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ABSTRACT
Long-standing observations of incoming and outgoing f- and p-modes in annuli around sunspots
reveal that the spots partially absorb and substantially shift the phase of waves incident upon
them. The commonly favoured absorption mechanism is partial conversion to slow magneto-
acoustic waves that disappear into the solar interior channelled by the magnetic field of the
sunspot. However, up until now, only f-mode absorption could be accounted for quantitatively
by this means. Based on vertical magnetic field models, the absorption of p-modes was in-
sufficient. In this paper, we use the new calculations of Crouch & Cally for inclined fields,
and a simplified model of the interaction between spot interior and exterior. We find excel-
lent agreement with phase shift data assuming field angles from the vertical in excess of 30◦

and Alfvén/acoustic equipartition depths of around 600–800 km. The absorption of f-modes
produced by such models is considerably larger than is observed, but consistent with numer-
ical simulations. On the other hand, p-mode absorption is generally consistent with observed
values, up to some moderate frequency dependent on radial order. Thereafter, it is too large,
assuming absorbing regions comparable in size to the inferred phase-shifting region. The ex-
cess absorption produced by the models is in stark contrast with previous calculations based on
a vertical magnetic field, and is probably due to finite mode lifetimes and excess emission in
acoustic glories. The excellent agreement of phase shift predictions with observational data al-
lows some degree of probing of subsurface field strengths, and opens up the possibility of more
accurate inversions using improved models. Most importantly, though, we have confirmed that
slow mode conversion is a viable, and indeed the likely, cause of the observed absorption and
phase shifts.
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1 I N T RO D U C T I O N

One method of determining how solar oscillations interact with
sunspots and other magnetic field concentrations was developed
by Braun, Duvall & LaBonte (1987) (see also Braun et al. 1992;
Bogdan et al. 1993; Braun 1995; Zhang 1997), who observed ingo-
ing and outgoing waves in annuli surrounding spots and plage. This
has come to be called Hankel analysis, because of the decomposi-
tion into ingoing and outgoing Hankel functions used in most cases.
Their unanticipated finding was that sunspots absorb up to half of
the incident p-mode power at favoured frequencies and horizontal
wavenumbers.

�E-mail: paul.cally@sci.monash.edu.au (PSC); ashley.crouch@maths.
monash.edu.au (ADC); dbraun@cora.nwra.com (DCB)
†The National Centre for Atmospheric Research is sponsored by the National
Science Foundation.

More recently, new local helioseismic techniques have been used
to probe sunspots and their surroundings. For example, acoustic
holography has confirmed the Hankel analysis results (Lindsey &
Braun 1999; Braun & Lindsey 2000a; Chou 2000), adding in partic-
ular fascinating information concerning enhanced acoustic emission
in regions surrounding sunspots (acoustic glories) (Donea, Lindsey
& Braun 2000; Jain & Haber 2002). Acoustic tomography, also
known as time–distance helioseismology, has similarly been very
successful at imaging subspot regions, (see the well-known ‘coffee
mug’ image from the SOHO-9 workshop; Kosovichev, Duvall
& Scherrer 2000, fig. 8). Unlike Hankel analysis, tomography
and holography dispense with a modal description altogether in
favour of ray or optics formalisms, and are very adept at directly
imaging subsurface thermal and flow features. However, despite
some progress (Kosovichev & Duvall 1997; Kosovichev, Duvall &
Scherrer 2000, 2001), as yet neither holography nor tomography
treats magnetic fields entirely satisfactorily. For example, only the
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Figure 1. Schematic diagram showing an acoustic wave incident on a verti-
cal magnetic field concentration from the left, and being partially transmitted
and partially converted to slow modes, which travel down the magnetic field
lines. In reality, there will also be some reflection and scattering. The depth
at which the sound and Alfvén speeds coincide is denoted by L. In the simple
polytropic model adopted in this paper, the density vanishes at the surface.

fast magnetoacoustic wave is retained in Kosovichev & Duvall
(1997), Section 2.3, and Kosovichev et al. (2000), Section 2.4, and
despite the theoretical possibility of disentangling sound and Alfvén
speeds, only their sum has so far been reliably measured. (Further
questions concerning the treatment of the acoustic cut-off and Brunt-
Väisälä frequencies in the ray approach are discussed by Barnes &
Cally 2001).

