of at least 4 hr in duration and spanning the years
1996 and 1997. The cadence of both the Dopplergrams used
in the helioseismic analysis and the magnetograms used for
identifying small magnetic elements is 60 s.

The criteria and procedure for the selection of the magnetic
elements are described in detail by Duvall et al. (2006). The
average magnetic feature has a peak magnetic flux density
of 76 G and an FWHM of 2.6 Mm, as determined from a fit
by a two-dimensional (2D) Gaussian function to the averaged
magnetogram (Duvall et al. 2006). We used locations of the
features from tables provided to us by Duvall. In total, nearly
3400 locations of features were used. This is a somewhat larger
sample than the (approximately) 2500 features used by Duvall
et al. (2006) since we used features closer (i.e., as close as
40 pixels) to the edge of the datacubes than used in that work.
There were four quiet-Sun locations offset from each magnetic
feature used, thus yielding a quiet-Sun control sample of 13,600.
Figure 1 shows the absolute value of the time-averaged magnetic
flux density corresponding to one of the Doppler datacubes,
showing the sample of features for that datacube.

The Fourier–Hankel decomposition was performed for all
locations, and the coefficients Am(L, ν) and Bm(L, ν) were
determined for waves within an annular domain with colati-
tude relative to the center point of the analysis θ ranging from
θmin = 10 pixels to θmin = 40 pixels, where a pixel corre-
sponds to 0.034 heliocentric degrees (or 0.413 Mm). Details
of the decomposition method are described by Braun (1995).
The method consists of discrete numerical transforms in the
azimuthal, colatitude, and temporal domains. The azimuthal
transform is computed for integer values of azimuthal order
−10 � m � 10 at the highest values of L. Not all of these orders
m are computed (or useful) for smaller values of wavenumbers
(see Braun 1995, for details). The values of L and ν for which
the relative colatitude and temporal transforms are computed
compose a grid with spacing ΔL = 2π/(θmax − θmin) = 352.9
and Δν = 1/T = 0.0694 mHz, where T is the duration of the
observations (4 hr).

We focus in this paper on comparisons between observations
and models of phase shifts between the outgoing and incoming
wave components. Our primary motivation for this is that the
measurement and interpretation of observations of amplitude
differences (e.g., due to absorption) are affected by factors such
as the presence of background convective (or instrumental) noise
and by details of the solar excitation and damping mechanisms
of the waves. We make no attempt to realistically include

Figure 2. Top panel: variation of the observational phase shift with L for the
azimuthal order m = 0 (solid line), m = 1 (dashed line), and m = 2 (dashed-
dotted line). Bottom panel: variation of the observational phase shift with m
at L = 1412. The error estimates are obtained from an average over m of the
absolute value of the phase-shift difference between +m and −m, divided by√

2. This estimation assumes that the error does not depend on m.

these in the numerical models described later. This challenges
our ability to make meaningful comparisons of absorption
coefficients, for example. Some of these effects further restrict
the measurement of phase shifts to those modes (typically
with lower wavenumbers and temporal frequencies) that have
lifetimes significantly longer than the time the waves take to
propagate across the entire annulus (Braun 1995).

To determine feature-averaged phase shifts, we compute the
summations, over the magnetic-element and quiet-Sun ensem-
bles, of the product Bm(L, ν)A∗

m(L, ν), where the asterisk de-
notes the complex conjugate. The effects of a “spurious phase
shift” caused by the leakage of wave amplitudes across the
wavenumber-frequency domain (see Braun 1995) are removed
by considering the relative difference in the phase shift between
the magnetic-element and quiet-Sun ensembles. Thus, we com-
pute a “corrected” ensemble-averaged product,

〈
BmA∗

m

〉′
me = |〈BmA∗

m

〉
me|ei[arg(〈BmA∗

m〉me)−arg(〈BmA∗
m〉qs)], (2)

where the brackets indicate the ensemble average over the
samples of magnetic elements (me) and quiet-Sun (qs) locations,
and the explicit dependencies of Am and Bm on L and ν are
omitted for clarity.

An additional averaging across the width of the f-mode ridge,
at each wavenumber L, is performed, such that the resulting
phase shift is given by

δobs(L) = arg

(∫ ν0(L)+δν

ν0(L)−δν

〈Bm(L, ν)A∗
m(L, ν)〉′medν

)
, (3)

where ν0(L) is the f-mode frequency at wavenumber L. The
window δν is determined by an inspection of the power spectra
|Am(L, ν)|2 such that it contains most of the f-mode ridge power.
The value of δν increases from 0.3 mHz at L = 706 to 0.7 mHz
at L = 1765. Figure 2 shows the observational phase shift,
including its variation with L for several values of m, and its
variation with m at L = 1412. In the next section, we describe
the model we construct to reproduce these phase shifts.
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Figure 3. Properties of the flux tubes at the axis. Top panel: sound speed (solid line) and Alfvén speed (dashed line) for the 560 km radius tube; middle panel: β

parameter for the tubes with radius of 170 km (dashed line), 370 km (solid line), and 560 km (dotted line); bottom panel: pressure scale height.

3. NUMERICAL PROCEDURES

We have solved numerically the nonlinear three-dimensional
(3D) MHD equations using the code Mancha (Khomenko
& Collados 2006; Felipe et al. 2010). The code solves the
equations for perturbations, which are obtained by subtracting
the equations of initial magnetohydrostatic equilibrium from
the system of nonlinear MHD equations. Spatial derivatives
are discretized using fourth-order centered differences, and the
solution is advanced in time using a fourth-order Runge–Kutta
scheme. It is stabilized by artificial diffusion terms, and its
parallel design is based on a domain decomposition scheme. A
perfectly matched layer (PML) boundary condition (Berenger
1994) is applied in order to avoid wave reflections.

