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Abstract We use a publicly available numerical wave-propagation simulation of Hartlep
et al. (Solar Phys. 268, 321, 2011) to test the ability of helioseismic holography to detect
signatures of a compact, fully submerged, 5 % sound-speed perturbation placed at a depth of
50 Mm within a solar model. We find that helioseismic holography employed in a nominal
“lateral-vantage” or “deep-focus” geometry employing quadrants of an annular pupil can
detect and characterize the perturbation. A number of tests of the methodology, including
the use of a plane-parallel approximation, the definition of travel-time shifts, the use of
different phase-speed filters, and changes to the pupils, are also performed. It is found that
travel-time shifts made using Gabor-wavelet fitting are essentially identical to those derived
from the phase of the Fourier transform of the cross-covariance functions. The errors in
travel-time shifts caused by the plane-parallel approximation can be minimized to less than
a second for the depths and fields of view considered here. Based on the measured strength of
the mean travel-time signal of the perturbation, no substantial improvement in sensitivity is
produced by varying the analysis procedure from the nominal methodology in conformance
with expectations. The measured travel-time shifts are essentially unchanged by varying the
profile of the phase-speed filter or omitting the filter entirely. The method remains maximally
sensitive when applied with pupils that are wide quadrants, as opposed to narrower quadrants
or with pupils composed of smaller arcs. We discuss the significance of these results for the
recent controversy regarding suspected pre-emergence signatures of active regions.

Keywords Helioseismology, observations

1. Introduction

For almost two decades, helioseismic methods have been employed to search for evi-
dence of magnetic flux rising through the convection zone (Braun, 1995; Chang, Chou,
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and Sun, 1999; Jensen et al., 2001; Zharkov and Thompson, 2008; Kosovichev, 2009;
Hartlep et al., 2011; Ilonidis, Zhao, and Kosovichev, 2011; Leka et al., 2012; Birch et al.,
2012). Submerged magnetic fields may produce travel-time anomalies due to changes in the
wave speed caused by the magnetic field or by the presence of flows and perturbations to the
thermal structure associated with the magnetic field (Birch, Braun, and Fan, 2010). If posi-
tively identified, such signatures could play an important role in space-weather forecasting,
and lead to a physical understanding of the emergence process, which is a key component
of the solar-activity cycle. Recent detection of p-mode travel-time anomalies prior to the
emergence of several large active regions, obtained with time–distance methods, have been
reported (Ilonidis, Zhao, and Kosovichev 2011, 2012b), although no significant travel-time
anomalies were subsequently measured from an independent analysis using helioseismic
holography (Braun, 2012). Ilonidis, Zhao, and Kosovichev (2012a) suggest that this dis-
crepancy may be due to differences in sensitivity between the methods employed.

Numerical simulations have provided artificial data through which helioseismic analysis
and modeling can be tested (Jensen et al., 2003; Benson, Stein, and Nordlund, 2006; Hana-
soge et al., 2006; Parchevsky and Kosovichev, 2007; Zhao et al., 2007; Braun et al., 2007;
Cameron, Gizon, and Duvall, 2008; Parchevsky and Kosovichev, 2009; Crouch et al., 2010;
Cameron et al., 2011; Birch et al., 2011; Hartlep et al., 2011; Braun et al., 2012). Many of
these simulations include near-surface flows, sound-speed perturbations, or magnetic struc-
tures typical of active regions or supergranulation. Simulations that propagate waves through
completely submerged perturbations are rarer (Hartlep et al., 2011), but are critical for test-
ing and developing helioseismic methods that are sensitive to detect active regions prior
to their emergence on the surface. In this work, we use one of the simulations of Hartlep
et al. (2011) to test the sensitivity of helioseismic holography comparatively to subsurface
sound-speed perturbations under a variety of applications.

