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ABSTRACT

Hankel analysis determined that sunspots absorb energy from and shift the phase
of f - and p-modes incident upon them. One promising mechanism that can explain
the absorption is partial conversion to slow magnetoacoustic-gravity waves and Alfvén
waves, which guide energy along the magnetic field away from the acoustic cavity. Our
recent mode conversion calculations demonstrated that simple sunspot models, which
roughly account for the radial variation of the magnetic field strength and inclination,
can produce ample absorption to explain the observations, along with phase shifts
that agree remarkably well with the Hankel analysis data. In this paper, we follow the
same approach, but adopt a more realistic model for the solar convection zone that
includes the thermal perturbation associated with a sunspot’s magnetic field. Consis-
tent with our earlier findings, we show that a moderately inclined, uniform magnetic
field exhibits significantly enhanced absorption (mode conversion) in comparison to a
vertical field (depending on the frequency and radial order of the mode). A genetic
algorithm is employed to adjust the parameters that control the radial structure of
our sunspot models, in order to minimize the discrepancy between the theoretical pre-
dictions and the Hankel analysis measurements. For models that best fit the phase
shifts, the agreement with the Hankel analysis data is excellent, and the correspond-
ing absorption coefficients are generally in excess of the observed levels. On the other
hand, for models that best fit the phase shift and absorption data simultaneously
the overall agreement is very good but the phase shifts agree less well. This is most
likely caused by the different size of the regions responsible for the absorption and
phase shift. Typically, the field strengths required by such models lie in the range
1 − 3 kG, compatible with observations for sunspots and active regions. While there
remain some uncertainties, our results provide further evidence that mode conversion
is the predominant mechanism responsible for the observed absorption in sunspots;
and that field inclination away from vertical is a necessary ingredient for any model
that aims to simultaneously explain the phase shift and absorption data.

Key words: Sun: helioseismology — Sun: magnetic fields — sunspots.

1 INTRODUCTION

One of the goals of local helioseismology is to determine
information about the internal and subsurface structure of
sunspots, by observing how solar acoustic oscillations in-
teract with them. Hankel analysis (e.g., Braun, Duvall &
LaBonte 1987, 1988; Braun et al. 1992; Bogdan et al. 1993;
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Braun 1995) is one of several available techniques. It studies
the interaction by decomposing the oscillation signal Ψ in
an annular region surrounding (but excluding) the sunspot
into components of the form

Ψ(ϑ,ϕ, t) =
[

aH(1)
m (Lϑ) + bH(2)

m (Lϑ)
]

exp[i(mϕ + ωt)] , (1)

where ϑ and ϕ are the familiar spherical polar coordinates
(the spot is situated at ϑ = 0), m is the azimuthal order,

L =
√

l(l + 1) (l is the spherical harmonic degree), t is time,

ω is the angular frequency, H
(1,2)
m are the Hankel functions of

the first and second kind, and a and b represent the complex
amplitudes of the ingoing and outgoing waves (p-modes),
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respectively. Any difference between the complex amplitudes
quantifies the interaction. For example, if the wave loses
(gains) power during the encounter then |b| will be less than
(greater than) |a| and the absorption coefficient,

α = 1 −
|b|2

|a|2
,

will be positive (negative). If the phase speed of the wave is
increased (decreased) inside the spot then the phase (i.e., the
argument) of the outgoing wave will be ahead of (behind)
its incoming counterpart and the phase shift,

δ = arg(b) − arg(a) ,

will be positive (negative).
Braun (1995) examined two very different sunspot

groups using long data sets (duration & 64 hours) collected
at the South Pole in 1988 (Braun’s results remain the high-
est quality Hankel analysis data available). The sunspot in
group NOAA5254 had a fairly regular appearance (nearly
circular, very symmetric penumbra), with umbral radius of
9 Mm and penumbral radius of 18 Mm. The sunspot in group
NOAA5229 was very irregular and slightly smaller, with um-
bral radius of 6 Mm and penumbral radius of 15 Mm. The
annulus used for the Hankel analysis had an outer radius of
243 Mm and an inner radius of 30 Mm (chosen to exclude a
central region somewhat larger than the penumbral radius
of the spot in NOAA5254).

Figs. 1 and 2 show the absorption coefficients and
phase shifts for the two sunspot groups that were found
by Braun (1995). They illustrate several points. (1) In gen-
eral, sunspots absorb and advance the phase of f - and p-
modes incident upon them. (2) The absorption coefficient α
increases from roughly zero at the lowest frequencies to a
peak at intermediate frequencies (which can be greater than
half in favourable cases), it dips to around zero and seems
to rise again at the highest observed frequencies. (3) Peak
absorption decreases with increasing radial order. (4) The
frequency of the peak (and dip) in α is smallest for lower ra-
dial order modes. (5) The phase shift δ is generally positive,
indicating that the waves are sped up inside the spot. (6)
The phase shift grows rapidly from zero at lower frequen-
cies, and the frequency at which δ starts to grow increases
with radial order. (7) Despite the difference in appearance,
both sunspots exhibit very similar behaviour (although the
larger sunspot NOAA5254 shows consistently higher mean
absorption). The final point indicates that Hankel analysis
unfortunately lacks the spatial resolution to discriminate be-
tween spots of different surface morphology. For this reason
we focus on NOAA5254 (the more typical) for the remainder
of this investigation.

More recently, other techniques have been used to probe
sunspots and their environment. Acoustic holography con-
firmed the findings of Hankel analysis (Lindsey & Braun
1999) and has discovered an array of seismic features such
as regions of enhanced high frequency acoustic emission sur-
rounding active regions ‘acoustic glories’ (Braun & Lindsey
1999; Donea, Lindsey & Braun 2000, see also Jain & Haber
2002), and the distortion effects associated with the ‘acoustic
showerglass’ in the shallow subphotospheric layers of active
regions (Lindsey & Braun 2004, 2005a,b). We will return to
this point later, but it is worth noting here that quiet Sun
emission phenomena like acoustic glories can reside inside

Figure 1. The m-averaged absorption coefficient α as a func-
tion of frequency f for the f-mode and pn-modes (with radial
order n 6 7) for the sunspot groups: NOAA5254 (crosses) and
NOAA5229 (diamonds). For clarity, error bars are not shown here,
but only points with σα < 0.5 are plotted. Adapted from the re-
sults of Braun (1995).

the annulus used by Hankel analysis. Accordingly, Lindsey
& Braun (1999) suggested that the high frequency dips in α
(Fig. 1) may be the result of enhanced quiet Sun emission
rather than a true dip in the sunspot’s absorption.

