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ABSTRACT

The physics of the formation of magnetic active regions (ARs) is one of the most important problems in solar
physics. One main class of theories suggests that ARs are the result of magnetic flux that rises from the tachocline.
Time–distance helioseismology, which is based on measurements of wave propagation, promises to allow the study
of the subsurface behavior of this magnetic flux. Here, we use a model for a buoyant magnetic flux concentration
together with the ray approximation to show that the dominant effect on the wave propagation is expected to be from
the roughly 100 m s−1 retrograde flow associated with the rising flux. Using a B-spline-based method for carrying
out inversions of wave travel times for flows in spherical geometry, we show that at 3 days before emergence the
detection of this retrograde flow at a depth of 30 Mm should be possible with a signal-to-noise level of about 8 with
a sample of 150 emerging ARs.
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1. INTRODUCTION

The physical mechanism behind the formation of magnetic
active regions (ARs) is one of the central problems in solar
physics. Magnetic flux rising from the tachocline is one possible
cause of ARs (e.g., Fan 2009). Local helioseismology (see, e.g.,
Gizon & Birch 2005 for a review) can, in principle, be used
to detect and study magnetic flux rising through the convection
zone.

It is not yet feasible to construct a complete three-dimensional
(3D) MHD model of rising AR flux tubes, extending from
the base of the solar convection zone up into the visible
solar atmosphere. Recent 3D simulations of buoyantly rising
flux tubes in a rotating spherical shell representing the solar
convective envelope (Fan 2008; Jouve & Brun 2009) cover
depths from the base of the solar convection zone to about
20 Mm below the surface. Because of the rapid decrease of the
pressure scale height in the top layers of the solar convection
zone which demands increasing numerical resolution, it is not
yet feasible to extend such global scale 3D models all the way to
the photosphere. Furthermore, there is an increased complexity
in the thermodynamics of the plasma in the top layer of the solar
convection zone due to ionization effects and radiative energy
transport (see review by Nordlund et al. 2009).

There have been a number of helioseismic searches for rising
flux tubes (see Kosovichev 2009 for a recent review). Chang
et al. (1999) used acoustic imaging (Chang et al. 1997) to suggest
an increase in wave speed at depths from the surface down to
40 Mm (the largest depth that was studied) associated with the
emergence of AR NOAA 7978, though cautioned that a large
part of the apparent signal may be a result of surface effects (e.g.,
the effect of photospheric magnetic fields on wave propagation).
Kosovichev et al. (2000) used time–distance helioseismology
(Duvall et al. 1993) to search for changes in wave speed
associated with the emergence of an AR which emerged in 1998
January. This study found changes in subsurface wave speed at
the time of emergence. Similar results were obtained by Jensen
et al. (2001) for an emerging AR on 1998 January 11–12. In
another case study, Zharkov & Thompson (2008) concluded

that there was little change in the subsurface wave speed that
proceeded the emergence of NOAA 10790. Komm et al. (2009)
used the ring diagram method (Hill 1988) and found that, for a
sample of about 800 ARs, increasing upward velocity at depths
greater than about 10 Mm and less than 16 Mm is associated
with emerging flux regions, with the upward velocity increasing
by a fraction of a m s−1 over a period of roughly 5 days.

Here, we will employ the ray approximation (e.g., Kosovichev
& Duvall 1997) to show that the rising flux models of Fan
(2008) imply wave travel-time shifts of approximately 1 s.
The dominant cause of these travel-time shifts is the strong
(of order 100 m s−1) retrograde flow associated with the rising
flux. We develop a method for inversions in spherical geometry
for the flows associated with these rising flux tubes. We use this
inversion method, together with the noise estimates of Braun &
Birch (2008), to estimate the signal-to-noise ratios that would be
expected for a search for rising flux tubes using time–distance
helioseismology. We conclude that a sample of time–distance
measurements for about 150 rising flux tubes is sufficient to
detect the flows associated with these tubes with a signal-to-
noise ratio of about 8 at a depth of 30 Mm about 3 days before
emergence, and with a signal-to-noise ratio of about 4 at 5 days
before emergence.