As a magnetostatic background, we have used flux tube
models constructed using the method of Pneuman et al. (1986),
following the routines by Khomenko et al. (2008). We consider
three flux tube models: the small flux tube has a radius of 170 km
and a photospheric magnetic field strength around 1600 G, with
slight variations with height and radial distance inside the tube;
the medium flux tube has the same magnetic field strength,
but a radius of 370 km; and the larger flux tube has also
1600 G photospheric field strength and a radius of 560 km.
The external atmosphere outside the flux tube is the quiet-
Sun model S (Christensen-Dalsgaard et al. 1996) stabilized
following the method described by Parchevsky & Kosovichev
(2007) to avoid convective instability. The radial transition
between the magnetic and the non-magnetic atmosphere is
performed smoothly using a cosine that reduces the magnetic
field from its maximum to zero over 100 km in order to avoid
numerical problems due to the discontinuity in the magnetic
field. For the small flux tube, the magnetic field is strictly zero for
radial distances higher than 250 km, in the case of the medium

tube it vanishes at 450 km, while for the larger tube the magnetic
field is zero beyond a radius of 630 km. Figure 3 shows the
characteristic velocities: the β = Pgas/Pmag parameter, where
Pgas is the gas pressure and Pmag the magnetic pressure; and the
pressure scale height at the axis of the tubes.

We use a local Cartesian geometry defined by the horizontal
coordinates x and y and the vertical coordinate z. The computa-
tional domain spans from z = −6 Mm to z = 0.6 Mm, where
z = 0 corresponds to the height where the optical depth is unity
at a wavelength of 5000 Å in the quiet-Sun atmosphere. The
horizontal extent of the domain is x ∈ [−42.3, 32.3] Mm and
y ∈ [−32.5, 32.5] Mm, with the axis of the vertical flux tube
located at x = 0 and y = 0 Mm. The spatial step is 50 km in the
three spatial dimensions. In the vertical direction, PML layers
with a thickness of 5 grid cells were set in the top and the bottom
boundaries, so the physical domain spans from z = −5.75 Mm
to z = 0.35 Mm. In the x-direction, a 10-point PML was used,
while in the y-direction we set periodic boundary conditions
with no PML.

We aim to study the scattering of an f-mode by the flux
tube. The vertical velocity of an f-mode wave packet that
propagates from left to right in the x-direction in a horizontally
homogeneous atmosphere is described by Cameron et al. (2008)
as

vz(x, y, z, t) = Re
∑

k

Ake
kzeik(x−x0)−iωkt , (4)

where Re means real part, Ak are complex amplitudes, x0
indicates the initial position of the wave packet, t is time, and
ωk = √

g0k is the eigenfrequency at wavenumber k. This wave
packet is uniquely determined by the initial conditions:

v = Re
∑

k

(ix̂ + ẑ)Ake
kz+ik(x−x0), (5)
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Figure 4. Vertical cuts of the z-component of velocity (left panel) and the x-component of the velocity (right panel) scaled with factor ρ
1/2
0 at t = 100 minutes in the

presence of a 370 km radius flux tube after subtracting the quiet-Sun simulation. The white–black colors mean positive–negative velocity directions; the range of the
gray scale is the same in both panels. Vertical solid lines represent the boundaries of the flux tube. Vertical dashed lines correspond to the outer limits of the jacket
mode region (see Figure 7), although they are only visible close to the tube.

p1 = Re
∑

k

iAkω
−1
k ρ0g0e

kz+ik(x−x0), (6)

ρ1 = Re
∑

k

iAkω
−1
k ρ0H

−1
ρ ekz+ik(x−x0), (7)

where p1 and ρ1 are the Eulerian perturbations in pressure and
density, respectively, ρ0 is the unperturbed density, g = −g0ẑ is
the acceleration due to gravity, ẑ is a unit vector pointing upward,
and Hρ is the density scale height given by the expression

1

Hρ

= 1

Hp

+
1

T0

dT0

dz
, (8)

where T0 is the background temperature and Hp = c2
s /(γg0)

is the pressure scale height, where γ is the ratio of specific
heats and cs is the sound speed. Equations (6) and (7) are
obtained from the initial displacement vector for an f-mode
(Equation (19) from Cameron et al. 2008) and its relations with
the perturbations in density and pressure (e.g., Equations (4)
and (5) from Cameron et al. 2008, respectively).

Following Equations (5)–(7), we have introduced an f-mode
at t = 0 s located at x0 = −37.3 Mm and spanning along
the full domain in the y-direction. As an initial distribution of
f-mode amplitudes Ak as a function of L = kR�, where k
is the horizontal wavenumber and R� is the solar radius, we
have imposed a Gaussian centered at L = 1000 and with a
half width of 600. This is an unrealistic distribution, but we are
interested in quantifying the absorption and phase shift at each L
rather than reproducing the solar spectrum. We have chosen the
distribution of f-mode amplitudes in order to get enough power
in the wavenumbers of interest. Since we took real values for Ak,
all waves with different k are in phase at the starting position.
We have imposed a small amplitude in order to be sure that the
simulation remains in the linear regime. The initial location of
the wave packet x0 was selected to introduce the wave outside
of the outer circumference of the Hankel analysis. The duration

of the simulation is T = 180 minutes, which corresponds to the
total time that the wave packet needs to travel through the entire
domain in the x-direction. The output is saved every minute,
producing a set of 181 3D cubes that provide the temporal
evolution of the three components of the velocity, pressure,
density, and the three components of the magnetic field for the
entire computational domain.

Together with the 3D simulations of the atmosphere with the
flux tube, we have also performed a 2D simulation in a quiet-Sun
atmosphere, without the flux tube being present, but otherwise
using exactly the same configuration as in the flux tube model
computation. According to the setup of the 3D simulation, all the
grid rows in the x-direction for a corresponding y are equivalent,
except for the presence of the tube, which allows us to use the
2D quiet-Sun simulation as a reference to obtain the scattered
wave as the difference between both simulations by subtracting
the 2D simulation from all the xz planes in the 3D computation.