2. Simulation

Hartlep et al. (2011) constructed a number of simulations containing p-modes propagating
through a spherical domain containing localized perturbations of the sound speed about the
standard solar Model S (Christensen-Dalsgaard et al., 1996). No flows or magnetic fields
are included. The solar model is convectively stabilized by a neglect of the entropy gradient
of the background model, which lowers the acoustic cutoff frequency. The mode amplitudes
above 3.5 mHz are thus reduced in amplitude. In addition, the simulation is only popu-
lated with p-modes with angular degree [�] between 0 and 170. The simulations span about
17 hours of solar time. A number of simulations using the same code are publicly avail-
able and include a variety of sound-speed perturbations at different depths. In this work, we
employ the simulation with a peak 5 % sound-speed reduction at a depth of 50 Mm and
with a horizontal size of 45 Mm (see Figure 1). The simulated velocity field is provided in
arbitrary units and represented in heliographic coordinates, with 512 pixels in longitude and
256 pixels in latitude, and a cadence of one minute. The simulation is stored in a FITS
file (sun.stanford.edu/~thartlep/Site/Artificial_Data/Entries/2012/3/21_Subsurface_sound_
speed_perturbations.html).

Our primary emphasis is on testing the ability of helioseismic holography to detect p-
mode travel-time signatures of the prescribed perturbation within the simulation, and to
measure the relative sensitivity of the results (in both signal strength and background noise)
to changes of methodology. In contrast, direct comparison of measured and expected travel
times requires the computation and application of sensitivity functions, which is not at-
tempted here. A prediction of the travel-time shift expected from a given sound-speed per-
turbation is a non-trivial exercise, but a rough estimate is useful. We estimate the travel-time
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Figure 1 The sound-speed ratio [c/c0] in the simulation, where c is the perturbed sound speed and c0 is the
background sound speed of Model S (top panels), and the travel-time measurements (bottom panels) made
with helioseismic holography using a “nominal” methodology (see text). (a) The variation with horizontal
distance from the center of the circularly symmetric sound-speed ratio at a depth of 50 Mm below the surface
of the simulation. (b) The variation with depth of the sound-speed ratio at the center of the perturbation.
(c) The variation with horizontal distance of the azimuthally averaged mean travel-time shift measured using
lateral-vantage helioseismic holography applied to the simulation at focus depths of 29.9 Mm (dotted line),
45.4 Mm (dash–dotted line), 54.4 Mm (solid line), and 64.5 Mm (long dashed line). The travel-time shifts
are averaged over 0.7°-wide annuli centered on the location of the perturbation. (d) The travel-time shift at
the center of the perturbation as a function of focus depth. The error bars in panels (c) and (d) indicate the
standard deviation of the realization noise determined from a region away from the perturbation (see text).

shift in the geometric-optics limit as the path integral of the fractional sound-speed per-
turbation (Equation (1) of Hartlep et al., 2011) weighted by the inverse of the background
sound speed in Model S. For convenience, the path is chosen as purely horizontal through
the center of the perturbation. This procedure yields a travel-time increase of 23 seconds.

3. The Nominal Procedure and Results

Helioseismic holography (hereafter HH) is described extensively elsewhere (Lindsey and
Braun, 1997, 2000, 2004; Chang et al., 1997). For our purposes, it is useful to enumerate the
data-analysis steps taken to define the “nominal,” or baseline, procedure. This provides the
context for investigating the sensitivity of the results to changes in methodology (discussed
in Section 4).

The basic idea is to apply Green’s functions to the solar oscillation field at the surface of
the Sun (or in this case, a simulation) to estimate the amplitudes of incoming and outgoing
waves at targets (or “focal points”) at or below the surface. In the “lateral-vantage” or “deep-
focus” configuration of HH (Lindsey and Braun, 2004; Braun, Birch, and Lindsey, 2004;
Braun and Birch, 2008a), travel-time perturbations are extracted from the cross-covariances
between these “ingression” and “egression” amplitudes with a focus below the surface (Fig-
ure 2).
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Figure 2 Ray paths for p-modes converging on a focal point [f ] that is 54.4 Mm below the surface of
the spherical domain of the simulation (denoted by the thick solid line). The thinner solid lines denote rays
spanning ±45° from the horizontal direction. This is the nominal range of impact angles for lateral-vantage
HH. In Section 4.4 we perform HH with smaller ranges of impact angles. The dashed lines indicate the ray
paths for impact angles spanning ±7.5° from the horizontal direction. The scale is in megameters.