2. MODELS OF RISING FLUX TUBES

The model of a rising flux tube used in this study is
the simulation labeled “LNT” (standing for Low Negative
Twist) in Fan (2008). The details of the numerical model are
described in Fan (2008). Briefly, we solve a set of anelastic
MHD equations in a rotating (with a solar-like rate of 2.7 ×
10−6 rad s−1) spherical-shell domain of r ∈ [rc, rt ], where r is
distance from the center of the Sun, rc = 0.722 R� is the base of
the convection zone, and rt = 0.977 R� is at about 16 Mm below
the photosphere, θ ∈ [0, π/2] and φ ∈ [0, π/2], where θ is the
co-latitude and φ is the longitude. The boundary conditions are
periodic in the φ direction and are non-penetrating, stress-free,
electrically conducting walls for the bottom and top boundaries
and the θ boundaries. The domain is resolved by a grid with (256,
512, 512) grid points in (r, θ, φ). Turbulent convective flows
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Figure 1. Slices at the latitude of 17.◦8 through the radial (left panel) and azimuthal (right panel) components of the flow field associated with the rising flux tube
model LNT of Fan (2008) at about 5 days before emergence. The curved black lines show ray paths corresponding to the 13 distances used in the inversions shown in
this Letter. The flows have amplitudes of up to about 80 m s−1. The retrograde flow near the apex of the rising flux tube is due to the Coriolis force as the flux tube is
moving away from the rotation axis of the Sun. The simulation domain extends upward to within about 16 Mm of the photosphere.

are ignored by assuming an adiabatically stratified background
fluid. Initially a twisted toroidal flux tube with a radius of
about 0.1 times the local pressure scale height is placed just
slightly above the base of the model convective envelope, at an
initial latitude of 15◦. The initial magnetic flux in the tube is
about 1023 Mx and about half of this flux is expected to rise
in a cohesive form to the photosphere (Fan 2008). An initial
temperature variation along the tube is imposed such that the
mid cross-section of the toroidal tube is in approximate thermal
equilibrium with the surroundings and is most buoyant: the
buoyancy declines with increasing azimuthal distance from the
mid cross-section and tends to approximate neutral buoyancy
at the two ends. Subsequently, the toroidal flux tube rises
under its buoyancy, and an Ω-shaped asymmetric emerging tube
develops. The velocity field for the Ω-shaped tube is shown in
Figure 1.

3. THE DETECTABILITY OF RISING FLUX TUBES

In order to estimate the detectability of the rising flux
tube described in Section 2, we have developed a simple
spherical 3D ray-approximation-based inversion method for
estimating the flow field in the solar interior given a set of
measurements of travel-time differences (see the Appendix for
details). The inversion employs a separable B-spline (de Boor
2001) expansion of the flow field (Equation (A1)) and is carried
out using a regularized least squares inversion (e.g., Kosovichev
1996, in the context of time–distance helioseismology) with a
regularization term based on the total integral of the square of
the amplitude of the flow (Equation (A3)). An advantage of
using B-splines is that they provide easily customizable and
spatially variable spatial resolution. In the present case, the
spline functions are chosen such that the spatial resolution is
best nearest the flux tube.

The ray approximation (Kosovichev & Duvall 1997) provides
estimates of the wave travel-time shifts that result from the

change in the wave speed associated with the rising flux tube. In
the model of Section 2, the fractional wave-speed perturbations
due to temperature fluctuations are of order 2 × 10−6 and those
due to the magnetic field are of order 10−5. Compared with
‖v‖/c ≈ 10−3, where v is the fluid velocity and c is the sound
speed, these effects are negligible. Thus, for the models of
Section 2, the travel-time shifts caused by flows dominate, by
several orders of magnitude, over the travel-time shifts caused
by changes in structure or by the magnetic fields. As a result, in
this Letter we will only consider inversions for velocity.