Time-distance helioseismology (or helioseismic tomog-
raphy) has revealed that mean travel times for waves propa-
gating into or away from the umbra of sunspots are reduced
by approximately half a minute (in comparison to waves
propagating through quiet Sun). Duvall et al. (1996) sug-
gested these are indicative of an increased wave speed along
the acoustic ray paths. Braun (1997) compared “centre-
annulus” time-distance correlation travel times with phase
shifts from Hankel analysis, and found that the former are
systematically larger. However, this may be at least partly
due to the differences between the types of measurements,
in that time-distance centre-annuli correlations centred on
sunspots select waves which propagate predominantly up
or down through the near-surface layers of the spot where
wave-speed perturbations may be substantial, while the
phase shifts determined by Hankel analysis include the con-
tribution of the waves which pass through and possibly be-
low the sunspot at a greater depth. The agreement between
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Figure 2. The m-averaged phase shift δ as a function of fre-
quency f for the f-mode and pn-modes (with radial order n 6 7)
for the sunspot groups: NOAA5254 (crosses) and NOAA5229 (di-
amonds). Error bars are not shown here, but only points with
σδ < 30◦ are plotted (no f-mode points satisfy this condition for
NOAA5254). Adapted from Braun (1995).

the different measurements appears to improve with increas-
ing degree l or equivalently, decreasing centre-annulus dis-
tance. Inversions of time-distance measurements have subse-
quently imaged the three-dimensional structure of the wave
speed perturbation below sunspots (e.g., Kosovichev, Duvall
& Scherrer 2000), and show a wave speed decrease in the
near-surface layers below a sunspot and an increase over a
broad region in the deeper layers (to depths around 10 Mm).

Hankel analysis (because it is only concerned with waves
in the regions outside the spot) makes no implicit assump-
tions about the magnetic field. On the other hand, neither
time-distance helioseismology nor holography yet incorpo-
rate magnetic fields in an entirely consistent manner (though
Kosovichev & Duvall 1997 have attempted to include the
fast magnetoacoustic speed in their dispersion relation). Re-
cent theoretical and observational work on this front indi-
cates that magnetic fields do in fact have a significant influ-
ence on the acoustics of active regions. For example, Cally
(2005b) has shown that simple magnetic fields cause acous-
tic ray paths (the formalism often used to interpret time-
distance observations) to successively split into fast and slow
magnetoacoustic-gravity (MAG) wave components (the dis-

persion relation of Kosovichev & Duvall 1997 and the eval-
uation of mode damping effects by Kosovichev et al. 2000
neglect this complication). In addition, a horizontal mag-
netic field in the atmosphere overlying the convection zone
can modify the p-modes in two ways: by shifting their fre-
quencies (e.g., Campbell & Roberts 1989; Evans & Roberts
1990, 1992; Jain & Roberts 1994a,b,c, 1996) and by damp-
ing energy from them through coupling to the Alfvén and
cusp resonances (e.g., Zhukov 1997; Tirry et al. 1998; Pintér
& Goossens 1999; Vanlommel & Goossens 1999; Vanlommel
et al. 2002). From the observational perspective, Lindsey &
Braun (2005a,b) have developed magnetic proxies based on
the surface field strength to correct for the showerglass effect
in active regions, and have found evidence that inclined mag-
netic fields in active region penumbrae substantially modify
helioseismic signals (see also Schunker et al. 2005).

There have been several theoretical attempts to explain
the observations, but these have tended to focus on the
causes of the phase shifts and absorption separately (for a
detailed review see Crouch & Cally 2003). In Cally, Crouch
& Braun (2003), we presented a model that accounts for the
magnetic field in a simple yet physically consistent fashion
which can simultaneously account for both α and δ. The
mechanism that is responsible for the absorption in that
model is mode conversion (as first suggested by Spruit 1991;
Spruit & Bogdan 1992).

In gravitationally stratified, magnetised atmospheres
(typical of sunspot interiors), mode conversion occurs be-
cause the sound speed greatly exceeds the Alfvén speed at
large depth, whereas, above the surface (photosphere) the
opposite is true – the Alfvén speed greatly exceeds the sound
speed. At large depth, the fast and slow MAG waves and
Alfvén waves are locally decoupled. The fast MAG waves
are essentially acoustic trapped oscillations (much like the
non-magnetic p-modes), and the slow MAG waves and the
Alfvén waves are both incompressive travelling waves, which
carry energy downward along the magnetic field. On the
other hand, in the region where the sound speed and Alfvén
speed are comparable (near the surface) the fast and slow
MAG waves and the Alfvén waves are coupled – they lose
their individual character and exchange energy (as shown in
the WKB and perturbation analyses by Cally 2003, 2005a).
When incident p-modes excite these waves in sunspot inte-
riors they lose energy due to the partial conversion to waves
that guide energy along the magnetic field.

The first models of the mode conversion process as-
sumed a vertical magnetic field (e.g., Cally & Bogdan 1993;
Cally, Bogdan & Zweibel 1994; Cally 1995; Bogdan & Cally
1997; Cally & Bogdan 1997; Rosenthal & Julien 2000).
Vertical field models could adequately explain the absorp-
tion of lower order modes (such as f - and p1-modes), but
could not fully account for the observations of the higher
order p-modes. More recently, it was shown by Crouch &
Cally (2003, 2005) that the absorption rates for higher or-
der modes are substantially enhanced when the field is non-
vertical (with mode conversion being most efficient at in-
clinations around 30◦, depending on the frequency and ra-
dial order, see also Cally 2000). Subsequently, Cally et al.
(2003) constructed simple sunspot models using the results
of Crouch & Cally (2003). They showed that the p-mode ab-
sorption produced by models that include non-vertical field
is indeed ample to account for the observations of Hankel
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analysis. In addition, Cally et al. also showed that the phase
shifts produced by their simple models are in excellent agree-
ment with the observations.

In essence, this investigation is a direct extension of the
work by Cally et al. (and Crouch & Cally 2003, 2005). Ini-
tially, we neglect the horizontal (radial) variation of struc-
ture observed in sunspots and concentrate on accurately ac-
counting for the vertical variation. This assumption is rea-
sonable in the context of sunspots where the scale of the ver-
tical variations (the local density scale height) is typically a
few hundred kilometres near the surface, whereas the scale
for the horizontal variation in the surface magnetic field is
of order several megametres. Previously, we modelled the
solar convection zone with a complete adiabatic polytrope
(Crouch & Cally 2003, 2005; Cally et al. 2003). Here, we
use a more realistic representation, based on the solar model
fgong.l5bi.d.15 from the Aarhus adiabatic pulsation package
(Christensen-Dalsgaard 1997), see Section 2 for details.