To establish some common notation, we define the three-dimensional (3D) Fourier trans-
form in time [t ] and two spatial dimensions [x, y] of a function A(x,y, t) as Â(kx, ky,ω),
where kx and ky are the horizontal wavenumber components and ω is the temporal fre-
quency. We define the Fourier transform in only the temporal dimension of A as Ã(x, y,ω).
Thus, the steps involved in the data analysis are as follows:

i) The simulated surface velocity data, provided in heliographic coordinates, are
remapped onto a Postel projection �(x,y, t). The nominal spacing of the Postel grid
is δx = δy = 8.54 Mm (0.7°), which is the original spacing of the velocity data in he-
liographic coordinates. The central tangent point (x, y) = (0,0) is defined as 34.2 Mm
(2.8°) south of the location of the perturbation.

ii) The 3D Fourier transform [�̂(kx, ky,ω)] of the Postel-projected data is computed in
both spatial dimensions and in time. In the temporal-frequency domain, the data within
a bandpass of 2.5 and 5.5 mHz are extracted for further analysis. The simulation con-
tains very little p-mode power above 3.5 mHz.

iii) A phase-speed filter is applied to �̂ . The nominal method employs filters that are
Gaussian in the phase speed [w ≡ ω/k (where k2 = k2

x + k2
y )] for each depth with peak

phase speeds [w0] and widths [δw] specified in Table 1. In Section 4.3 we examine the
sensitivity of the results to variations in the form of the filter.

iv) A set of depths is chosen (Table 1) and Green’s functions for both diverging [GP+] and
converging [GP−] waves are computed in the same Postel-projected grid as the data
(Lindsey and Braun, 2000). The Green’s functions are multiplied by spatial masks
defining a given pupil [P ]. The nominal set of pupils represent quadrants (or “arcs”)
of annuli extending outward in four directions and are denoted E, W, N, and S. The an-
nulus widths are determined by ray theory from the paths of acoustic modes diverging
from the subsurface focus point and spanning a range of “impact angles” ±45° from
the horizontal direction (see Figure 2). In Section 4.4 we explore the sensitivity of the
results to narrower ranges of impact angles, and in Section 4.5 we employ different
azimuthal extents of the pupil arcs.

v) For each pupil quadrant [P ], the ingression [HP− ] and egression [HP+ ] amplitudes are
estimated by convolutions of the data cube [�] with GP− and GP+, respectively, in both
time and the two spatial coordinates. This is performed using a plane-parallel approx-
imation by the simple product of ĜP± and �̂ (Lindsey and Braun, 2000) in the 3D
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Table 1 Pupil sizes, modes, and
filter parameters. zf

[Mm]
Pupil Radii
[Mm]

� at 3 mHz w0
[km s−1]

δw

[km s−1]

29.9 16.0 – 128 124 – 175 74 37

37.0 19.5 – 159 108 – 153 87 43

45.4 24.4 – 190 95 – 134 96 49

47.6 25.8 – 195 92 – 130 101 50

49.9 27.1 – 209 89 – 126 105 52

52.4 28.5 – 216 86 – 122 108 54

54.4 29.2 – 224 84 – 119 111 55

57.1 31.3 – 230 82 – 115 114 57

59.2 32.0 – 237 79 – 113 117 58

62.1 34.1 – 251 77 – 109 119 60

64.5 36.2 – 254 75 – 106 122 62

76.1 41.8 – 292 67 – 95 140 69

87.9 48.0 – 327 60 – 85 153 77

Fourier domain. The validity and consequences of this approximation are explored in
Section 4.1.

vi) The cross-covariance functions between ingression and egression amplitudes corre-
sponding to opposite quadrants (e.g., E and W, N and S) are computed. The four re-
sulting cross-covariance functions are summed.

vii) Mean travel-time maps are determined from the sum of the four cross-covariance
functions. The nominal method uses the “phase method” (Braun and Lindsey, 2000).
In Section 4.2 we compare the phase method with results from fits of the cross-
covariances to Gabor wavelets.

viii) Maps of the mean travel-time shifts are determined from the residual of the travel-time
maps after subtracting a two-dimensional (2D) polynomial fit to a “quiet Sun” area
excluding the perturbation. As shown in Section 4.1 this procedure helps to remove
the effects of the plane-parallel approximation used in step v).

Table 1 shows the pupil ranges for each selected focus depth zf, determined from ray
theory. Also listed are the range of mode degrees [�] at 3 mHz, sampled by the pupil, and the
parameters for the Gaussian phase-speed filter (see Section 4.3) at each depth. The highest
value of � at each depth represents waves propagating horizontally through the focal point,
while the lowest value indicates modes which propagate at impact angles of ±45° from the
horizontal direction (see Figure 2).