The ray approximation is expected to be valid when the
wavelength of the waves is small compared to the length scale
of the velocity field. The horizontal wavelength of a wave with a
lower turning point at a depth of 60 Mm below the photosphere
and a period of 5 minutes is about three heliocentric degrees.
This is similar to the smallest length scales in the flow field (see
Figure 1) and is smaller than the largest length scales. As a result,
we expect the ray approximation to be reasonable. In the time
intervals we will consider (24 hr), the velocity field associated
with the rising flux moves upward through approximately 1/3
of its vertical thickness. Thus, we approximate the flux tube as
steady when applying the ray approximation.

The flow in the rising flux tube is dominantly in the φ and
r directions; as a result we choose to use only deep focusing,
quadrant averaged, east–west travel-time differences. In this
geometry, the measurement is of the difference in travel times
for eastward and westward traveling waves (see, e.g., Braun &
Birch 2008 for a discussion of this measurement geometry).
Here, we model measurements that are made from tracked data
to account for solar rotation (e.g., Braun & Birch 2008). We
will use Δ to denote the distance between the quadrants. The
point midway between the two quadrants will be referred to
as the “measurement” or “center” point, this is the horizontal
location at which the ray path reaches its maximum depth.
Figure 2 shows the center locations of the travel-time difference
measurements for Δ = 10.◦8 for the example inversions shown
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Figure 2. Measurement points (black circles) for the case Δ = 10.◦8 and a slice
through the φ component of the flow at about 30 Mm below the photosphere
(colors, with blue indicating retrograde flows and red showing prograde flows,
see Figure 1). The grid of measurement points was selected such that the
closest distance between measurement points is roughly half of the dominant
wavelength of the waves contributing to the measurements at this distance.
As a result, we expect that the realization noise in the measurements will be
approximately uncorrelated. The black lines of constant longitude (latitude)
show the positions of the maxima of the B(φ) (B(θ)) spline functions used in
the expansion of the flow. The blue retrograde feature at latitude of about 18◦
and longitude 58◦ is the flow associated with the rising flux. The large-scale
prograde flow at higher latitude is part of the surrounding flow induced by the
rise of the flux tube. It is probably caused by the Coriolis force acting on a
poleward and downward flow away from the main upwelling flow of the rising
flux tube.

later in this Letter. We have chosen to use center points that are
separated by about one half of the dominant wavelength that
is selected by the measurement filters. In this case, the travel-
time measurements are expected to be essentially uncorrelated
(e.g., Gizon & Birch 2004). As a result, in the inversion we have
assumed uncorrelated input measurements (the generalization to
including an arbitrary covariance matrix was shown by Couvidat
et al. 2005). In the inversions shown here we have used 13
different distances (from about 7◦ to about 40◦) and a grand
total of 5843 measurement points.

The inversion requires estimates of the noise level in each
measurement. Braun & Birch (2008) used Michelson Doppler
imager data (Scherrer et al. 1995) to estimate that the noise
in a single east–west travel-time difference, using 1 day of
averaging, is about 4 s and is essentially independent of depth
over the range of depths explored in that paper (and which we
employ in the current work). This estimate includes realization
noise as well as the noise from convective flows. For the
remainder of this Letter, we will adopt this noise estimate.
Here, we consider inversions in which the noise level is set
to σ = 4/