In Section 3, we calculate horizontal wavenumber eigen-
values associated with the oscillations supported by this re-
alistic model. These provide valuable information about how
the magnetic field modifies the horizontal phase speed of
the waves (i.e., induces phase shifts or travel time pertur-
bations), along with details of the horizontal spatial decay
rate (absorption) experienced by the waves.

In Section 4, we re-introduce horizontal variation back
into the problem, in a very simple manner, by applying the
eigenvalues to a model that consists of a set of concentric
cylinders (shells). To roughly account for the observed ra-
dial variation in structure, the magnetic field strength and
inclination are allowed to vary between shells. In Section 5,
we then use a genetic algorithm to adjust those properties in
order to minimize the discrepancy between the model pre-
dictions and the Hankel analysis data of Braun (1995). Our
model is too simple to perform detailed forward modelling
at this stage. Instead, we use the genetic algorithm to make
extensive comparisons and critically evaluate the model and
the mode conversion hypothesis.

2 STATIC EQUILIBRIUM MODEL

Unfortunately, there is no available thermal model for a
sunspot that extends over the range of depths of helio-
seismic interest (the umbral core models of Maltby et al.
1986, are arguably the best available but cover only alti-
tudes above z ≈ −120 km, whereas the depth of the lower
turning points for the p-modes can be at least 10 Mm be-
low the surface). Our static equilibrium model for the solar
interior is based on the realistic solar model fgong.l5bi.d.15
(hereafter GONG model) from the Aarhus adiabatic pul-
sation package (Christensen-Dalsgaard 1997). The GONG
model is modified slightly to include the expected effect of
the thermal perturbation caused by a sunspot’s magnetic
field. We account for the variation of pressure, density, adia-
batic exponent, and gravitational acceleration (curvature of
the solar surface is neglected in our calculations). Two ver-
sions of the model are considered: a non-magnetic exterior

(i.e., the quiet Sun) and a family of magnetic interiors with
field strengths B = 0.5, 1.0, 1.5, 2.0, . . . , 7.5 kG (intended to
span the conditions inside a typical sunspot). Each magne-

tised model is permeated by an inclined, straight, uniform
magnetic field,

B = B (sin θ êx + cos θ êz) ,

where θ is the angle between the magnetic field vector and
the vertical, êz.

Figs. 3 – 5 show the variation of the Alfvén speed, the
adiabatic exponent, and the sound speed, respectively, as a
function of depth for models with different field strengths.
The density profile is the same for all models, therefore, the
Alfvén speed varies in a entirely predictable manner between
the different cases (Fig. 3). On the other hand, for depths
below the level where the temperature T = Tt = 4500 −
1000B/3 (T is measured in Kelvin and B in kilogauss) in
the magnetised models, the gas pressure is reduced to ensure
the total (gas + magnetic) pressure is constant across all
models irrespective of the field strength, i.e.,

pex = pin +
B2

2µ
,

where the subscripts ‘ex’ and ‘in’ refer to exterior and inte-
rior properties, respectively. The modified gas pressure pin

is used to correct the adiabatic exponent Γ1 with a simple
Saha equation solver that includes the ionisation of hydrogen
and helium. The effect of the magnetic pressure is strongest
near the surface. This is clearly evident in Fig. 4, which
shows that the nature of the large dip in Γ1 is substantially
altered by the magnetic pressure in the surface layers. At
great depth, the adiabatic exponent (and the sound speed,
Fig. 5) is virtually identical in each model, as the gas pres-
sure overwhelms the magnetic pressure in that region.

At this stage, we do not intend to model the chromo-
sphere and corona with any degree of sophistication. For
simplicity, we append an isothermal slab (with T = Tt) to
the top of the modified GONG models that extends from
the upper boundary z = zt = 495.9 km to the depth where
T = Tt (the isothermal slab is cooler and extends deeper
for stronger field, in a similar fashion to a Wilson depres-
sion). Again, Fig. 5 shows that the sound speed, and hence
the temperature, is most strongly affected by the magnetic
field in the surface layers (elsewhere the sound speed pro-
file is virtually indistinguishable between models). Clearly,
some of the finer structural features around the temperature
minimum region are missing from this model (Fig. 5), but
the isothermal slab is only supposed to give the waves some
distance to reflect (because we have not included the solar
atmosphere, we only consider oscillations with frequencies
below the acoustic cutoff in the isothermal slab, see Sec-
tion 3 for discussion).

At a depth of z = zb = −16 Mm we terminate the modi-
fied GONG models and append an adiabatic polytrope. This
is done because analytic or semi-analytic solutions for the
wave equations can be developed for the polytrope (these
are discussed in detail in Section 3). In the polytrope, the
adiabatic exponent is constant (we take the value for a
monatomic ideal gas Γ1 = γ = 5/3), the density and pres-
sure take the usual form,

ρ (z) = ρ
0

(

z
0
− z

L

)3/2

and p (z) =
2

5
ρ

0
g
b
L
(

z
0
− z

L

)5/2

,

z 6 zb , (2)
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Figure 3. Squared Alfvén speed, a2 = B2/µρ, as a function
of depth for four of the magnetised models. The lowest dotted

curve is the squared Alfvén speed for B = 1 kG, the dashed

curve is B = 2 kG, the dash-dotted curve is B = 3 kG, and
the dash-dot-dotted curve is B = 4 kG. The inset provides a
comparison between the modified GONG model with B = 2 kG
(dashed curve) and the corresponding polytrope (full curve) at
great depth (they match exactly at zb = −16 Mm).