Figure 3 shows maps of the travel-time shifts for a sample of focus depths. The pertur-
bation is clearly seen as an increase in travel-time shift with a maximum of between 15 and
20 seconds at the expected horizontal position. Figure 1c shows the azimuthal averages of
the travel-time shifts for several focus depths while Figure 1d shows the variation of the
travel-time shift at the center of the perturbation (hereafter “peak travel-time shift”) with
focus depth. It is clear that the horizontal and vertical dependences of the travel-time shifts
reasonably characterize the shape of the perturbation.

We measure a background realization noise [σ ] as the standard deviation of the mean
travel-time shifts within an annulus spanning distances 111 – 195 Mm from the center of the
Postel projection. For the “nominal” maps shown in Figure 3, σ is about 2.1 seconds and
does not vary substantially with depth. We find that the background noise for maps made at
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Figure 3 Maps of the mean travel-time shift using the nominal methodology of lateral-vantage HH as ap-
plied to the Hartlep et al. simulation and for focus depths of (a) 29.9 Mm, (b) 37.0 Mm, (c) 45.4 Mm,
(d) 54.4 Mm, (e) 64.5 Mm, and (f) 76.1 Mm. The grayscale indicates the travel-time shift in seconds.

different focus depths is correlated. For example, there is a correlation coefficient (measured
after excluding a region around the perturbation) of 0.96 between maps made at 54.4 and
52.4 Mm, and a correlation of 0.56 between maps at 54.4 and 47.6 Mm.

4. Tests of the Methodology

4.1. Tests of the Plane-Parallel Approximation

In Section 3, step v, a convolution in time and horizontal spatial coordinates between the
Green’s functions GP± and the data � is computed in the Fourier domain under the assump-
tion that the functions GP± are invariant with respect to translation in the Postel coordinate
frame (this assumption has been termed the “plane-parallel” approximation: Lindsey and
Braun, 2000; Braun and Birch, 2008b). The use of this approximation is highly desirable,
since it decreases computing time and resources by several orders of magnitude. For ex-
ample, without its use, separate Green’s functions for each target pixel would have to be
computed, stored, accessed, and operated on with a 3D multiplication by the datacube in the
computations.

A major result of this approximation is the introduction of a systematic bias in the mean
travel-time shift, which is a function of the horizontal distance between the focus and the
central tangent point of the Postel projection. The reason for this bias is straightforward: In
the Postel (also known as azimuthal-equidistant) projection, distances measured along any
line intersecting the central tangent point (hereafter simply called the “center”) are accurate,
but distances between all other points differ from their true great-circle values. Thus, a locus
of constant phase of waves propagating either away from or towards the center is warped
in the projected plane into an ellipse with the semi-minor axis aligned towards the center
(Figure 4). These wavefronts do not match the assumed circular wavefronts (and pupils)
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Figure 4 Examples of the distortion in wavefronts at the outer pupil boundaries centered on a target focus
point (denoted by the plus sign) placed 188 Mm to the right of the center of the Postel projection, which is
denoted by the × symbol. The larger and smaller dotted circles show wavefronts at the outer pupil boundaries,
as projected onto the Postel frame, for focus depths of 76.1 and 45.4 Mm, respectively. The solid circles show
circular wavefronts as assumed in the plane-parallel approximation. The dotted and solid wavefronts coincide
along the x-axis but deviate at other places, with the maximum deviation occurring at the top and bottom. The
deviations are difficult to discern by eye in the left panel. The right panel shows a magnified version of the
upper part of the left panel. The vertical line segments in the right panel indicate the length of the horizontal
wavelengths of modes that propagate from the focus depth to the outer pupil boundaries.

of the computed Green’s functions. For the depths and pupil parameters listed in Table 1
the distortion in distance is small compared to the horizontal wavelengths of the modes.
For example, in Figure 4 are drawn wavefronts at the outer pupil boundaries (where the
distortion is greatest) corresponding to focus positions placed 188 Mm (15.5°) to the right
of the center and at depths of 45.4 and 76.1 Mm. The maximum distortion of the wavefronts
for these depths is 2.3 and 3.6 Mm, respectively, and these values are small compared to the
horizontal wavelengths (30 and 40 Mm) of the modes considered. However, the distortion
in projected distances results in observable spurious mean travel-time variations that vary
with the azimuthal angle of propagation from the focus as well as the distance between
the focus and the wavefront. At the outer edge of the pupils these spurious shifts can be
as large as 20 – 30 seconds. However, the net travel-time shift as assessed over the entire
pupil is typically less than ten seconds over tangent-point distances below 200 Mm (e.g. see
Figure 5).