4. f-MODE SCATTERING

When the f-mode reaches the flux tube, different tube waves
are excited. These waves propagate upward and downward along
the magnetic field lines, extracting energy from the acoustic
cavity and producing an effective absorption of the f-mode
energy. The tube waves are visible in Figure 4, which shows the
z velocity (left panel) and x velocity (right panel) scaled with
factor ρ

1/2
0 at t = 100 minutes in a region in and around the

flux tube. As these waves propagate downward, their amplitude
drops due to the higher density at deeper layers, while their
wavelength also decreases because of the lower Alfvén velocity.

Figure 5 shows the vertical velocity at two different time steps
for the simulation with the medium flux tube with R = 370 km.
The left-hand column corresponds to t = 80 minutes, just before
the main part of the wave packet reaches the flux tube, while the
right-hand column illustrates the simulation at t = 100 minutes.
The top panels represent the scattered waves in an xy plane at
z = −0.5 Mm, while the middle and bottom panels show the
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Figure 5. Vertical velocity at t = 80 minutes (left panels) and t = 100 minutes (right panels) for the simulation with a 370 km radius magnetic flux tube. Top:
horizontal cut at z = −0.5 Mm of the scattered wave; middle: horizontal cut at z = −0.5 Mm of the full wave field; bottom: vertical cut at y = 0 Mm for the full wave
field. The white–black colors mean positive–negative velocity directions; the gray scale in the top panels is 10 times more saturated. In the top and middle panels the
circle at x = 0 Mm and y = 0 Mm indicates the location of the tube, while the dashed line is the position of the cut shown in the bottom panels. In the bottom panels,
the vertical solid lines are the boundaries of the tube, and the horizontal dashed line is the position of the cuts shown in the top and middle panels. In the full wave
field plots the tube modes are hardly visible because their amplitude is small compared to the f-mode. See Figure 4 for a detailed plot of the tube wave velocities.

full wave field in an xy cut at the same height and an xz cut
at y = 0 Mm, respectively. Note that, in order to improve
visualization, the color scale is different in the top two panels,
which are 10 times more saturated.

The scattered wave is obtained by subtracting the quiet-Sun
2D simulation from every xz plane along the y-direction of
the flux tube simulation. In the 170 km radius flux tube, the
amplitude of the vertical velocity of this wave is 0.020 times
the amplitude of the incident f-mode, while for the medium
tube (with 370 km radius) the ratio between both amplitudes
is 0.093. In the case of the big tube (with 560 km radius) the
ratio of the amplitudes is 0.235. Since all tubes have the same
magnetic field strength, their magnetic flux is proportional to
R2, where R is the tube radius. We find that the scattering
amplitude approximately scales with the magnetic flux, that is,
with R2.

The oscillations of the waves that travel along the tube are
basically the generators of the scattered wave, which mainly
corresponds to an f-mode, although a small amount of power
is also scattered into the p1-mode (see Section 6.3). Since the
scatterer is axisymmetric, no scattering can be produced from
an azimuthal order m to a different one. In Figure 5, it is seen
that the scattered wave produced by the 370 km radius tube is
composed by a mixture of m = 0 and m = ±1 waves, dominated
by the later ones.

5. JACKET MODES

In addition to the excitation of tube waves and the scattering
into different wave modes presented in the previous sections,
a scattering object can also generate jacket modes in its
surroundings. Jacket modes were first discussed in the context
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Figure 6. Total vertical wave energy flux inside the magnetic flux tube with 560 km radius (dotted line), the tube with 370 km radius (solid line), and the tube with
170 km radius (dashed line). All cases are normalized to the absolute value of the flux of the 560 km radius tube at z = −0.5 Mm.

of solar acoustic oscillations by Bogdan & Cally (1995). They
consist of a continuous spectrum of horizontally evanescent
wave modes that propagate vertically in the non-magnetic region
around the flux tube. The jacket modes are necessary because
the vertically evanescent f- and p-modes alone cannot ensure the
continuity of pressure and horizontal velocity of the oscillations
across the flux tube boundary, due to the presence of the tube
waves that propagate downward at large depth.

The jacket modes obtained in the medium tube simulation can
be seen in Figure 4 as the downward propagating waves outside
the boundaries of the tube with small vertical wavelength,
especially in the horizontal velocity (right panel).

The energy extracted by the flux tube from the f-mode goes to
the tube waves and the jacket modes, which transport the energy
upward and downward, removing energy from the acoustic
cavity. It is interesting to evaluate how the energy is distributed
among these modes. In this analysis, we will only consider the
energy that goes to deeper layers, represented by a negative
energy flux, since the proximity of the top boundary hinders
obtaining a reliable positive flux into the atmosphere. The wave
energy fluxes were calculated following Bray & Loughhead
(1974). The acoustic energy flux is given by the expression

Fac = p1v, (9)

and magnetic wave energy flux is given by

Fmag = B1 × (v × B0)/μ0. (10)

In these expressions, v and B1 are the perturbed velocity and
magnetic field, respectively, B0 is the background magnetic
field, and μ0 is the magnetic permeability.