Indeed, the tomography assumption of a single ray speeding up
or slowing down as it meets various features is not appropriate to
the mode conversion process commonly envisaged as the cause of
wave absorption in sunspots. As first suggested by Spruit (1991) and
Spruit & Bogdan (1992), and developed by Cally & Bogdan (1993),
Cally, Bogdan & Zweibel (1994), Bogdan & Cally (1997) and Cally
(2000), when a p-mode encounters magnetic field concentrations
characteristic of sunspots, it splits into ‘fast’ and ‘slow’ waves that
are quite different in nature. Indeed, this coupling is expected to
be strongest where the speed of sound c and Alfvén speed a are
comparable, in which case the distinction between fast and slow is
small. Below this shallow depth though, the speed of sound greatly
exceeds the Alfvén speed and the two modes decouple. They are
then clearly distinguishable: the fast wave is essentially acoustic,
and behaves very much like the p-mode (it is termed the π-mode by
Cally & Bogdan 1993), and the slow mode is nearly transverse, has
a wavelength that decreases with depth, and behaves much like an
Alfvén wave. This scenario is depicted schematically in Fig. 1.

Although the vertical field model predicts that f-modes are sub-
stantially absorbed (Cally et al. 1994), p-modes of increasing radial
order are progressively too weakly affected to account for obser-
vations. Based on two-dimensional Cartesian simulations, Cally
(2000) suggested that a spreading magnetic field, as found in
sunspots, might be more effective. However, it was unclear whether
it was the spreading of the field that had the desired effect, or merely
its inclination away from the vertical. To explore this question,
Crouch & Cally (2003) calculated the eigenfunctions and complex
eigenvalues of oscillations in an adiabatic polytropic model of in-
dex mp = 1.5 (i.e. γ = 5

3 ) with uniform inclined magnetic field,
and found that indeed substantial enhancements in absorption were
found as the field was rotated away from the vertical, with a peak
effect at around 30◦.

It is the purpose of this paper to explore the extent to which the
inclined field results of Crouch & Cally (2003) can quantitatively
explain the Hankel observations. To that end, we shall compare with
the absorption and phase shift results presented in Braun (1995),
which still represents the highest-quality data set of its type. Two
sunspot groups, NOAA5254 and NOAA5229 are examined in detail
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Figure 2. Absorption coefficient α versus frequency for the f- and p-modes
in the spot NOAA5254 for different radial order n. The f-mode corresponds
to n = 0. This figure is a replotting of fig. 4 of Braun (1995), though against
frequency rather than spherical degree �. The entire data set is used, i.e. 61 �
� � 720. Error bars in this and other figures are those of Braun (1995).

in that reference, each using long data sets collected at the South
Pole in 1988 (Braun et al. 1992). The former contains a large nearly
circular spot with an umbral radius of 9 Mm and a penumbral radius
of 18 Mm. The primary spot in NOAA5229 is slightly smaller and
less regular. Since the absorption and phase shift results for each are
very similar, we shall focus on NOAA5254 here. The annulus used
for the Hankel analysis had an inner radius of 30 Mm and an outer
radius of 243 Mm. The absorption coefficient α for NOAA5254 is
plotted against frequency in Fig. 2, illustrating the points that:

(i) α rises from zero at low frequency to a maximum value and
then dips to zero before apparently rising again (see n = 3–5 in
particular);

(ii) peak absorption diminishes with increasing radial order;
(iii) the frequency of the absorption dip is around 5 mHz at larger

radial order, but is lower at lower n.

Any successful model should reproduce these features.

2 M O D E L

Tables resulting from the model of Crouch & Cally (2003) present
the complex eigenvalues κ against real dimensionless frequency ν

in a complete adiabatic polytrope of index mp = 1.5 with magnetic
inclination angle θ = 0◦, 5◦, 10◦, . . . , 55◦ and p-mode radial index
n = 0, 1, . . . , 8 (higher angles are also available, but are not complete
in n). Here

ν =
√

mp L

g
ω, (1)

where g is the gravitational acceleration, L is the depth at which the
sound and Alfvén speeds coincide and κ = 2kL is a dimensionless
horizontal wavenumber. In Cartesian geometry, we have assumed
an exp[i(kx − ωt)] dependence on horizontal position x and time t.
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Figure 3. The real (left-hand panels) and imaginary (right-hand panels) parts
of the eigenvalues κ against non-dimensional frequency ν for the complete
mp = 1.5 adiabatic polytrope with uniform magnetic field at angle θ = 30◦
and φ = 0◦ (top panels), φ = 45◦ (middle panels) and φ = 90◦ (bottom
panels). In the left-hand panels, the dashed lines represent the non-magnetic
case, and correspond to the f-, p1, . . . , p8-modes, respectively, from left to
right.