To correct for this spatially varying bias, we fit and subtract a 2D polynomial to the raw
mean travel-time maps (Section 3, step viii). A circular mask excluding the perturbation is
applied before the polynomial fit. Figure 5 shows cuts through a mean travel-time map with
and without this correction.

Since all of the distortions introduced by the plane-parallel approximation increase with
tangent-point distance, it is worthwhile to test the approximation by computing travel-time
shift maps with varying positions of the tangent point. A similar test was performed by
Braun (2012) on solar observations, but comparing only measurements of realization noise.
The simulation here provides a larger, isolated, signal that provides a complementary target
for this type of test. Figure 6 shows that maps made using tangent points spaced 200 Mm
apart, after correction for the bias discussed above, have residual differences on the order of
a second. For smaller distances of approximately 20 – 30 Mm these residuals are well below
a tenth of a second.
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Figure 5 Comparison of mean
travel-time shifts with and
without a polynomial subtraction
designed to remove the effects of
the plane-parallel approximation.
The dotted (solid) line is a
vertical cut (at x = 0) of the
uncorrected (corrected) mean
travel-time map at a focus depth
of 54.4 Mm.

Figure 6 Maps of the mean travel-time shifts at a focus depth of 54.4 Mm and with the tangent point (center)
of the Postel frame placed at the following locations: (a) centered on the perturbation, (b) 34 Mm to the north
of the perturbation, and (c) 205 Mm to the north of the perturbation. (d) The difference between the maps
shown in (c) and (a). The rightmost plots show horizontal (e) and vertical (f) cuts through the center of the
perturbation of map (a) shown as solid lines and map (c) shown as dotted lines.

4.2. Comparisons of Travel-Time Measurements

As we note in Section 3 step vii, the mean travel times are determined from the sum of the
cross-covariance functions. In the nominal procedure, there are four cross-covariances of
the form

C̃EW(r, zf,ω) = H̃ E
+(r, zf,ω)H̃W∗

− (r, zf,ω), (1)
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Figure 7 The squares connected
by a dotted line show a
cross-covariance function
between the ingression and
egression amplitudes, summed
over the four opposite-quadrant
pairs, for a single spatial location
and a focus depth of 54.4 Mm.
The solid curve represents a fit to
the cross-covariance function,
sampled over a 14-minute
window denoted by the
horizontal line at the top, to a
Gabor wavelet (Equation (4)).
The amplitude is in arbitrary
units.

where the asterisk denotes the complex conjugate, r = (x, y), and we have also included the
dependence on focus depth zf. The temporal Fourier transform of the sum

C̃ = C̃EW + C̃NS + C̃WE + C̃SN, (2)

is used in the “phase method” (Braun and Lindsey, 2000; Braun and Birch, 2008b) to com-
pute the mean travel time through

τpm(r, zf) = arg
(〈
C̃(r, zf,ω)

〉
�ω

)
/ω0, (3)

where the brackets indicate the average over the bandwidth �ω, and ω0 is the mean fre-
quency. The desired travel-time shift [δt ] is obtained from τpm by subtracting a 2D poly-
nomial fit to a quiet Sun region (step viii). A typical summed cross-covariance function,
transformed back to the temporal domain, is shown in Figure 7.