Figure 4. Adiabatic exponent, Γ1, as a function of depth for
the non-magnetic model and four of the magnetised models. The
full curve is Γ1 for the non-magnetic model. For the magnetised
models the curve labelling is identical to Fig. 3. The inset shows
an expanded view of the surface layers.

and the gravitational acceleration is uniform (g
b

= g(zb) ≈
287ms−2 is the value at the base of the modified GONG
models). In the magnetic cases L is the depth below z

0
where

the sound speed and Alfvén speed would coincide if equa-
tion (2) was applied all the way to the natural surface of
the polytrope z

0
(where the pressure and density simulta-

neously vanish). In the non-magnetic case, L is arbitrary
and physically meaningless (for convenience we take it as
the depth where the sound speed is specified). The param-
eters z

0
and L are adjusted to ensure that sound speed and

Alfvén speed are continuous at z = zb (numerical testing
demonstrates that smoothing the transition at z = zb has
little overall impact on our results). The polytrope does a
very reasonable job of approximating the deeper regions of
the solar interior where the adiabatic exponent is roughly
constant (Γ1 ≈ 5/3, Fig. 4) and the squared sound speed
is effectively linear (Fig. 5, the squared Alfvén speed also
matches very well, see Fig. 3). For zb . −12 Mm, numeri-

Figure 5. Squared sound speed, c2 = Γ1p/ρ, as a function of
depth for the non-magnetic model and four of the magnetised
models. The curve labelling is identical to Fig. 4. The inset on

the lower left provides a comparison between the modified GONG
model with B = 2 kG (dashed curve) and the corresponding
polytrope (full curve) at great depth (they match exactly at
zb = −16 Mm). The inset on the upper right shows an expanded
view of the surface layers.

cal experiments indicate that our results (in particular, the
eigenvalues in Section 3) are fairly insensitive to the actual
value of zb. The choice zb = −16 Mm includes as much of the
modified GONG models as possible, without compromising
numerical accuracy and calculation time.

3 HORIZONTAL WAVENUMBER

EIGENVALUES

In this section, we consider the steady state, linear, adi-
abatic oscillations of each model individually. The models
are infinite in horizontal extent and all of their static equi-
librium properties depend only on the vertical spatial co-
ordinate, z. Therefore, it is appropriate to assume that all
perturbed quantities depend on the horizontal spatial coor-
dinates, x and y, and time according to exp [i (k·r − ωt)],
where k = k (cos φ êx + sin φ êy) is the horizontal wave-
vector and r = xêx + yêy + zêz is the position vector. We
investigate the spatial evolution of the free oscillations sup-
ported by each model by specifying the real, non-negative
angular frequency ω and calculating horizontal wavenum-
ber eigenvalues k. In addition, we assume that travelling
waves propagate in the direction parallel to the unit vec-
tor k̂ = cos φ êx + sin φ êy (i.e., Re (k) > 0). For the non-
magnetic case, the oscillations propagate without energy loss
and, thus, k is purely real. On the other hand, due to mode
conversion in the magnetic cases k is generally complex –
the imaginary part quantifies the horizontal spatial decay
rate of the oscillations.

3.1 Non-magnetic eigenvalues

In the non-magnetic exterior, the Lagrangian fluid displace-
ment, ξ = ξxêx + ξyêy + ξzêz = ζk̂ + ηk̂⊥ + ξzêz, (where
k̂⊥ = − sin φ êx + cos φ êy) satisfies a second-order system
of ordinary differential equations:
(

ω2 − k2c2
)

ζ + ik
(

c2ξ′z − gξz

)

= 0 , (3)
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6 A. D. Crouch et al.

c2ξ′′z +

(

c2 Γ′
1

Γ1
− Γ1 g

)

ξ′z +
(

ω2 − g′
)

ξz

+ik

{

c2ζ′ −

[

(Γ1 − 1) g − c2 Γ′
1

Γ1

]

ζ

}

= 0 , (4)

where ′ = d/dz. In the non-magnetic case, no restoring
forces act in the k̂⊥-direction, hence, η = 0.

In unmagnetised regions of the real Sun, acoustic waves
propagate upward into the atmosphere only if their fre-
quency is above the local acoustic cutoff frequency at the
temperature minimum; otherwise, they are reflected by
rapidly decreasing density scale height. We do not intend to
model the solar atmosphere in this investigation so we must
only consider frequencies below the acoustic cutoff (though
it should be noted that inclined magnetic fields introduce
some complications to this argument, see Section 3.2). In
general, most acoustic waves (with frequencies below the
cutoff) will naturally be reflected before they reach the very
top of the model. The rigid lid boundary condition that we
employ at z = zt is designed to reflect any residual waves
that may still be propagating upward at the top boundary.
Hence, we require that the vertical component of the dis-
placement vanishes, i.e.,

ξz = 0 , at z = zt . (5)

In the adiabatic (convectively neutral) polytrope at the
base, analytic solutions for the non-magnetic wave equations
(equivalent versions of equations (3) and (4) with constant
Γ1 and g) can be found in terms of Confluent Hypergeo-
metric functions (e.g., Lamb 1945; Spiegel & Unno 1962;
Christensen-Dalsgaard 1980; Campbell & Roberts 1989).
The physical solution, for which the associated perturba-
tions remain bounded as z → −∞, has horizontal displace-
ment

ζ = C exp [k (z − z
0
)] U

[

a, 3
2
, 2k (z

0
− z)

]

, for z 6 zb, (6)

where a = 3
4
(1− ω2

gk
), U is Kummer’s function (Abramowitz

& Stegun 1964, equation (13.1.3)), and C is the mode am-
plitude. The vertical component of the displacement can be
easily derived from equation (6) since ξz = −iζ′/k in the
polytrope.

The two point boundary value problem is then solved
numerically using a bidirectional shooting method. For spec-
ified frequency ω and an initial guess for the wavenumber
k, the solution that satisfies the lower boundary condition
(equation (6)) is integrated upward from zb, through the re-
alistic solar model, to some matching point zm. Likewise,
the solution that satisfies the upper boundary condition
(equation (5)) is integrated downward from zt to zm. In
general, k must be iteratively adjusted and the solutions
re-integrated until the displacement is satisfactorily contin-
uous and smooth at the matching point. The resultant linear
combination of the two solutions is the eigenfunction and the
corresponding value of the wavenumber, k, is the eigenvalue.

Because we have made several simplifications (the cur-
vature of the solar surface is neglected, a polytrope is ap-
pended to the base of our model, and the upper boundary
condition is slightly artificial), we expect that the oscilla-
tions supported by our model will not perfectly match the
observed oscillations. Fig. 6 shows this is indeed the case,

Figure 6. Frequency, f , as a function of degree, l, for our quiet
Sun model (full curves). The f-mode (n = 0) is the lowest fre-
quency curve. The first 12 p-modes are also shown (of progres-
sively higher frequency). The diamonds are the observed frequen-
cies from the data set of Braun (1995).

where we have plotted the temporal frequency as a function
of the more familiar spherical harmonic degree l (using the

relation k =
√

l(l + 1)/R�) for both the model and the ob-
servations. The model agrees very well with the observations
for the lower order modes with moderate l. But for modes of
higher radial order with smaller l (which penetrate deeper)
there is a slight discrepancy (probably due to the lack of
curvature in the model or the artificial base). There is also
some disagreement at the very highest observed values of l
(shallower modes) for the ridges n > 1 (this is most likely
the result of the artificial upper boundary condition).