Although the eigenvalue tables of Crouch & Cally (2003) are cal-
culated for a uniform field distribution without bounds, the essence
of the model we develop in this paper is to adopt the eigenvalues
κ globally, i.e. to assume that the damping parameter Im(κ) and
the local wavenumber Re(κ) given by these calculations applies (at
least on average) to the spot as a whole, though the field is of course
not uniform throughout. [In Section 3.1 we shall indeed adopt a
single value of inclination angle θ and equipartition depth L to be
representative of the whole spot, but in Section 3.2 we relax this by
allowing for a nested set of piecewise uniform shells. Experience
with a two-dimensional (2D) numerical code (Cally 2000) indicates
that absorption and phase shifting are localized over a shallow depth
of less than about 1 Mm beneath the spot, and so variation of θ with
depth is not important.]

For the vertical field, the same equations (and solutions) as are ad-
dressed in Cally & Bogdan (1993) and Cally et al. (1994) also result
from a cylindrical decomposition in which the three components of
velocity take the form (Scheuer & Thomas 1981)

ur = U (z)
[

k Zm+1(kr ) − m

r
Zm(kr )

]
exp[i(mϑ − ωt)],

uϑ = −imU (z)
Zm(kr )

r
exp[i(mϑ − ωt)],

uz = −ikW (z)Zm(kr ) exp[i(mϑ − ωt)],
(2)

where Z represents a Bessel function or linear combination of them
[J, Y or the Hankel functions H (1,2)] as appropriate.

In Cartesian geometry, it is assumed that the inclination θ of
the uniform magnetic field lies in the x–z plane (the ‘fourth-order’
problem, because the Alfvén wave decouples in this case leaving a
fourth-order system of governing differential equations). Extension
to full three-dimensionality (the ‘sixth-order’ problem), where B
makes an angle φ with this plane, reveals that the dependence of κ

on φ is generally weak compared with that on θ (Crouch & Cally, in
preparation), and we shall ignore it in the simple model presented
here. To illustrate the point, Fig. 3 shows the real and imaginary
parts of the eigenvalue κ against dimensionless frequency ν for the
case θ = 30◦ (where absorption is approximately maximal) and
various values of φ. It turns out that we are mainly interested in the
behaviour for ν � 3, where φ indeed makes little difference, apart
from the case of Re(κ) for the p1-mode (φ = 45◦) and the f-mode
(φ = 90◦). Since the observational data for f-mode phase shifts is
too noisy to be useful, this Re(κ) dependence on φ does not affect
any comparisons we shall make involving the fundamental mode. It
may have more effect on p1 at intermediate φ though.

The cylindrical geometry analogue strictly would be a straight-
field conical structure (Cally 1983), where θ increases linearly with
r, and only with radial (m = 0) oscillations in the 2D case. However,
in the spirit of exploration (and since this is a very difficult problem
to solve), we assume a uniform θ throughout the magnetic region,
or piecewise uniform in cylindrical shells, and simply adopt the κ

eigenvalues from Crouch & Cally (2003). The essential idea is that
κ is a global property of a cylindrical spot, to be read from tables,
under the assumption that equations (2) are valid. The magnetic field
plays no other role than to supply these κ .

In the inner shell, Zm must be the J m Bessel function for the
solution to be bounded at r = 0, whilst in the outer non-magnetic
region, it is a linear combination,

Zm(kr ) = AH (1)
m (kr ) + H (2)

m (kr )

corresponding to outgoing and incoming waves, respectively. An
arbitrary normalization has been applied in which the amplitude
of the incoming wave is unity. In any intervening shells, Zm is an
arbitrary combination of J m and Ym. Each shell has its own complex
k, read from tables. The total pressure and the radial velocity is
matched across each shell boundary r = Ri (0 < R1 < · · · < RN =
R), i.e. Zm(kr ) and dZm(kr )/dr , respectively. This allows all the
coefficients in the Bessel linear combinations to be determined.
Then, from A, we calculate the absorption coefficient α and the
phase shift δ using

α = 1 − |A|2, δ = − arg(A). (3)

An advance in phase (δ > 0) represents an increase in phase speed
through the spot. Note that if the internal wavenumber k is the same
as that in the external region, k0 (real), then A = 1 and α = δ = 0
as expected.