An alternative method for extracting travel-time shifts is to fit the cross-covariance func-
tion to a Gabor wavelet:

g = A cos
(
ω0[t − τgf]

)
exp

(
−1

2

[
t − τen

σ

]2)
(4)

where A, σ , and τen are the amplitude, width, and position of a Gaussian envelope, ω0 is the
mean frequency, and τgf is the (phase) travel time, which is used instead of τpm to determine
the travel-time shift δt . We have applied MPFIT routines (Markwardt, 2009) to perform a
nonlinear least-squares fitting of the summed cross-covariance functions to Gabor wavelets
for a focus depth of 54.4 Mm. The initial guesses of τgf in the fits were based on the peak
closest to t = 0 of the cross-covariance function. Figure 7 shows an example of the fit of
a single cross-covariance. Figure 8 shows that there is remarkable agreement between the
mean travel-time shifts as determined from the phase method and the Gabor fits. We note
that fine tuning the initial guesses based on the peaks of the cross-covariance functions to
the left (or right) of the central peak yields phase times [τgf] that agree to within a fraction
of a second of the times obtained using the central peak minus (or plus) the period [2π/ω0].
Thus, due to statistical fluctuations in the mean frequency, maps made using fits to these
peaks are noisier than maps made using the central peak.

4.3. Sensitivity to Different Phase-Speed Filters

In Section 3 step iii, a phase-speed filter is applied to the Fourier transform �̂ of the dat-
acube. Phase-speed filters are widely used in both time–distance helioseismology (Duvall
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Figure 8 Comparisons of maps of mean travel-time shifts for a focus depth of 54.4 Mm obtained (a) using
the nominal method including the phase method for extracting travel times from the cross-covariance func-
tions and (b) using fits to Gabor wavelets to the same cross-covariance functions in the temporal domain. No
corrections for the bias introduced by the plane-parallel approximation have been performed here; rather, a
simple mean has been subtracted from each map. (c) A scatter plot of the two maps, compared to a line with
unit slope.

et al., 1997; Couvidat and Birch, 2006) and helioseismic holography (Braun and Birch,
2006). The nominal procedure for lateral-vantage HH uses Gaussian filters

φ = exp

(
−1

2

[
w − w0

δw

]2)
(5)

with a peak phase speed [w0] and width [δw] such that the square of the filter has values
of one and one-half at the highest and lowest wavenumbers, respectively, at 3 mHz as listed
in Table 1. The use of phase-speed filters reduces the noise contributed by convective (non-
wave) motions as well as from p-modes outside the range of desired phase speeds. Recently,
Ilonidis, Zhao, and Kosovichev (2012a, 2012b) claim that different types of filters can affect
the measured strength of subsurface signatures of emerging active regions. We have com-
pared results using the nominal Gaussian filter, results using a “flat-top” filter similar to that
employed by Ilonidis, Zhao, and Kosovichev (2012a), and results using no phase-speed fil-
ter. Figures 9 and 10 show comparable peak travel-time shifts in the simulated perturbation
between the three cases, although the flat-top filter may be somewhat less sensitive to the
variation with depth of the perturbation. This is also confirmed by computing the correlation
coefficient between maps for different depths. For example, travel-time shifts at focus depths
of 54.4 and 64.5 have a correlation of 0.45 using the Gaussian filter, but 0.64 using the flat-
top filter. These correlation coefficients were computed with the perturbation masked out, so
they measure correlations in the background realization noise. Consistently higher correla-
tion coefficients for all of the flat-top filtered results over this depth range (45 – 65 Mm) are
observed. In general, the use of either filter produces somewhat less noise (as determined
from the standard deviation of the realization noise outside of the perturbation) than using
no filter, as expected (see Figure 10d).

A restriction in the simulation to mode power below � = 170 means that the tests per-
formed here are not sensitive to variations in the filter properties below w = 70 km s−1.
Nonetheless, our general findings are consistent with expectations based on experience ana-
lyzing solar data for lateral-vantage holography performed for similar focus depths.

4.4. Sensitivity to Different Quadrant Widths

We explored the effect of changes to the range of impact angles of p-modes interacting with
the perturbation, by decreasing the pupil width from the nominal values in Table 1. New
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Figure 9 Mean travel-time shift maps made for a focus depth of 54.4 Mm and different phase-speed filtering:
(a) a Gaussian phase-speed filter, (b) a flat-top filter, and (c) no phase-speed filtering. (d) The square of the
filter function for several filters used: dotted, dashed, and dot–dashed lines indicate the nominal Gaussian
filters corresponding to focus depths of 45, 54.4, and 64.5 Mm, respectively. The solid line shows the flat-top
filter used in this study. There is no p-mode power in the simulation to the left of the vertical gray line. Thus,
the tests here are not sensitive to differences between the filters at these low phase speeds.

pupil widths were computed using ray theory for impact angle extrema of ±25°, ±15°, and
±7.5° at the focus depth of 54.4 Mm. Figure 2 shows rays corresponding to impact angles
of the nominal ±45° and the smallest range, ±7.5°, considered.