3.2 Magnetic eigenvalues

In the magnetic models, the Lagrangian fluid displacement
satisfies a sixth-order system of ordinary differential equa-
tions:

a2
[

cos2 θ ζ′′ −
(

cos2 φ cos2 θ + sin2 φ
)

k2ζ
]

+
(

ω2 − c2k2
)

ζ

− sin θ a2
[

cos φ cos θ
(

ξ′′z − k2ξz

)

− ik sin2 φ sin θ ξ′z
]

+ik
(

c2ξ′z − gξz

)

= −ik sin φ sin θ a2∂‖η , (7)

a2∂2
‖η + ω2η = − sin φ sin θ a2∂‖∇·ξ , (8)

sin2 θ a2
(

ξ′′z − cos2 φk2ξz

)

+ c2ξ′′z +

(

c2 Γ′
1

Γ1
− Γ1 g

)

ξ′z

(

ω2 − g′
)

ξz + ik

{

c2ζ′ −

[

(Γ1 − 1) g − c2 Γ′
1

Γ1

]

ζ

}

− sin θ a2
[

cos φ cos θ
(

ζ′′ − k2ζ
)

− ik sin2 φ sin θ ζ′
]

= − sin φ sin θ a2∂‖η
′ , (9)

where ∂‖ = B̂·∇ = ik cos φ sin θ + cos θ d/dz is the direc-
tional derivative in the direction parallel to the equilibrium
magnetic field. For φ 6= 0 (and 0 < θ < 90◦) the system of
differential equations (7) – (9) is sixth-order and describes
the propagation and interaction of the different types of
MHD waves (the fast and slow MAG waves and the Alfvén
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waves). When θ = 0 (exactly vertical field) or φ = 0 (propa-
gation parallel to the plane containing B) the Alfvén waves
decouple, and the system governing the interaction of the
fast and slow MAG waves is fourth order. When θ = 90◦

(exactly horizontal field) equations (7) – (9) reduce to a
second-order system – a singular limit that we do not con-
sider here.

As in the non-magnetic case, we impose a rigid lid
boundary condition at the top of the magnetic models that
acts to reflect any upward propagating waves. Thus, we re-
quire that all components of the displacement vanish at the
top boundary of the magnetic models,

ζ = 0 , η = 0 , and ξz = 0 , at z = zb . (10)

As mentioned previously, this type of boundary condition
is a reasonable assumption for oscillations with frequencies
below the acoustic cutoff when there is no magnetic field.
The same argument is not necessarily true when the atmo-
sphere is threaded by a magnetic field. In the case of an ex-
actly vertical magnetic field, Cally et al. (1994) found that
a boundary condition similar to the rigid lid condition is
valid below the acoustic cutoff frequency. The issue is more
complicated when the field is non-vertical.

If we assume that the magnetised regions of the solar at-
mosphere above sunspots can be modelled by an isothermal
layer(s) threaded by inclined uniform magnetic field then
the results of Zhugzhda & Dzhalilov (1984) are applicable.
At great height in such an atmosphere, the Alfvén speed
greatly exceeds the sound speed and the three linear MHD
waves asymptotically decouple. The fast and Alfvén waves
are refracted downward but the acoustic slow waves propa-
gate upward along the magnetic field lines. Acoustic waves
propagate upward when their frequency is above the acous-
tic cutoff because their vertical wavelength is less than the
local density scale height. For the slow waves travelling up
along an inclined magnetic field the scale height in the direc-
tion of wave propagation is increased by a factor of 1/ cos θ
and, therefore, the acoustic cutoff frequency is reduced by
a factor of cos θ (see the Frobenius analysis of Zhugzhda
& Dzhalilov 1984; and for the application of this effect to
spicule formation see De Pontieu, Erdélyi & James 2004;
De Pontieu, Erdélyi & De Moortel 2005). Consequently, the
maximum frequency at which the reflective rigid lid bound-
ary condition (equation (10)) is valid decreases as the incli-
nation increases.

This is one of several limitations associated with our
choice of upper boundary condition. Above the photosphere
the assumptions that the field is straight and uniform and
that the oscillations are small amplitude (i.e., linear) are
unreliable (e.g., Rosenthal et al. 2002; Bogdan et al. 2003).
At this stage, we do not attempt to include these effects
in our present model. As a result, our model will probably
underestimate the energy loss (i.e., absorption) experienced
by acoustic waves traversing sunspots. The likely effect on
the phase shifts of the acoustic waves is less clear.

In the polytrope at the base of the magnetic atmo-
spheres, asymptotic solutions for the governing wave equa-
tions have been developed previously (see Crouch 2003;
Crouch & Cally 2003, 2005, for details). At large depth
(as z → −∞), the three different types of MHD waves lo-
cally decouple and the requirements that evanescent modes
be decreasing and wave-like disturbances be outgoing select

Table 1. Equipartition depth in the various magnetic models.

Field strength (kG) Equipartition depth (Mm)

0.5 0.187
1.0 -0.014
1.5 -0.169
2.0 -0.323
2.5 -0.462
3.0 -0.604
3.5 -0.730
4.0 -0.843
4.5 -0.944
5.0 -1.033

three distinct solutions. The fast MAG waves are vertically
trapped acoustic waves. Consequently, the fast wave com-
ponents of the π-modes1 are successively refracted at great
depth back toward the conversion layer, where the various
MHD waves are coupled. The slow MAG wave and Alfvén
wave components are downward travelling, incompressive
oscillations (driven predominantly by magnetic tension). At
great depth, they carry energy away from the conversion
layer and, therefore, are responsible for the decaying ampli-
tude (i.e., absorption) of the π-modes as they traverse the
magnetic models.

The different types of MHD waves interact most
strongly in regions where the sound speed and Alfvén speed
are comparable (i.e., near the surface in our magnetic mod-
els). The equipartition depth, where c = a, therefore pro-
vides a good proxy for the location of the conversion layer.
Table 1 shows the equipartition depth for a selection of the
magnetic models and gives the reader an idea of where the
coupling between the different waves is strongest in each
case. It is worth noting that the recent ray-based analysis of
Cally (2005b) indicates that mode coupling typically occurs
near the equipartition depth, though further coupling may
also take place near the acoustic cutoff depth.