Limitations of the model are:

(i) the magnetic field geometry has been simplified to be piece-
wise uniform;

(ii) the magnetic field variation with depth is not included;
(iii) the dependence of κ on the angle φ is ignored;
(iv) scattering across radial order n has been neglected (see the

discussions in Braun 1995; Barnes & Cally 2000);
(v) the acoustic jacket has been ignored (Bogdan & Cally 1995;

Barnes & Cally 2000);
(vi) an mp = 1.5 planar polytrope has been used to calculate the

complex κ , though we partially correct for it through the p-mode
ridge adjustment procedure discussed later in this section;
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Figure 4. Magnetic field strength B against equipartition depth L for a uni-
form field in (i) full curve: the realistic solar model fgong.l5bi.d.15 from
the Aarhus adiabatic pulsation package (Christensen-Dalsgaard 1997), and
(ii) dashed curve: a complete adiabatic polytrope of index mp = 1.5, assum-
ing a density at 1 Mm taken from the Aarhus model. The right-hand axis
shows the sound and Alfvén speeds at this equipartition depth in the Aarhus
model only.

(vii) the difference in thermal structure inside and outside the
spot has not been explicitly included;

(viii) damping of acoustic emission in sunspots, and enhanced
emission in acoustic glories surrounding them, are ignored;

(ix) flows are neglected; and
(x) no overlying atmosphere has been included.

Irrespective of these points, the proof of the pudding will be in the
eating: despite these limitations, can Braun’s observational Hankel
data be adequately matched using the model?

Several of the above points warrant further discussion. Regarding
point (ii), our only measure of magnetic field strength is L, the depth
in uniform field at which a = c (see Fig. 4). In reality, we expect
the magnetic field to concentrate with depth. The effect of this is
that the best fit to phase shift δ and absorption coefficient α may not
occur for the same L and shell radius R. The reason is that the phase
speed of p- or π-modes is determined predominantly at the immedi-
ate subsurface layers (where the speed of sound is lowest), whereas
absorption (conversion to slow modes) occurs somewhat lower, pre-
sumably around L. Consequently, the magnetic field strength that
δ and α ‘see’ may well be different. Compounding this difference
is the observational result from Hankel analysis (Braun 1995) that
plage absorbs but does not scatter p-modes,1 suggesting that the ab-
sorbing region may extend beyond the scattering region. This point
is addressed further in Section 3.2.

Points (iv) and (v) are related. Because the vertical dependences
of the internal and external eigenfunctions U (z) and W (z) are not
identical, there must in reality be some degree of scattering across
p-mode ridges. Our model neglects this, and by matching both ur

and total pressure, actually allows for reflection and transmission
at r = R. When the eigenfunction mismatch is taken into account
though, it turns out that it is not possible to match the interior and
exterior oscillations using just the discrete sets of f- and p-modes
of the given frequency in both regions. Bogdan & Cally (1995)
show that a continuous spectrum of horizontally evanescent ‘jacket
modes’ must also be invoked. These supply the ‘glue’ necessary to
perfect the match.

1 However, holography suggests otherwise (Braun & Lindsey 2000b). The
reason for the discrepancy is unclear.

Point (x) is probably unimportant below the chromospheric
acoustic cut-off frequency (∼5 mHz), but above it a more sophis-
ticated model should allow waves to disappear upwards as well as
downwards (Cally et al. 1994).

For the single-shell model, assuming k0 R 
 1 and �k = Re(k) −
k0 � R−1, where k0 is the (real) wavenumber in the outer non-
magnetic region and k that inside the spot corresponding to the
same frequency and p-mode ridge, the boundary matching yields

δ ≈ −2 Re(�k)R. (4)

For the adiabatic polytrope, for example,

k0 = mpω
2/(2n + mp)g. (5)

From the inclined field eigenvalues (see Crouch & Cally 2003,
figs 1a, 2a, 7a, and 8a), Re(�k) is nearly always negative, though
for θ < 30◦ it can be slightly positive at low frequency. So δ > 0, and
it initially grows linearly with Re(�k) as the frequency increases.
Since k0 increases quadratically with frequency f = 2πω, whilst
Re(k) increases only linearly, we expect a superlinear increase in
δ with f . This is consistent with the Hankel data (Braun 1995).
Equation (4) is also consistent with our basic understanding that an
increased phase speed in the spot (decreased wavenumber) gives
rise to a positive phase shift when it re-emerges. Fig. 3 shows the
eigenvalues of Crouch & Cally (2003) for θ = 30◦, showing that
indeed Re(�k) is negative.