Figure 11 shows that there is no substantial change in the strength of the perturbation as
the impact angle is changed, within the uncertainty specified by the background realization
noise. This result is expected, since the travel-time shifts due to a simple sound-speed per-
turbation should not depend on impact angle. There is a slight increase of realization noise,
which also appears to take on a more fine-scale oscillatory pattern, as the pupil quadrant
widths are decreased (Figure 11b). This is likely a diffraction (side-lobe) artifact due to the
narrow pupil. The widths of the pupils for these angles (±7.5°) are smaller than the hor-
izontal wavelength of the modes. To resolve this fine structure, the travel-time shift maps
shown in Figure 11 were made with a grid spacing of half of the nominal value, by applying
a Fourier interpolation of the original data.
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Figure 10 Mean travel-time shifts for different focus depths, averaged in annuli centered on the perturbation
(as in Figure 1c), using three different types of phase-speed filtering: (a) the nominal Gaussian filters, (b) the
flat-top filter, and (c) no filtering. The depths are 45.3 (dash–dotted line), 54.4 (solid line), and 64.5 Mm (long
dashed line). Error bars represent the standard deviation [σ ] of the background realization noise in a region
surrounding the perturbation (see text). The variation of σ with focus depth is shown in panel (d) for the three
cases: Gaussian (solid line), flat-top (dotted line), and no filter (dashed line).

4.5. Sensitivity to Pupil Arc Size

The advantage of using four quadrants to compute the ingression/egression cross-covariances
derives primarily from the utility in making measurements sensitive to flows as well as per-
turbations producing mean (horizontal-direction-averaged) travel-time shifts (Gizon and
Birch, 2005). Ilonidis, Zhao, and Kosovichev (2012a, 2012b) have proposed several re-
finements, for application to time–distance (hereafter TD) methods, for the detection of
subsurface signatures of emerging active regions. These include: i) dividing the annulus into
a greater number of opposing arc pairs (i.e., 6, 8, 10, 12, and 14 arcs), ii) making multiple
measurements with different angular orientations of each set of arcs, and iii) combining all
of the TD cross-covariances made with the different arcs and their orientations before the
determination of the travel times. There are four different orientations used for each arc
configuration in this scheme, as each set of arcs is rotated one-quarter of the angular extent
of an arc.

We explore similar procedures for HH using the simulation of Hartlep et al. (2011). The
results here complement the tests made for HH on Doppler observations obtained with the
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Figure 11 Mean travel-time shift maps made for a focus depth of 54.4 Mm and with different ranges of
impact angle: (a) ±45° and (b) ±7.5°. Both maps were made using the same flat-top filter shown in Figure 9.
(c) Measurements of the mean travel-time shift in the perturbation against the maximum (absolute) impact
angle. The filled circles show the peak shift; the diamonds show the average shift within a 25 Mm radius.
Error bars denote the standard deviation of the realization noise, which is also plotted as a solid line.

Figure 12 Mean travel-time shifts at a focus depth of 54.4 Mm from HH using different pupil geometries:
(a) the nominal method using a fixed set of four quadrant pupils, (b) using six arcs and four orientations, and
(c) the combination of 6, 8, 10, 12, and 14 arc configurations with four orientations of each configuration.
The flat-top filter shown in Figure 9 is used. (d) Azimuthal averages of the travel-time shift over annuli
centered on the perturbation for the three maps shown in the three top panels: quadrants (dotted line), six arcs
(dashed line), and combined 6 – 14 arcs (solid line). (e) Measurements of the mean travel-time shift in the
perturbation and the background realization noise σ against the number of pupil arcs used. The filled circles
show the peak shift, and the diamonds show the average shift within a 25 Mm radius. Error bars denote the
standard deviation of the realization noise, which is also plotted as a solid line. (f) The correlation coefficient
between travel-time shift maps made using six arcs and the other arc configurations.