3.2.1 Results

The sixth-order two point boundary value problem is solved
numerically using a bidirectional shooting method in an
analogous fashion to that described in Section 3.1 (see also
Crouch 2003). A selection of the results is displayed in
Figs. 7 – 10 where the complex wavenumber eigenvalue k
is plotted as a function of frequency, inclination, and prop-
agation direction. Crouch & Cally (2003); Crouch (2003);
Crouch & Cally (2005) studied the inclined field oscillation
equations for the complete adiabatic polytrope. It is note-
worthy that our results confirm their conclusions hold true
when a more realistic approximation of the solar interior is
employed.

Mode conversion in magnetised models such as those
considered here is a very rich and complicated process (for
more details see the various case studies by Rosenthal et al.
2002; Bogdan et al. 2003; Cally 2005a,b). However, a general

1 As in our previous work, we label the solutions of the magnetic
oscillation equations π-modes (i.e., p-modes modified by the mag-
netic field).
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Figure 7. Wavenumber eigenvalues k as a function of frequency
f for the π-modes with n = 0, . . . , 9. In each case, the panel on
the left shows the real part of k as a function of f . The panel
on the right shows the imaginary part of k as a function of f
corresponding to the real part shown on the left. In general, at
lower frequencies both Re (k) and Im (k) are largest for n = 0
and decrease with increasing radial order n, allowing different
overtones to be distinguished easily. In the left-hand panels the
eigencurves of the non-magnetic p-modes (adapted from Fig. 6)
are also plotted as light dashed lines. For all these graphs the
magnetic field strength is fixed at B = 2 kG and the propagation
direction is fixed at φ = 0 (so the Alfvén waves are decoupled in
all these cases). The top panels show results for exactly vertical
field θ = 0, the middle panels θ = 30◦, and the bottom panels

θ = 60◦.

pattern of behaviour is evident in Fig. 7. At low frequencies
the π-modes are only weakly affected by the magnetic field:
Re (k) is essentially indistinguishable from the non-magnetic
wavenumber; and the level of mode conversion (as indicated
by Im (k)) is comparatively low. At higher frequencies the
π-modes are more strongly affected by the field: in compar-
ison to the non-magnetic p-mode ridges, the phase speed
ω/Re (k) is increased in most cases; and Im (k) increases by
several orders of magnitude as the frequency increases from
f ≈ 1 mHz to f ≈ 3 mHz.

Broadly speaking, this behaviour can be explained by
considering the asymptotic behaviour of the π-modes at
large depth. Asymptotically, the slow MAG wave (and
Alfvén wave) components of the π-modes are small wave-
length oscillations travelling down the magnetic field away
from the conversion layer(s); whereas the acoustic fast MAG

Figure 8. Wavenumber eigenvalues k as a function of frequency
f for the π2-mode. The panel on the left shows the wavenum-
ber shift, ∆k = k0 − Re (k), as a function of f (where k0 is the
non-magnetic wavenumber for the p2-mode). The panel on the
right shows the imaginary part of k as a function of f . For these
graphs the magnetic field is exactly vertical (θ = 0, hence, the
Alfvén waves are decoupled). Each curve corresponds to a differ-
ent field strength, B. The curve labelling is identical to Fig. 3:
the dotted curve is for B = 1 kG, the dashed curve is B = 2 kG,

the dash-dotted curve is B = 3 kG, the dash-dot-dotted curve is
B = 4 kG, and the long-dashed curve is B = 5 kG. The effect
of the increasing field strength on this mode is clear: the magni-
tude of the wavenumber shift, ∆k, grows with increasing B (most
dramatically at higher frequencies); and Im (k) increases with in-
creasing B at lower frequencies (the change in Im (k) between
ridges is largest for lower field strengths and tends to saturate at
higher field strengths).

wave components are successively refracted from the deeper
layers back toward the surface (where the conversion layer
resides, see Table 1, and the magnetic effects are strongest,
see Figs. 4 and 5). For the fast waves, every successive en-
counter with the conversion layer will induce further mode
conversion (though the exact nature of this is dependent on
properties such as the frequency, wavenumber, field inclina-
tion, and stratification). The deviation of the phase speed
(Re (k)) from the non-magnetic value also originates near
the surface, though over a region broader than the conver-
sion layer(s). At low frequencies, the fast waves have less en-
counters with the surface layers per unit length on average
for the two following reasons: firstly, the π-modes have com-
paratively long horizontal wavelengths (low Re (k)); and,
secondly, the fast waves have relatively deep exponential
tails (or turning points, note: they have asymptotic control-
ling factor exp (k (z − z

0
))). On the other hand, at higher

frequencies (large Re (k)), the fast wave components are con-
fined closer to the surface and the horizontal wavelength
of the π-modes is smaller. Consequently, at higher frequen-
cies the fast waves have more encounters with the surface
layers (per unit length) and, therefore, a greater chance
of inducing mode conversion (on average). Along a given
ridge, Fig. 7 indeed shows that both Im (k) and the differ-
ence between the magnetic and non-magnetic wavenumbers,
∆k = k0 − Re (k), increase with frequency (where k0 is the
non-magnetic wavenumber). These effects are also notice-
able from ridge to ridge (Fig. 7): because they tend to have
smaller Re (k) modes of higher radial order have smaller
Im (k) and ∆k (at fixed f).

The magnetic field affects the oscillations in two main
ways. Firstly, the phase speed ω/Re (k) tends to increase
(i.e., Re (k) decreases and ∆k increases). It is worth not-
ing that this occurs even though the sound speed is slightly

c© 0000 RAS, MNRAS 000, 000–000



Genetic Magnetohelioseismology 9

Figure 9. Wavenumber eigenvalues k as a function of inclination
θ. In each case, the panel on the left shows the wavenumber shift,
∆k = k0−Re (k), as a function of θ (where k0 is the non-magnetic
wavenumber at the same frequency and radial order). The panel
on the right shows the imaginary part of k as a function of θ.
The full curve is π0, the dotted curves are π1, π5, and π9, the
dashed curves are π2 and π6, the dash-dotted curves are π3 and
π7, and the dash-dot-dotted curves are π4 and π8. Solutions with
the same curve type can be distinguished since higher order modes
have smaller Im (κ) (when θ ≈ 0) and smaller magnitude ∆k (for
all inclinations in most cases). For all these graphs the magnetic
field strength is fixed at B = 2 kG and the propagation direction

is fixed at φ = 0 (Alfvén waves are decoupled). The top panels

show results for f = 2.5 mHz (for π-modes n 6 8) and the bottom

panels show f = 4 mHz (for π-modes n 6 9).

diminished in the surface layers of our magnetic models
(Fig. 5). Secondly, the amplitude of the mode decays as it
propagates through the magnetic models (i.e., Im (k) 6= 0).
As expected, Fig. 8 shows that the impact of both of these
effects grows with increasing field strength in the magnetic
models (note: the mode with n = 2 in exactly vertical field
is fairly typical of the general behaviour of other modes at
most inclinations).