However, there is a complication arising from point (vi) above.
Although the polytropic index has little effect on the calculated
eigenvalues (see Hunter (1999) for the vertical field case), giving
some reassurance about the applicability of the model of Crouch &
Cally (2003) to the real sun, it does noticeably affect the location
of the p-mode ridges in the f –� plane. If we apply equation (5) for
a given frequency f = 2πω, there results a considerable distortion
in f . Instead, we proceed as follows: to calculate the model α and
δ for a given frequency f , p-mode ridge n, and equipartition depth
L, we first determine the corresponding � from the real quiet sun
f –� curves, and hence calculate k0 = √

�(� + 1)/R�. Then we
apply equation (5) to find the ‘polytrope-effective’ frequency, and
thence ν through equation (1). The tables of Crouch & Cally are then
consulted to find κ . In this way, we compensate for the discrepancy
between ridge positions. Our preference for � rather than f as the
fundamental quantity allows us to more accurately compare the fre-
quency dependence of α and δ with observations. If we do not apply
the correction, similar results are obtained, though for larger L.

3 R E S U LT S

3.1 Single-shell models

The radius of the scattering region is most directly probed
using a range of azimuthal degree m. The impact parameter
m R�/

√
�(� + 1) is a measure of how directly or glancingly the

wave meets the spot. As this approaches the radius of the scattering
region, we expect δ to drop towards zero.

To reduce error, Braun (1995) combined phase shift and absorp-
tion results into bins in � centred on � = 61, 82, 102, 123, 144, 164,
185, 205, 226, 246, 267, 288, 308, 329, 349, 370, 390, 411, 432,
452, 473, 493, 514, 534, 555, 576, 596, 617, 637, 658, 678, 699 and
720. The quality of the data varies considerably across this range,
with perhaps the best results at around � = 288, corresponding to
a horizontal wavelength of 15.2 Mm. Fig. 5 displays the predicted
phase shifts at � = 288 for a single-shell model with L = 0.8 Mm,
R = 27.5 Mm, and field inclination θ = 30◦. The comparison with
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Figure 5. The predicted phase shifts δ (degrees) against angular degree m
for a single-shell sunspot model with L = 0.8 Mm, R = 27.5 Mm, and θ =
30◦ at � = 288 (full curves), for the f-mode (n = 0) and first seven p-modes.
The points with 1σ error bars represent the Hankel analysis results (binned
in � about 288) for the dominant sunspot in the group NOAA5254 Braun
(1995). Only points with error bars below 30◦ are shown.

the NOAA5254 data is impressive. Neighbouring values of L (0.6
and 1 Mm) and R (20 and 35 Mm) produce noticeably inferior fits,
with 25 � R � 30 Mm being best (cf. Fan, Braun & Chou 1995).
For the most part, we shall fix on R = 27.5 Mm from now on.

Models with inclination angles θ below 30◦ yield very poor results
because of the negative phase shifts they produce at some frequen-
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Figure 6. Same as in Fig. 5, but for θ = 40◦. The fit for n = 2 and 3 is
clearly inferior.
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Figure 7. Same as in Fig. 5, but for � = 205.

cies (see the discussion associated with equation 4). On the other
hand, the fit degrades comparatively slowly with increasing θ above
30◦ (see Fig. 6). Though θ = 30◦ is clearly best, 40◦ may be judged
acceptable. Of course, a real sunspot has a wide range of field in-
clinations, and attempting to model this with a single θ is bound to
introduce inaccuracies.

The dependence on � is addressed in Figs 7 and 8, with � = 205
and 411, respectively. At the lower �, the fit is still quite good, and
in particular the decrease in δ with decreasing � is well modelled.
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Figure 8. Same as in Fig. 5, but for � = 411. However, all phases have
been shifted into the interval (0◦, 360◦) in this case to avoid jumps when the
model δ passes through 180◦.
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Figure 9. Phase shift δ (curve) as a function of frequency for the single-shell
model with L = 0.58 Mm, R = 27.5 Mm, θ = 35◦, and for axisymmetric
oscillations (m = 0). The n = 0 panel corresponds to the f-mode, n = 1 to the
p1-mode, etc. The plotted points are the m-averaged values for NOAA5254
Braun (1995), with only those points plotted that have estimated error bounds
σ δ � 30◦. There are no f-mode points of this accuracy. Given the selected
values of θ and R, the chosen L represents the least-squares best fit to the
NOAA5254 phase shift data for p-modes n = 1, . . . , 8.