In the case of the waves inside the tube, the acoustic flux inside
the tube can be obtained as the difference between the acoustic
flux in the simulation with the flux tube being present and the
quiet-Sun simulation. With regard to the magnetic wave flux, it
is directly obtained from the application of Equation (10) to the
region where the magnetic field is different from zero. Adding
both fluxes, we retrieve the total energy flux carried downward
by the tube waves. At each height, we have summed the energy
flux corresponding to all the points inside the tube for all the
time steps between the time that the f-mode wave packet reaches
the tube and the time that the wave packet leaves it. The result is
shown in Figure 6, where the variation of the wave energy flux of
the tube waves with the height is plotted. Around z = 0 km, the

total flux vanishes. Above that height, the flux is positive, which
means that the energy propagates upward, and below z = 0 Mm
it is negative, showing a minimum around z = −0.2 Mm in the
case of the two smaller tubes and around z = −0.5 Mm for
the larger tube. As these waves propagate downward, they are
damped by the diffusivity, and their energy flux tends to zero
at about z = −2 Mm in the case of the 370 km and 560 km
radius tubes and at z = −1 Mm for the 170 km radius tube.
The downward wave energy flux for the two bigger tubes is
similar, being 1.6 times higher than that corresponding to the
small tube.

The jacket modes appear in the non-magnetic region, sur-
rounding the magnetic flux tube. Thus, only the acoustic wave
flux contributes to its wave energy. However, some care must
be taken to obtain a correct evaluation of its energy flux. Outside
the flux tube, the scattered wave field (obtained as the difference
between the simulation with the flux tube and the quiet-Sun sim-
ulation) is composed by the scattered wave (fundamentally an
f-mode) and the jacket modes. The difference between the acous-
tic flux in both simulations will correspond to the sum of the
scattered wave and the jacket mode fluxes. To isolate the contri-
bution of the jacket modes, we have filtered out the low vertical
wavenumbers of the scattered velocity in the surroundings of
the flux tube, and we have calculated its acoustic flux using that
velocity in Equation (9). The filter selects the waves with verti-
cal wavenumber higher than 3.14 Mm−1 and, thus, only waves
with vertical wavelength below 2 Mm are considered for the
jacket modes. At the photosphere the jacket modes have a ver-
tical wavelength around 1 Mm. As they propagate downward,
their wavelength is reduced in order to match the decrease of the
wavelength of the tube waves due to the reduction of the Alfvén
speed, showing a 0.45 Mm vertical wavelength at z = −3 Mm.

We have summed the energy flux of the jacket modes in an
annular region surrounding the flux tube at the height where
the downward tube wave energy flux is maximum, that is, at
z = −0.2 Mm for the two smaller tubes and at z = −0.5 Mm
for the larger tube. The annulus is delimited by the radius of the
flux tube in the inner part, and the size of the outer radius varies.
Figure 7 shows the result. In the case of the 370 km radius flux
tube (solid line) the energy flux of the jacket modes increases
with the outer annulus radius until R = 1 Mm. For larger radius
the energy is constant, which means that at larger distances from
the tube there is no energy flux associated with the jacket modes.
Thus, the size of the jacket mode region is about 0.6 Mm around
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Figure 7. Total vertical acoustic wave energy flux of the jacket modes inside
an annular region surrounding the flux tube at z = −0.2 Mm. The inner radius
of the annulus is given by the radius of the flux tube and the outer radius by
the abscissa coordinate. Dotted line: 560 km radius; solid line: 370 km radius;
dashed line: 170 km radius. The two latter cases are normalized to the energy
flux of the tube waves at z = −0.2 Mm, while the 560 km case is normalized
to the energy flux of the tube waves at z = −0.5 Mm.

the tube. The energy flux has been normalized to the absolute
value of the energy of the waves inside the tube at the same
height. We find that the energy carried downward by the jacket
modes is approximately 40% of the tube wave energy for the
370 km tube. With regard to the 170 km and 560 km flux tubes,
a similar size of the jacket mode region is obtained. However, in
these cases the energy transported by the jacket modes is around
16% of the energy extracted by the waves inside the tube.

6. HANKEL ANALYSIS

The numerical simulations were also analyzed using the
Fourier–Hankel spectral decomposition method, as explained in
Section 2. The coefficients Am(L, ν) and Bm(L, ν) are evaluated
from the vertical velocity at z = 0.2 Mm. A different sampling
in L and ν was obtained because of the differences in the
annular domain and duration of the temporal series used. In this
case, the analysis is restricted to the annular region delimited
by the polar angles θmin = 0.00589 rad and θmax = 0.04310
rad, which correspond to a radial distance of Rmin = 4.1 Mm
and Rmax = 30 Mm, respectively. Thus, we obtain a grid
with spacings ΔL = 2π/(θmax − θmin) = 168.8, while the
duration of the simulations T = 180 minutes provides a
Δν = 1/T = 0.0936 mHz. The outer radius of the annulus is
given by the horizontal size of the computational domain. It was
chosen as a compromise: a big enough domain to obtain good
sampling in L, but not too big to avoid very computationally
expensive simulations.

To determine the absorption coefficient, the power of the
ingoing and outgoing Hankel components has been summed
across the ridge of the f-mode in order to retrieve a better signal-
to-noise level. At each given L, the power for the ingoing wave
is determined as

|Am(L)|2 =
∫ ν0(L)+δν

ν0(L)−δν

|Am(L, ν)|2dν. (11)

The frequency window δν was set to approximately 0.3 mHz,
which corresponds to 3–4 frequency bins. The same average is
applied to the outgoing Bm(L, ν) components.

The absorption coefficient αm(L) along the ridge of the
f-mode is then obtained as

αdef
m (L) = 1 − |Bm(L)|2/|Am(L)|2, (12)

and the phase shift is given by Equation (3), without applying
the ensemble sum over magnetic elements (me).

The definition of the absorption coefficient may not corre-
spond to a real dissipation of energy if there is significant mode
mixing present.