Large dips in Im (k) indicate regions of the parame-
ter space where the fast and slow MAG waves (and Alfvén
waves) are only weakly coupled. There are several examples
of this phenomena in our graphs: at f ≈ 3.8 mHz in the
lower right-hand panel of Fig. 7 (θ = 60◦); at higher fre-
quencies in the right-hand panel of Fig. 8 (the dip occurs at
lower frequencies in stronger and more inclined field); and
in highly inclined field in the right-hand panels of Fig. 9. It
is tempting to associate these dips with those in α at mod-
erate frequencies in Fig. 1; indeed, in Section 5 we will show
that they are important when making comparisons with the
observed absorption coefficients.

Perhaps the most important feature of Fig. 7 is the dra-
matic rise in Im (k) for the π-modes with n > 1 as the field
inclination increases from vertical (θ = 0, top right-hand
panel) to θ = 30◦ (middle right-hand panel). Fig. 9 shows
this effect in more detail, where the wavenumber eigenval-
ues k are plotted as a function of inclination. For all modes

with n > 1, Im (k) increases with inclination to a peak at
θ ≈ 30◦ − 40◦, which can be over an order of magnitude
above the value in vertical field (θ = 0). The enhancement
is largest at higher frequencies (bottom panel of Fig. 9) and
for modes of higher radial order. For the n = 0 mode Im (k)
is largest in vertical field (and slightly non-vertical field). As
the field inclination approaches horizontal, the efficiency of
mode conversion tends to diminish. Consequently, Im (k) is
fairly small for all modes in the bottom right-hand panel of
Fig. 7 (θ = 60◦) and in highly inclined field (θ & 60◦, right-
hand panels of Fig. 9). Although the approximations are not
strictly applicable to the modal results presented here, re-
cent WKB and ray-based calculations by Cally (2005a,b) in-
dicate that mode conversion indeed depends most crucially
on the attack angle that the acoustic ray makes with the
magnetic field lines at the equipartition depth and, there-
fore, moderately inclined field will generally be more con-
ducive to mode conversion than vertical field.

The wavenumber shifts ∆k are less dramatically af-
fected by the field inclination. However, the left-hand pan-
els of Fig. 9 show that most π-modes undergo a transition
(where the inclination causes the magnitude of the shifts
to increase substantially) over the range from θ ≈ 20◦ to
θ ≈ 60◦ (the same range of angles where the decay rate
is greatest). This effect has important consequences for the
phase shifts produced by the sunspot models in Section 5.

The other angle of interest in this problem is the prop-
agation direction φ. Fig. 10 summarises the typical effect
that φ has on the eigenvalues. The real parts of the eigen-
values are basically unaffected by the variation of φ in all
cases (Fig. 10, top panels). The same is true for the imagi-
nary parts, except in highly inclined field (Fig. 10(b), middle
panel) where a substantial local maximum in Im (k) is at-
tained at φ = 90◦ (in the polytrope, Crouch & Cally 2005
found a local maximum in Im (k) at φ = 45◦ when θ = 80◦).
Clearly, the efficiency of mode conversion in highly inclined
field is very sensitive to the exact nature of the atmosphere
(i.e., the stratification) along with the parameters θ and φ
(the presence of several decoupling troughs at large incli-
nations in the right-hand panels of Fig. 9 is also indicative
of this). The magnitude of Im (k) at the peak at φ = 90◦

(Fig. 10(b), middle panel) tends to be lower than the peak
found at more moderate inclinations (θ ≈ 30◦, Fig. 10(a),
middle panel).

Our results indicate that the eigenvalues k are gen-
erally symmetric about φ = 90◦ (i.e., k (ω , θ , φ) =
κ (ω , θ , 180◦ − φ)). However, the middle panel of Fig. 10(b)
shows that there is a slight asymmetry between φ ≈ 0 an
φ ≈ 180◦ for higher order modes – this is probably due to an
accumulation of numerical noise when integrating through
the realistic solar model. This property is consistent with the
results of Crouch & Cally (2003); Crouch (2003); Crouch &
Cally (2005), although we have not been able to prove the
symmetry is generally the case.

In a non-vertical field when φ 6= 0 (φ 6= 180◦), π-mode
damping is due to combination of both the slow MAG waves
and the Alfvén waves carrying energy down along the mag-
netic field. The fractional contribution by the Alfvén waves
to the asymptotic wave energy flux, Fa, is plotted in the bot-
tom panels of Fig. 10 (details of how Fa is calculated are pro-
vided by Crouch & Cally 2005, note: it is defined such that
the slow MAG wave contribution is given by Fs = 1 − Fa).
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(a) (b)

Figure 10. Wavenumber eigenvalues, k, and the contribution
by the Alfvén waves to asymptotic wave energy flux, Fa, as a
function of propagation direction φ. On both sides, the top panel

shows the wavenumber shift, ∆k = k0 − Re (k) (where k0 is the
non-magnetic wavenumber at the same frequency and radial or-
der), as a function of φ. The middle panel shows the imaginary
part of k as a function of φ, and the bottom panel displays the
corresponding variation of Fa. The curve labelling is identical to
Fig. 9. To distinguish modes with the same curve type the usual
rules-of-thumb apply: higher order modes tend to have smaller
Im (κ) and smaller magnitude ∆k. For both of these graphs the
magnetic field strength is fixed at B = 2 kG and the frequency is
fixed at f = 4 mHz. (a) The field inclination is fixed at θ = 30◦

(and π-modes n 6 9 are displayed). (b) θ = 70◦ (π-modes n 6 8).

When φ = 0 or φ = 180◦ the Alfvén waves decouple (due to a
geometric symmetry) and, therefore, Fa = 0 (likewise when
the field is exactly vertical θ = 0). Fig. 10 shows that the na-
ture of mode conversion (as indicated by Fa) is highly depen-
dent on the propagation direction φ (along with frequency,
field inclination, and radial order, see Crouch & Cally 2005,
for a more thorough analysis). For example, in moderately
inclined fields (θ ≈ 30◦), the Alfvén waves contribute to
the damping most strongly when φ ≈ 90◦ (see Fig. 10(a),
lower panel); whereas in highly inclined fields (θ ≈ 70◦), they
dominate when φ ≈ 20◦ and φ ≈ 160◦ (see Fig. 10(b), lower
panel). However, rather than radiating great quantities of
additional energy, the Alfvén waves tend to compensate in
regions of the parameter space where the slow MAG waves
are only weakly coupled, and visa versa. Therefore, the over-
all (combined) damping rate (as indicated by Im (k)) is fairly
insensitive to changes in the propagation direction. Broadly
speaking, the field inclination θ is the more significant of
the two angles (as was concluded by Crouch & Cally 2005).
Subsequently, for the remainder of this investigation we con-
centrate only on cases with φ = 0 where the Alfvén waves
are decoupled.