At the larger �, the errors in the observational data are much larger,
leaving very few ‘reliable’ points. There also appears to be more
scatter, most notably at n = 2, which may reflect the highly spiky
behaviour seen in the model curve, or may simply indicate that the
data is highly unreliable. On the other hand, these higher �-modes
may be scattering off smaller-scale features in the spot.

Whereas modelling δ against m is fitted best with L ≈ 0.8 Mm, fits
of axisymmetric modes against frequency are optimized for some-
what smaller equipartition depths (and slightly larger θ , though this
is less significant). Fig. 9 depicts phase shift versus frequency for
m = 0 and the model L = 0.58 Mm, R = 27.5 Mm, θ = 35◦, com-
pared with the m-averaged δ for NOAA5254. As discussed in Braun
(1995), δ is averaged over a small range of m about 0 in order to re-
duce errors and scatter. The m range varies, but is chosen so as to not
intrude far into the ‘shoulders’ seen in previous figures. Given the
limitations of the model discussed earlier, the qualitative agreement
in behaviour is pleasing. Better agreement with individual p-mode
ridges can be obtained by slightly varying parameters; e.g. reducing
L to 0.55 Mm brings the p1 ridge into almost perfect agreement,
though at the expense of the accuracy of the n � 4 curves. On the
other hand, raising L to 0.8 Mm as in previous figures produces
comparatively poor results for lower n. Specifically, the ridges are
shifted too far to the left (recall that frequency scales as L−1/2),
though their slopes remain approximately correct. This is clearly a
residual effect of the mispositioning of the p-mode ridges by the
polytropic model. It is anticipated that moving to a model based on
realistic solar structure instead of a polytrope would improve the
match significantly.

Previous attempts to model p-mode absorption in sunspots
based on slow-mode conversion and vertical magnetic fields have
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Figure 10. Absorption coefficient α versus azimuthal order m for various
radial orders n for the model L = 0.8 Mm, R = 27.5 Mm, θ = 40◦ and
waves with � = 288.

foundered on the seeming impossibility of obtaining sufficient ab-
sorption beyond the f- and perhaps p1-modes. However, with in-
clined field, absorption is ample! Fig. 10 shows α as a function
of m for the case L = 0.8 Mm, R = 27.5 Mm, θ = 40◦. Plotting
α as a function of frequency (Fig. 11) reveals a similar picture.
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Figure 11. Absorption coefficient α versus frequency for the case of Fig. 9.
Again the comparison is with m-averaged Hankel data. Error bars have been
suppressed in the interests of clarity, but only those points with σα < 0.15
have been retained.
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Figure 12. Absorption coefficient α versus frequency for θ = 35◦, L =
0.85 Mm, and R = 9 Mm.

Correspondence of the model curves with the dip at 5 mHz may be
improved by increasing L (see Fig. 12).

Several points should be made concerning Figs 11 and 12. First,
there is a minimum in α corresponding to the first dip in the Im(κ)
curves (see Fig. 3). Although this dip does not extend to zero for
θ �= 0 as it does in the vertical field case (Cally et al. 1994), it is
none the less substantial (note the logarithmic scale in the figure).
At these frequencies, the coupling of fast and slow modes is weak,
especially at high radial order. Since f ∝ ν/

√
L , the dip may be

moved around in frequency by varying L. If it is believed that the
dip in absorption in the Hankel data is actually due to this effect, this
gives us a means of fixing L. This is how L was chosen for Fig. 12.
Indeed, the tendency for the dip to occur at lower frequency for low
radial orders n (most clearly seen in Fig. 2) is matched here.

However, evidence from acoustic holography suggests that the
5-mHz dip may instead be due to an enhancement of emission in
this frequency band in a region (the acoustic glory) surrounding
the spot (Donea et al. 2000; Jain & Haber 2002). Nevertheless, the
correspondence between the 5-mHz dip and the Im(κ) dip at just
about the right L seems too great a coincidence to ignore, and we
might be led to believe that both mechanisms are at work here.