√
150 s ≈ 0.33 s. This is what would be expected for

the case of an average over 150 examples of rising flux tubes,
measured for 1 day each. A sample of 150 ARs that emerge on
the visible disk can be found in less than one solar cycle. For
example, Kosovichev & Stenflo (2008) found a sample of 715
emerging ARs with fluxes between about 1021 and 1022 Mx that
emerged within 30◦ of the central meridian between 1996 and
2008. Based on previous results from thin flux tube simulations,
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Figure 3. Model flow, example inversion result, and an example averaging
kernel at about 3 days before emergence. The left panel shows a slice at latitude
17.◦8 of the B-spline representation (Equation (A1)) of the φ component of the
flow from the model. The middle panel shows a slice, at the same latitude,
through an example inversion result for a particular choice of the regularization
parameter (λ = 2 × 10−6 Mm−3 (m s−1)−2, see Equation (A3)). The right most
panel shows a slice through the averaging kernel for the inversion at a depth of
40 Mm and longitude of 55◦. In all panels the horizontal lines show the maxima
of the functions B(r)(r) and the vertical lines show the maxima of the B(φ)(φ).

the magnitude of the retrograde flow associated with the rising
flux is not expected to depend strongly on the total magnetic
flux in this regime (Fan 2009).

In the remainder of this section, we will study the signal-
to-noise ratios that could be expected for inversions for the
flow fields associated with the model for a rising flux tube of
Section 2. The general procedure is as follows: (1) use the
known flow field together with the ray approximation to compute
a set of noise-free travel-time differences, (2) add Gaussian
noise (with the amplitude discussed above) to the travel-time
differences, and (3) carry out inversions of these synthetic data.
In order to compute signal-to-noise ratios, we estimate the signal
by computing the average over many inversions and estimate
the noise level by a formal propagation of the noise estimates
through the inversion procedure.

Figure 3 shows an example inversion result for a particular
choice of regularization parameter λ (Equation (A3)) for the
flux tube at 3 days before emergence. For this λ, the noise level
is about 5 m s−1 at a depth 30 Mm and the inferred flow has
an amplitude of about 40 m s−1. Thus, the signal-to-noise ratio
for the detection of the flux tube is about 8. This ratio can also
be simply estimated. The travel-time difference due to a flow
of v = 40 m s−1 at a depth of 30 Mm (the sound speed at this
depth is c ≈ 70 km s−1) for a travel distance of 100 Mm (this
gives a lower turning point depth of about 30 Mm) is about
1 s. The noise level in a single measurement is 0.33 s and of
order 10 rays are sensitive to the flow within the resolution of
the inversion. Thus, we expect the signal-to-noise ratio to be
approximately

√
10(1 s)/(0.33 s) ≈ 10 (this estimate depends

on the inversion weights largely having the same sign, which is
the case for the current choice of regularization parameter). For
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Figure 4. Model flow and two example inversion results at about 5 days
before emergence. The left panel shows a slice at latitude 17.◦8 of the
B-spline representation (Equation (A1)) of the φ component of the flow from
the model. The middle and right panels show slices through example inversion
results for two different values of the regularization parameter (λ = 2 ×
10−6 Mm−3 (m s−1)−2 in the middle panel and λ = 2.5 × 10−7 Mm (m s−1)−2

in the right panel).

the case of smaller regularization parameters, the noise level
of the inversion increases. From the results of this example
calculation, we expect that a sample of about 150 rising flux
tubes should be sufficient to test the model of Fan (2008) at
about 3 days before emergence.

The right-hand panel of Figure 3 shows a slice through
the averaging kernel for the inversion result at a depth of
40 Mm, latitude 17.◦8, and longitude of 55◦. For this choice
of regularization parameter, there are negative side lobes on the
averaging kernel. The spatial extent of the averaging kernel is
very similar to the size of the feature seen in the inversion; the
inversion is not resolving any of the structure of the flow field.

Figure 4 shows two example inversions for the case of the
rising flux tube model at 5 days before emergence. For the larger
regularization parameter (λ = 2 × 10−6 Mm−3 (m s−1)−2) the
inversion is able to qualitatively detect the retrograde velocity
of the tube to a depth of about 40 Mm. For the smaller
regularization parameter (λ = 2.5×10−7 Mm−3 (m s−1)−2), the
flow can be seen down to roughly 60 Mm, but at the cost of many
artifacts due to noise. For the case of the larger regularization
parameter, the signal-to-noise ratio at a depth of 40 Mm is
about 4.