We have calculated the absorption coefficient of the simu-
lation with the flux tube (αFT

m (L)) and the quiet-Sun reference
simulation (αQS

m (L)). Although in the latter one the absorption
should vanish, since there is not any scattering element, due to
numerical reasons (numerical diffusivity and interaction with
the top boundary), some absorption appears at high wavenum-
bers. The absorption coefficient measured directly from the
quiet-Sun simulation is given by

αQS
m (L) = 1 −

∣∣BQS
m (L)

∣∣2

∣∣AQS
m (L)

∣∣2 σ (L), (13)

where AQS
m (L) and BQS

m (L) represent the ingoing and outgoing
power of the quiet-Sun simulation, respectively, in the ideal case
where there is no numerical damping. The numerical damping
that produces a different power in the outgoing waves is included
in σ (L). In the same way, from the flux tube simulation we
measure the absorption coefficient as

αFT
m (L) = 1 −

∣∣BFT
m (L)

∣∣2

∣∣AFT
m (L)

∣∣2 σ (L). (14)

We assume that the numerical damping σ (L) is the same in
both simulations, since they use exactly the same configuration.
In the quiet Sun, the ingoing power is equal to the outgoing
power (|AQS

m (L)|2 = |BQS
m (L)|2). Thus, from Equation (13)

we retrieve σ (L) = 1 − αQS
m (L). Taking into account that by

definition the real absorption coefficient produced by the tube is

αm(L) = 1 −
∣∣BFT

m (L)
∣∣2

∣∣AFT
m (L)

∣∣2 , (15)

including Equation (14) and the expression for σ (L) obtained
from Equation (13) in the previous equation, we obtain

αm(L) = αFT
m (L) − αQS

m (L)

1 − α
QS
m (L)

. (16)

In the following, we will discuss the absorption coefficient
obtained after applying this correction.

In Section 4, we discussed qualitatively the properties of the
scattered wave. We have performed the Hankel analysis of that
wave by decomposing in Hankel functions the difference in the
photospheric vertical velocity at z = 0.2 Mm between the wave
field of the simulation with the flux tube being present and the
quiet-Sun simulation. In the simulation with the 170 km radius
magnetic flux tube the analysis reveals that the power of the
components with azimuthal order m = ±1 is 1.70 times higher
than the power of the axisymmetric components with m = 0.
The power in higher azimuthal orders is negligible. For the
medium tube (with radius of 370 km) the power of the m = ±1
components is only 1.19 times higher than that corresponding
to m = 0. This simulation shows a small amount of power in
the azimuthal orders m = ±2. On the other hand, in the 560 km
radius flux tube the dominant azimuthal order of the scattered
wave is the axisymmetric m = 0, whose power is 1.1 times
higher than the power of m = ±1. It shows a significant amount
of power in m = ±2, which is 7.43 times smaller than the power
in m = 0.
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Figure 8. Top panel: variation of the absorption coefficient with L for the
azimuthal orders m = 0 (dashed line) and m = 1 (solid line). Bottom panel:
variation of the absorption coefficient with m at L = 2364. In both panels,
asterisks correspond to the simulation with a flux tube with a 170 km radius,
diamonds to the flux tube with a 370 km radius, and crosses to the flux tube
with a 560 km radius.

6.1. f-mode Absorption

The top panel of Figure 8 shows the absorption coefficient as
a function of L for the two lowest azimuthal orders determined
for each of the magnetic flux tubes. On the one hand, in the
case of the flux tube with a radius of 170 km (asterisks) the
highest absorption is retrieved for the azimuthal order m = ±1.
It reaches a value above 0.1 at L = 2500. The azimuthal order
m = 0 also shows a significant amount, presenting an absorption
higher than half of that corresponding to m = ±1. For the rest
of the azimuthal orders the absorption is very low, although high
wavenumbers show some absorption at m = ±2. The variation
of the absorption with the azimuthal order is clearly shown in
the bottom panel of Figure 8 for L = 2364. It exhibits a perfect
symmetry around m = 0, with clear peaks at m = ±1 and
dropping to zero at higher m.

On the other hand, for the medium flux tube with a radius
of 370 km (diamonds) the measured absorption coefficient is
generally higher. The highest absorption is also obtained for
|m| = 1, but in this case its value is around 0.3 at L = 2500.
Below L = 1500, the azimuthal orders m = 0 and m = 2 (not
shown in the figure) produce a similar absorption, but above that
L they split up. The absorption of the later one keeps increasing
with L, and its α is around 0.1 at L = 2500, while the increase
of the absorption in m = 0 seems to be slower and shows a
maximum absorption around 0.05 at L = 2500. The variation
of α with m (bottom panel of Figure 8) also shows symmetry
around m = 0.

With regard to the 560 km radius flux tube, the highest
absorption is also retrieved for m = 1, which presents an
α = 0.47 at around L = 2500. At high L values the absorption
coefficient shows significant absorption at m = 2 and even at
m = 3, opposite to the m = 0 case, which presents a very low
α coefficient.

Several conclusions can be extracted from the comparison
of the absorption coefficient measured for different flux tubes.
First, the variation with L shows a similar tendency for all flux
tubes. It increases almost linearly with L for all the azimuthal
orders. Second, the absorption is subject to the magnetic flux
of the scattering element. A higher magnetic flux produces
higher absorption, although its distribution in wavenumber and
azimuthal order depends on the radius of the scatterer. Despite
the fact that the big flux tube has almost 11 times higher
magnetic flux than the smaller one, its absorption coefficient
in m = 1 is far from being inferred as 11 times higher than
the m = 1 absorption of the small tube, since the ratio between
the absorption of both tubes varies with L. At L = 1013 the
m = 1 absorption of the big flux tube is 16.5 times higher than
that corresponding to the small tube, while at L = 2532 the
ratio is just 4.3. Finally, the relation between the absorption at
different azimuthal orders is different. As can be seen in the
bottom panel of Figure 8, the higher the radius of the tube,
the higher absorption coefficient in all azimuthal orders except
m = 0. Surprisingly, α in m = 0 decreases with increasing
radius, despite the higher power of the scattered wave in m = 0
for the larger radius tubes discussed in the previous section.