Even with the Im(κ) dip though, the absorption produced by the
model at higher frequencies and low radial order is far too great.
A much smaller absorbing radius R can partially rectify this (see
Fig. 12), though the discrepancy at low n and large f is still prob-
lematic. Cally et al. (1994) argued, in the case of the f-mode, that dis-
sipative mechanisms operate at these frequencies (associated with
interaction between the wave and convection), which cause high-
frequency modes to be local rather than global in nature. The ‘mem-
ory’ of the nearby absorbing spot is therefore rapidly dissipated.
The presence of the acoustic glory only amplifies this effect. These
mechanisms are not easily modelled at the fundamental level, but
reasonable ad hoc prescriptions appear capable of substantially re-
ducing the excess absorption. Another possible cause is our neglect

of the dependence of Im(κ) on the angle φ at which the waves meets
the vertical plane containing the magnetic field vector B. Although
as mentioned earlier, our model assumes no dependence on φ, in
reality Im(κ) does noticeably decrease with frequency for p-modes
in field with θ ≈ 30◦ and φ ≈ 90◦, in contrast to its behaviour at
φ = 0◦ (Fig. 3).

A final possible reason for the excess absorption in the modes,
and possibly the most important one, is that absorption peaks rather
sharply around θ = 30◦ in the Crouch & Cally (2003) results (see
fig. 9 of that paper, noting the logarithmic scale), whereas phase shift
[i.e. Re(κ)] varies more gradually. Consequently, whilst an average
phase shift associated with θ ≈ 30◦ does a good job of representing
the whole spot, applying this angle everywhere substantially overes-
timates absorption, which in reality occurs predominantly in regions
with that field inclination. This would explain why the absorption
versus frequency curves are too high for parameters optimized to fit
phase shift data, despite having the right general shape.

The oscillations particularly evident in the p1, . . . , p4 curves in
Fig. 11 are due to leaky resonances in the spot, i.e. partial reflections
at r = R. Since real sunspots may not have such sharp boundaries,
this effect may be smeared in practice.

3.2 Multiple shell models

The impact parameter shoulder in the α versus m Hankel data
(Fig. 10) is far less clear than it is in δ. This suggests that the ab-
sorbing region is actually more extended in radius than is the phase
shift region. This is consistent with the result that plage produces a
measurable absorption but effectively no phase shift in the Hankel
data (Braun 1995). Consequently, we might expect the diffuse mag-
netic elements surrounding sunspots to continue absorbing beyond
the scattering region.

The tendency for δ to be negative for low frequencies when θ <

30◦, mentioned in Section 2, suggests that the umbral core, where the
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Figure 13. Phase shift δ versus azimuthal order m for various radial orders
n for the multishell model L = {1, 1, 0.8, 0.6, 0.4} Mm, R = {6, 9, 18, 25,
35} Mm, and θ = {0◦, 20◦, 30◦, 40◦, 55◦}, and waves with degree � = 288.
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Figure 14. Absorption coefficient α versus azimuthal order m for the five-
shell model of Fig. 13, again with � = 288.
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Figure 15. Phase shift δ versus frequency for the five-shell model of
Fig. 13.

field is presumably close to vertical, should show up as a dip in the δ

versus m graphs at low impact parameter, i.e. low m. Although there
is some hint of this in the observational Hankel data for individual m,
the scatter makes it unclear whether the effect is really there. Similar
comments can be made about α, since it too is greatly reduced in
the vertical field.

On the one hand, the lack of a shoulder in the α versus m Hankel
data suggests that the absorbing region is large, but on the other hand,
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Figure 16. Absorption coefficient α versus frequency for the five-shell
model of Fig. 13.

α versus frequency graphs (Fig. 12) produce best results for small
R! Seemingly, one way around this conundrum is to suppose that ab-
sorption occurs predominantly in a comparatively thin shell at large
radius, thereby presenting a wide target to incoming waves, whilst at
the same time not absorbing them too much. Alternatively, acoustic
glories and finite mode lifetime effects may bring the absorption
graphs into line with observations without the need to reduce R.

With that point in mind, Fig. 13 displays δ for � = 288 and a five-
shell model consisting of a range of L and θ values. The dips created
by the ‘umbra’ are evident in the model curves. Unfortunately, the
quality of the Hankel data is insufficient to usefully probe the umbra
in this way. Nevertheless, this somewhat arbitrary model indicates
some of the features of a multishell scenario. Figs 13–16 further
illustrate the character of this particular five-shell model. Overall, it
yields a good fit to the phase shift data, and at least a qualitatively
correct fit to the absorption data, though as usual α is a little too high
and the α shoulder too narrow in m. It would seem that the absorbing
area for the NOAA5254 spot exceeds 35 Mm, which takes it well
into the Hankel annulus.