4. DISCUSSION

We used the ray approximation to compute the travel-time
differences that would be expected in the rising flux tube model
LNT of Fan (2008). We find that the travel-time differences are
of order 1 s and are due largely to strong retrograde flows. The
travel-time shifts due to changes in the local sound speed and
the direct effect of the magnetic field on the wave speed are
several orders of magnitude smaller.

In the inversion presented here we have only used one-skip
travel-time measurements. It is an open question if the signal-

to-noise ratio of the inversion could be significantly improved
by using measurements of multiple-skip travel times.

Several effects may significantly alter the results of the rising
flux tube model. Convective flows may further distort the rising
flux tube and its associated flow patterns. The effect of the strong
radial shear in the top layers (depth of about 20 Mm) of the
solar convection zone is not included. The numerical diffusion
intrinsic to the 3D numerical model weakens the flux tube field
strength and reduces the amplitude of the flow patterns (for
both the rise speed and the retrograde flow speed). Improved 3D
models of rising flux tubes that incorporate turbulent convection
and mean flows in the solar convection zone and also with a
reduced numerical diffusion are needed to improve our estimate
of the likely helioseismic signatures.

We have shown here that a sample of 150 emerging ARs is
sufficient to test the predictions of the rising flux tube model
(“LNT”) with a signal-to-noise ratio about 8 at 3 days before
emergence. The detection, or lack of detection of these magnetic
flux concentrations, would provide important constraints on
models of rising flux tubes and dynamo models in general.
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APPENDIX

A 3D SPHERICAL INVERSION

The purpose of the inversion is to use a set of east–west
travel-time differences to estimate the vector-valued flow field
in three dimensions. The inversion is carried out in spherical
geometry. We begin from the assumption that the flow v can be
approximated as

vl(r, θ, φ) =
∑
ijk

αijk,lB
(r)
i (r)B(θ)

j (θ )B(φ)
k (φ) , (A1)

where the index l = r, θ, φ indicates the direction of the flow, r
is the distance from the center of the Sun, θ is co-latitude, φ is
longitude, the αijk,l are expansion coefficients, and the functions
B

(r)
i (r), B

(θ)
j (θ ), and B

(φ)
k (φ) are smooth basis functions which

here we have selected to be third-order B-splines (e.g., de Boor
2001). In the current work, the knots for the B-splines have
been selected by hand to provide increased spatial resolution
in the neighborhood of the rising flux tube (see Figure 2). One
advantage of the use of B-splines is this freedom. In the examples
shown here we have used (16, 16, 17) basis functions in the
(r, θ , φ) directions; thus there are a total of 13,056 α coefficients.

The ray approximation (e.g., Kosovichev & Duvall 1997) can
be used to compute the linear sensitivity functions (kernels) that
relate travel-time differences to the flow field,

δτ (θ, φ; Δ) =
∑
ijk,l

Kijk,l(θ, φ; Δ)αijk,l + n(θ, φ; Δ) , (A2)

where n denotes the noise, Δ is the distance between the two
quadrants of the travel-time measurement geometry, (θ, φ) is
the location of the midpoint between the two quadrants, K are
the kernel functions, and the α are the expansion coefficients of
Equation (A1).
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The inversion procedure consists of minimizing the function
X which depends on the B-spline coefficients α as

X(α) =
∑
θ,φ,Δ

σ (θ, φ; Δ)−2|
∑
ijk,l

Kijk,l(θ, φ; Δ)αijk,l

− δτ (θ, φ; Δ)|2 + λ

∫∫∫
‖v(r, θ, φ)‖2r2 sin θdrdθdφ,

(A3)

where λ is the regularization parameter, which controls the
trade-off between matching the measurements (first term) and
controlling the amplitude of the solution (second term). Here, we
use the integral of the square of the solution as the regularization
term; other choices are possible (e.g., demanding smoothness).
As discussed in the text, Equation (A3) assumes that the noise
is uncorrelated.
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