6.2. Phase Shifts

We are interested in the difference between the ingoing and
outgoing phases produced by the scattering element. According
to Braun et al. (1992), for a reliable determination of the phase
shift between the incoming and outgoing waves it is necessary
that the observations last long enough so that the wave packet
can travel a distance comparable to the annulus diameter. The
temporal duration of our simulations (T = 180 minutes) was
chosen in order to satisfy this condition. The phase shift was
evaluated following Equation (3). The values discussed in this
section correspond to the difference between the simulation with
the flux tube and the quiet-Sun reference simulation.

The top panel of Figure 9 shows the variation of the phase
shift with L for the azimuthal orders m = 1, 2. Starting with the
smaller tube (asterisks), we find that the phase shift increases
from δm=1 = 0◦ at L = 800 to δm=1 ≈ 10◦ at L = 2500. The
variation of the azimuthal order m = 0 with L (not shown in
the plot) is very similar to m = 1, showing an almost linear
increase with a slightly lower phase shift. Below L = 800
the phase shifts of both azimuthal orders are around 0. The
azimuthal order m = 2 shows a much smaller phase shift, and it
almost vanishes for all L values. As in the case of the absorption
coefficient, significant phase shifts are only obtained for m = 0
and m = ±1 azimuthal orders (Figure 9, bottom panel).

The behavior of the phase shift produced by the medium flux
tube (diamonds) is similar to the smaller one, but showing a
much higher value. In this case, the phase shift is also around 0◦
below L = 500, and it increases with L until reaching δ ≈ 35◦
for both m = 0 and m = 1 azimuthal orders. As in the case
of the small flux tube, the phase shift of the m = 1 azimuthal
order is a bit higher, and this difference increases with L. The
phase shift corresponding to m = 2 is much lower, since it only
reaches δm=2 ≈ 7◦.

Finally, the azimuthal order m = 1 of the larger tube (crosses)
shows an increasing phase shift that reaches almost δ ≈ 70◦ at
L = 2500. In this case, the phase shift in m = 0 is slightly higher
than for m = 1, as shown in the bottom panel of Figure 9. The
phase shift produced in m = 2 is more significant than in the
other tubes, since it is around δ ≈ 28◦ at L = 2500.
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Figure 9. Top panel: variation of the phase shift with L for the azimuthal orders
m = 1 (solid line) and m = 2 (dashed line). Bottom panel: variation of the phase
shift with m at L = 2364. In both panels, asterisks correspond to the simulation
with a flux tube with a 170 km radius, diamonds to the flux tube with a 370 km
radius, and crosses to the flux tube with a 560 km radius. The dashed line in the
bottom panel corresponds to the 560 km radius flux tube at L = 1765.

A few points deserve special attention. Although the absorp-
tion coefficient of m = 0 decreases with the radius of the tube
(Figure 8), it is interesting to note that for the phase shift the
azimuthal orders have different relevance. In the bottom panels
of Figure 9, it is clearly seen that the phase shift produced in
m = 0 has a significant role. In fact, the m = 0 phase shift is
very close to the one obtained for m = 1, and even higher in
the case of the larger tube. In all tubes the phase shift shows a
similar tendency, being significant for m = 1 and m = 0 and
small for m = 2, despite the clear differences that are present
in the absorption coefficient. However, the larger radius (and
higher magnetic flux) of the bigger tubes does affect the value
obtained for the phase shift. At L = 844 the phase shift obtained
for m = 1 in the big flux tube is 13 times higher than that corre-
sponding to the small flux tube. This difference decreases with
L, and at L = 2532 the ratio between the phase shift of both
tubes is around 7. Note that the magnetic flux of the big tube
is around 11 times higher than that of the small tube. A similar
behavior is obtained for the azimuthal order m = 0, and also
including the medium tube in the comparison. The azimuthal
order m = 2 shows a different pattern, since the ratio of the
phase shift between a bigger and a smaller radius tube increases
with L.

6.3. Mode Mixing

The absorption coefficient gives us a measure of the power lost
by a certain mode, which corresponds to a frequency, wavenum-
ber, and azimuthal order. However, it does not necessarily mean
that part of its energy has suffered a real absorption. The scat-
tered wave may be a different wave mode, with different degree
L and radial order n or azimuthal order m. For structures that
are stationary in comparison to the typical wave period it is as-
sumed that the outgoing wave must has the same frequency of

Figure 10. Variation of the coefficient αf –p1 (Equation (17)) with frequency.
Crosses: 560 km radius flux tube; diamonds: 370 km radius flux tube; asterisks:
170 km radius flux tube.

the incident wave. In our simulations this condition is strictly
satisfied, since we are using a magnetohydrostatic model. The
change of the incident mode n to a different scattered mode n′
at a fixed frequency produced by a magnetic element is com-
monly called mode mixing. In addition, since these flux tube
models are axisymmetric, no scattering can be produced from
an azimuthal order m to a different order m′.

We have tried to measure the mode mixing produced by the
three magnetic flux tube models. Since we are introducing as
an initial condition the propagation of an f-mode, we can only
estimate the scattering produced from this incident f-mode to
higher order modes. However, from these simulations we have
only retrieved a significant amount of power in the p1 ridge, so
we have evaluated the scattering from the f-mode to the p1. We
have defined the following quantity:

αf −p1(ν) =
∣∣BQS

p1 (ν)
∣∣2 − ∣∣BFT

p1 (ν)
∣∣2

∣∣BQS
f (ν)

∣∣2 , (17)

where |BQS
p1 (ν)|2 is the power in the p1 ridge for the outgoing

component of the quiet-Sun simulation, |BFT
p1 (ν)|2 is the power

in the p1 ridge for the outgoing component of the simulation
with the flux tube, and |BQS

f (ν)|2 is the power in the f-mode
ridge for the outgoing component of the quiet-Sun simulation.
All these expressions correspond to the sum of the power for
the azimuthal orders m = −1, 0, 1 and the degrees L over
which the ridge of corresponding mode spans. The coefficient
αf–p1 represents the ratio between the power in the p1-mode
generated by the flux tube and the power in the f-mode in the
case without the tube being present at the same frequency. A
negative value means that there has been emission to the p1-
mode. In the numerator, we have introduced the difference in
power in the p1-mode between the quiet-Sun and the flux tube
simulations in order to correct from the small amount of energy
that appears in this mode from the initial condition. We have
introduced as an initial condition the analytical expression of
a propagating f-mode. However, due to the limited size of our
computational domain and the presence of PML layers, the
solution of an f-mode in our domain is slightly different, and a
very small amount of power goes to the p1 ridge.