MDI instrument by Braun (2012). Figure 12 shows some of our results for the measurements
on the simulated perturbation. In general, the use of six arcs produces a weaker (by about
25 %) travel-time signature in the perturbation than using quadrants. A slight trend of a
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decreasing signal strength with the number of arcs from 6 to 14 is also observed (Figure 12e),
although the net decrease is within the background noise. The realization noise increases
with the number of arcs used from about 1.4 seconds for the four orientations of the six-
arc set to 2.5 seconds for the four orientations of the 14-arc set. These can be compared
with the 2-second noise measured using the nominal quadrant method. These results are
consistent with the increase in noise using smaller arcs observed by Braun (2012) using MDI
data. The map made from combining all cross-covariances from all pupil-arc configurations
and orientations has a realization noise of 1.9 seconds, which is essentially identical to the
nominal (quadrant) map. It is significant that maps made with different arc lengths are highly
correlated with each other (Figure 12f).

5. Conclusions

In summary, we find that helioseismic holography, as performed in the nominal lateral-
vantage configuration and using the plane-parallel approximation, is in conformance with
expectations well suited for detecting and characterizing subsurface sound-speed perturba-
tions of the kind included in the simulation of Hartlep et al. (2011) at depths of at least
50 Mm. Suitable caution should be exercised: these results follow from a single simulation,
which may have different physics from real solar perturbations. Other limitations, such as
the inclusion in the simulation of only a subset (in both temporal frequencies and wavenum-
bers) of known solar oscillations, are noted. However, we believe that generally the viability
of HH for the detection of subsurface perturbations is substantially confirmed, particularly
its ability to select for analysis the relevant set of modes passing through a localized target
below the solar surface.

Furthermore, mindful of the caveats mentioned above, we find no evidence that the sen-
sitivity of the procedure, as assessed by the mean travel-time shift at the expected position of
the perturbation, is enhanced by the use of the flat-top filter or different pupils, as suggested
in the critique by Ilonidis, Zhao, and Kosovichev (2012a) of the results of Braun (2012).
Specifically, the holographic signatures are influenced little by the detailed profile of the
phase-speed filter, and very little more by the lack of any such filter. We also find that holog-
raphy remains maximally sensitive when applied with spatially extended pupils, as opposed
to restricting or partitioning them. The main effect of partitioning the pupil to smaller arcs
is, if anything, a reduction of the signature and the appearance of diffraction effects.

Gabor-wavelet fitting can be applied to helioseismic holography as it is with other time–
distance techniques, and so this should not be regarded as a discriminating qualification
against it. In the case of the simulation, the results are essentially identical to those of the
phase-method and in conformance with expected travel-time shifts given the size and am-
plitude of the perturbation.

Our tests do not attempt to replicate the time–distance procedures applied by Ilonidis,
Zhao, and Kosovichev (2011); thus, we draw no conclusion about the sensitivity of their
own measurements to the changes in methodology that they advocate. In attempting to un-
derstand the discrepancies of the results between Ilonidis, Zhao, and Kosovichev (2011)
and Braun (2012), we can reasonably infer that negative holography results suggest that the
suspected perturbation is different than the simple sound-speed perturbation simulated by
Hartlep et al. (2011). Furthermore, it seems that the use of the plane-parallel approximation
can be ruled out as a contributing factor to the negative results of Braun (2012).

It is possible that the physics of the suspected signatures are such that, unlike a simple
sound-speed perturbation, the use of narrow pupils or different filters may be critical. The
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signatures may also produce complicated changes to the cross-covariance functions, per-
haps due to unknown effects of magnetic fields (Ilonidis, Zhao, and Kosovichev, 2012a).
Further tests need to be performed on the relevant data. In our opinion, it is possible that
the signatures of Ilonidis, Zhao, and Kosovichev (2011) may represent noise. We return to
the point made by Braun (2012) suggesting the need for blind “hare-and-hound” tests as
a minimal condition for the signatures of the signals found by Ilonidis, Zhao, and Koso-
vichev (2011) to be established as pre-emergence signatures of deeply submerged mag-
netic fields. Tests with simulated data on artificial perturbations such as those reported
here provide the critical context under which similar analyses of solar observations may
be understood. In general, the results presented here provide confidence in helioseismic
holography as a useful method for probing submerged perturbations (Leka et al., 2012;
Birch et al., 2012).
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