4 C O N C L U S I O N S

In this paper, we have explored the consequences of modelling
sunspot absorption and phase shift in a crude way using the tabulated
eigenvalues of Crouch & Cally (2003). Overall, given the simpli-
fications made, the correspondence between observational Hankel
data and the models is very impressive, especially for δ. Indeed, it
is remarkable that the phase shift data can be fitted so well using
just magnetic effects, without including internal/external thermal
differences.

Subsurface thermal perturbations have been a major focus of to-
mographic (time–distance) studies in recent years. For sunspots,
Kosovichev et al. (2000) (see also Kosovichev 2002) report a typ-
ical 0.3–1 km s−1 increase in ray-speed in a region as broad as the

C© 2003 RAS, MNRAS 346, 381–389



Probing sunspot magnetic fields 389

surface spot and some 10 Mm deep beneath it. As a comparison,
the quiet sun speed of sound is around 20 km s−1 at 4 Mm deep,
and 37 km s−1 at 10 Mm. They cannot distinguish between sound
and fast mode speed, but estimate that it would correspond to a
field strength of 18 kG if the increase were entirely magnetic. Given
the total sunspot surface magnetic flux though, an 18 kG field at
these depths should not fill such a broad region, so we may assume
the effect to be mostly thermal. However, also, judging from their
fig. 8, there is a wave speed decrease in the first 2–3 Mm beneath
the spot, consistent with the spot being cooler than its surrounds in
the surface layers. The fact that p-modes actually speed up as they
pass through a spot, indicated by their positive phase shifts, and that
the models presented here yield excellent agreement with these ob-
served shifts despite thermal perturbations being ignored, suggests
that the increase in p-mode phase speeds is predominantly due to
magnetoacoustic coupling at shallow depths (less than 1 Mm) rather
than deep thermal perturbations. However, the linkage between the
modal and ray descriptions is quite complex (Bogdan 1997), and
the comparison between them is far from straightforward.

Absorption α in our models is consistently somewhat high for
values of the parameters L, θ and R, which produce good phase shift
fits, though qualitative behaviour is a good match. The discrepancy
could be due to several causes, most notably:

(i) inappropriately applying a θ ≈ 30◦ model, for which absorp-
tion is strongly peaked, everywhere in the spot;

(ii) the neglect of convective mode dissipation, depressed acous-
tic emission inside spots and enhanced acoustic emission surround-
ing spots;

(iii) due to a sunspot field not being uniform as in the model,
the effective magnetic field strength at depths where phase shifting
and absorption happen may be quite different, meaning that dif-
ferent parameters may be required in modelling each of the two
effects.

Typically, good results are obtained with equipartition depth L
between 600 and 800 km roughly, corresponding to Alfvén and
speed of sounds at z = −L of around 10–11 km s−1 or mag-
netic field strengths of 3.6–4.8 kG. These are very reasonable
numbers.

Indeed, overall, we have been very successful in addressing the
list of points set out at the end of Section 1, as well as others relating
to variation with m. However, the polytropic model adopted here is
too crude to warrant detailed comparisons with a view to quantita-
tive inversions. It particularly affects the horizontal positioning of
curves representing α or δ against frequency. It would be useful to
recalculate the Crouch & Cally tables for a realistic solar model, and
to reapply the procedures developed here to them. However, this is
not trivial. Although the eigenvalue differential equations are solved
numerically using a shooting method, the eigenvalues rely crucially
on the analytic asymptotic solution of the equations for large depth
and to high order. This is done using a dominant balance method
(which incidentally relies on 4mp being an integer), and it is not
clear how to carry this over to a general (tabulated) model. In prac-
tice, replacing the solar model by a polytrope below some depth is
probably the best way to proceed. Even with a realistic solar model
though, the neglect of field strength variation with depth, and ther-
mal differences inside the spot, could preclude an exact comparison.

Unfortunately, the task of calculating eigenvalues for more complex
magnetic geometries is mathematically extremely difficult.

Perhaps the most pertinent lesson to be drawn from our results is
that slow mode conversion does indeed seem to be the predominant
mechanism responsible for the observed absorption and phase shifts.
And in particular, an inclined magnetic field is necessary to make
the process work.
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