The αf–p1 coefficient obtained for all simulations is plotted
in Figure 10. No measurable amount of power was found in
the p1 ridge below 2.6 mHz and above 4.6 mHz. On the other
hand, the low power obtained between these frequencies makes
it hard to retrieve a reliable measure of the mode mixing. For
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Figure 11. Top panel: variation of the phase shift with L for the azimuthal orders m = 0 (solid line) and m = 1 (dashed line). The bars above each L with data indicate
the errors; the bottom one corresponds to the simulation, and the top one is the error from the observations. Bottom panels: variation of the phase shift with m at
different L; from left to right L = 1056, 1412, and 1765. In all panels asterisks correspond to the simulation with a flux tube with a 560 km radius after averaging, and
diamonds to the observations.

the large flux tube, we find that the power scattered to the p1
mode is below 2×10−2 times the power of the incident f-mode.
The coefficient αf–p1 seems to decrease with the frequency,
although the result is very noisy. In the case of the medium
tube, αf–p1 is lower than 3 × 10−3. The smaller tube shows a
much lower mode mixing, and its αf–p1 decreases from 0 at
3.4 mHz to −5 × 10−4 at 4.4 mHz.

6.4. Comparison with Observations

Figure 2 represents the phase shift obtained from the observa-
tions. As shown by the bottom panel, it has a broad distribution
in azimuthal order, exhibiting a significant phase shift between
m = −6 and m = 5, with a peak at m = 0. The variation of
the phase shift with m greatly differs from the one measured
for the simulation, where in the two smaller radius cases we
found that the phase shift is concentrated in the azimuthal orders
m = −1, 0, 1 with symmetric distribution, peaking at m = −1
and m = 1, while the larger tube shows some significant phase
shift in m = 2 (Figure 9).

We consider a scenario that could explain this mismatch. We
have tried to mimic the error introduced in the observational
Hankel decomposition by a displacement in the position of
the annulus with respect to the magnetic element. This spatial
translation can strongly affect the incoming and the outgoing
power retrieved from the Hankel decomposition. As an example,
consider a point source of waves that generates a concentric
pattern of wavefronts that propagates radially outward, like
the one created by a pebble dropped into a pond. When the
origin of the coordinate axis is located at the position where
the pebble hits the water, the Fourier–Hankel analysis of the
wave will reveal a large B0 (outgoing axisymmetric wave) and
zero A0 (no incoming power). However, at different positions
the power will appear in different azimuthal orders. As stated
above, the observed phase shift is retrieved from 3400 locations
of small magnetic elements. If the resolution limitations and
the movement of the magnetic element during the 4 hr of
observation produce a slight shift in the determination of the
center of the magnetic element, the average of the phase shift
obtained from the 3400 elements, all of them with different
displacement, will produce a broadening of the distribution of
the phase shift with the azimuthal order. We have imitated this

limitation by averaging the phase shift retrieved from 3400
realizations of the Hankel analysis in the simulation with the
560 km radius tube, with the center of the annulus shifted
randomly around the axis of the tube in a Gaussian distribution
with FWHM equal to that obtained from an estimation of
the point-spread function (PSF) for MDI high-resolution data,
which corresponds to 1.14 Mm (Tarbell et al. 1997). In this
analysis, we have used the same annular region used in the
observations in order to obtain the same sampling in L.

Figure 11 shows the phase shift obtained from the observa-
tions (diamonds) and that corresponding to the simulations after
applying the average (asterisks). The top panel shows that both
the simulated and observational phase shifts increase with L for
the two azimuthal orders plotted. At L = 1059 the observational
phase shift is higher than the simulated one, but the rest of the L
shows good agreement. The error in the simulations is obtained
using the same estimation as in the observations, although it is
very small due to the symmetry retrieved between the positive
and negative azimuthal orders.

In the bottom panels, we can see how the simulations
resemble the observational broad distribution with m. As higher
L is considered, significant phase shifts are obtained at higher
azimuthal orders. At L = 1412, in the simulations the phase
shift drops to zero at m = ±5, while the observations present
a slightly broader distribution, with higher phase shifts at
higher m. The dashed line in the bottom panel of Figure 9 shows
the phase shift obtained for the 560 km radius tube at L = 1765,
the same L value of the right bottom panel of Figure 11. Note
the broadening produced by the shifted average of the Hankel
analysis. Interestingly, it also produces the effect of generating a
clear phase shift peak at m = 0, which differs from the original
data, where the azimuthal orders m = 0 and m = 1 show
approximately the same shift.

7. DISCUSSION AND CONCLUSIONS

We have presented the analysis of the scattering produced
by magnetic flux tube models using 3D numerical simulations.
Previous attempts to model this phenomenon (e.g., Gordovskyy
& Jain 2007; Jain et al. 2009; Hanasoge et al. 2008; Hindman
& Jain 2012) have faced the problem by means of analytical

11



The Astrophysical Journal, 757:148 (13pp), 2012 October 1 Felipe et al.

treatments. These types of studies are the first steps toward
the comprehension of this issue, and they provide a valuable
heritage to understand the wave interaction with magnetic
media and confront it with the forthcoming observations and
modeling. However, the simplifications needed to carry out their
development restrict their results to some idealized cases. From
this scope, the use of numerical simulations emerges naturally
as the next step to address these questions in more general
situations.

In these simulations, we have propagated an f-mode through
a model S atmosphere (Christensen-Dalsgaard et al. 1996)
stabilized against convective instabilities embedded with a flux
tube model. In order to compare how some properties of the
tubes affect the scattering, three realizations were performed,
using different flux tube models. All tubes have the same peak
magnetic field strength, but they differ in the radius and, thus,
in the magnetic flux.

Our simulations show that the interaction of an f-mode
with a flux tube excites tube waves. These waves propagate
along the magnetic field lines and produce a real absorption
of the incident energy, since it is extracted from the acoustic
cavity. The oscillations of the tube produced by these waves
generate a scattered wave. It is composed of a mixture of
axisymmetric (m = 0) and dipolar (m = ±1) modes, whose
distribution in frequency and azimuthal order depends on the
radius of the flux tube. For thin flux tubes, the m = ±1
dipolar oscillation dominates the tube wave, while axisymmetric
oscillations (m = 0) become important for larger tubes. This
result agrees with those previously obtained by Daiffallah et al.
(2011).

We have quantified the absorption coefficient and phase shift
produced by the three magnetic flux tube models. Based on the
results discussed in the previous section, we draw the following
conclusions. First, the absorption increases with wavenumber
(frequency) for all azimuthal orders and tube models. Second,
the amount of absorption in general increases with the magnetic
flux of the tube, although this increase depends significantly on
the wavenumber and azimuthal order. Third, the distribution of
the absorption in azimuthal order depends on the radius of the
tube. In all models, the peak absorption is obtained for m = 1.
However, in the tube with 170 km radius it is followed by m = 0,
with a weak absorption in m = 2, while in the 370 km radius tube
the absorption in m = 2 is stronger than that corresponding to
m = 0, and in the case of the 560 km radius tube the absorption
in m = 0 is especially low. The absorption of the axisymmetric
m = 0 order decreases with the radius.

The different behavior that the phase shift shows regarding the
second and third points of the previous paragraph is noticeable.
From the simulations with the tubes we find a similar distribution
in the phase shift produced in different azimuthal orders,
although it seems to approximately scale with the magnetic
flux, with some dependence on the L value and the azimuthal
order. In this way, m = 0 and |m| = 1 show a very similar phase
shift, the later slightly higher in the two smaller tubes and the
opposite in the larger tube, while the phase shift produced in
m = 2 is very small, except for the 560 km radius tube.

In this work, we are interested not only in modeling the
scattering process but also in applying this knowledge to
interpret observations. A deeper understanding of the wave
interaction with small magnetic scatterers can yield a basis to
infer the properties of the scattering elements, even at scales
smaller than the observational resolution. We have compared
the numerical results for the phase shift with observations of an

ensemble averaging of thousands of small magnetic elements.
In order to perform an equivalent comparison, the phase shift
obtained from 3400 realizations of the Hankel analysis of the
simulations with the 560 km radius tube with a small shift in the
position of the annulus was also averaged.

The phase shift produced by our larger tube model after
averaging shows a good qualitative agreement with the observed
phase shift. Since the phase shift scales with the magnetic flux
of the scattering element, we may consider that the phase shift
of the observed elements could be produced by flux tubes
with magnetic flux around that corresponding to tubes with
560 km radius and 1600 G. The current work suggests one
possible solution for the properties of the tube model, although
other combinations of radius and magnetic field strength might
also work. This kind of measurement seems to be a promising
method to infer the characteristics of small magnetic network
elements. However, some caution must be considered in their
interpretation. Some of the observed magnetic elements used
in this study show strong asymmetries (see Figure 1). When
the scattering element is not axisymmetric, the scattering is
not restricted to occur from an azimuthal order m to the same
order m, but the scattered wave can correspond to a different
order m′. These nonsymmetric elements could contribute to
the broadening of the distribution of phase shift with m. On
the other hand, in the observed magnetograms it is hard to
find enough completely isolated magnetic elements. From the
3400 elements used in the analysis, many of them present other
small magnetic features inside the 16.5 Mm annulus in which
the Hankel decomposition was performed. The observational
analysis might be contaminated by the scattering produced by
these other elements.

In the comparison between the observations and the simula-
tions, we have assumed that the observational shift in the center
of the Hankel analysis is restricted to a Gaussian with the FWHM
of the PSF from high-resolution MDI. If the proper motions of
the flux tube have larger extension, the results could be affected.
However, the tubes are presumably moving at the timescale of
the granulation, which is not so different from the timescale of
the wave period. This could mean that the approximation of a
stationary tube is not so good and limits the capacity of this
work to address this issue. It would be interesting to extend the
analysis to moving flux tubes in the future.

These results provide a warning to be cautious when interpret-
ing ensemble averages of observational data. In observations like
those presented in this paper, where the contribution of an indi-
vidual magnetic feature is too low to get a reliable measurement,
the average of several cases is a compulsory procedure to ob-
tain a strong enough signal. However, the individual and unique
characteristics of each element, together with the limitations to
perform the analysis using exactly the same configuration, can
lead to a result that may point to conclusions that do not reflect
the real observed structure. In the particular case studied in this
work, from the observational broad distribution of the phase
shift with m, one could assume that a big magnetic feature is
necessary to produce that dependence with the azimuthal order.
The analysis of the averaged simulated flux tube reveals that a
similar measure of the phase shift dependence can be retrieved
from a very different magnetic element, making it difficult to
infer an irrefutable conclusion about the nature of the observed
elements.
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