4 SIMPLE SUNSPOT MODELS

We now re-introduce horizontal/radial spatial variation by
constructing very simple models for the interaction between
sunspots and their surroundings (in the same fashion as
Cally et al. 2003). The models consist of a set of concen-
tric cylinders (or shells) embedded in the non-magnetic ex-
terior. Inside each shell we decompose the various perturbed
quantities into components of the form

Ψ(r, ϕ, z, t) = Ψ̂(z)Zm(kr) exp[−i(mϕ + ωt)] , (11)

where Ψ represents any one of the perturbed quantities (e.g.,
horizontal displacement, pressure, etc.), Z is a Bessel func-
tion or linear combination of them (J , Y , or the Hankel func-
tions H(1,2)), r is the radial coordinate (taking the place of
ϑ since we are working in cylindrical rather than spherical
coordinates, as in equation (1)), and all other variables are
the same as those defined earlier. We assume that the hor-
izontal wavenumber eigenvalues k apply to each shell as a
whole (at least on average). To capture the effects of radial
structure, the magnetic field strength B and inclination θ
are allowed to vary from shell to shell. Consequently, each
shell has its own family of eigenvalues k (as calculated in
the previous section for given B and θ). The sole purpose of
the magnetic field in this model is to supply k (it plays no
other role).

In the inner shell, Zm must be the Jm Bessel function
for the solution to be bounded at r = 0, whereas in the
non-magnetic exterior, it is a linear combination

Zm(k0r) = BH(1)
m (k0r) + H(2)

m (k0r) (12)

corresponding to outgoing and incoming waves, respectively
(recall: k0 is the non-magnetic wavenumber, and note: we
have applied an arbitrary normalization where the ampli-
tude of the incoming wave is set to unity). In any interven-
ing shells, Zm is a linear combination of Jm and Ym. Across
each shell boundary r = Rs (0 < R1 < . . . < RN , where the
subscript s is the label for each shell and N is the number
of shells), Zm(kr) and dZm(kr)/dr must be continuous to
ensure that the total pressure and the radial velocity match
(see discussion point (1) below). This allows all the coeffi-
cients in the Bessel linear combinations to be determined.
Then, from B, we calculate the absorption coefficient α and
phase shift δ using

αeig = 1 − |B|2 , δeig = − arg(B) ,

where the subscript ‘eig’ is intended to emphasis that these
are model predictions based on the eigenvalues derived in
Section 3 (note: excluding the depth dependence Ψ̂, equa-
tions (11) and (12) represent the complex conjugate of equa-
tion (1) provided B = b∗). In addition to the issues already
discussed in Section 3, this model has several limitations
which warrant further discussion.

(1) The acoustic jacket is ignored. Bogdan & Cally
(1995) showed that the oscillations in the non-magnetic re-
gions immediately surrounding sunspots must be decom-
posed in terms of both a discrete spectrum of horizon-
tally travelling p-modes along with a continuous spectrum
of horizontally evanescent jacket modes. The jacket modes
are necessary because the (vertically evanescent) p-modes
alone cannot perfectly match the horizontal displacement
(and pressure) of the π-modes at great depth, due to the
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presence of the small vertical wavelength downward trav-
elling slow MAG waves. The matching problem, including
the jacket modes, was addressed by Barnes & Cally (2000)
for a thin-disk scattering model consisting of two different
non-magnetic regions. The mathematical complications are
severe so we do not concern ourselves with this here.

(2) Mode-mixing is neglected. In reality, an incident p-
mode, with frequency f , radial order n, and azimuthal order
m, will excite the complete set of outgoing p-modes of the
same frequency but with different values of n and/or m.
Braun (1995) found strong observational evidence for mode
mixing between adjacent radial orders in both NOAA5229
and NOAA5254, but detailed measurements have not yet
been made. Barnes & Cally (2000) found that mode-mixing
occurs in their sunspot models but most of the energy re-
mains in the original overtone. We neglect this effect alto-
gether, by assuming that the non-magnetic p-mode excites
only the magnetic π-mode of the same frequency and radial
order (and visa versa).

This highlights an important point: mode labelling is
crucial. In Crouch & Cally (2003) we pointed out that there
is some ambiguity to how various overtones are labelled in
inclined magnetic field (due to the complex topology of the
eigenvalues over the (f , θ)-plane). We adopt the usual con-
vention: a π-mode is labelled n if its ridge matches the ridge
of the non-magnetic pn-mode in the low frequency limit
(where the magnetic field has least impact, see Fig. 7).

(3) Apart from the absorption and phase shift occurring
within the spot, there are several other processes at work
in and around sunspots that are not accounted for by our
model (yet may impact the Hankel analysis data): the sup-
pression of acoustic emission and finite mode lifetime effects
(Bogdan et al. 1993; Braun 1995); the influence of nearby
magnetic plage; and the enhancement of acoustic emission
in ‘acoustic glories’ (e.g., Braun & Lindsey 1999; Donea et
al. 2000; Jain & Haber 2002). As Lindsey & Braun (1999)
pointed out, the high frequency dips in α (Fig. 1) may be a
result of enhanced quiet Sun emission (in glories) rather than
a true dip in the absorption occurring within the sunspot,
which suggests the absorption inferred by Hankel analysis
at higher frequencies may be an underestimate.

With these caveats in mind, we now ask ourselves: how
well can these simple sunspot models (based on the eigenval-
ues calculated in Section 3) match Braun’s Hankel analysis
data?

5 GENETIC MAGNETOHELIOSEISMOLOGY

This is a data inversion problem subject to the usual difficul-
ties associated with non-uniqueness and noise amplification
(see e.g., Craig & Brown 1986; Parker 1994). In practice,
solutions can be obtained by forward modelling, whereby
a ‘guess’ is made at the underlying structural model, asso-
ciated (theoretical) phase shifts and absorption coefficients
are computed and compared to the actual data via some
goodness-of-fit measure (such as χ2), and the original guess
is improved in such as way as to reduce the discrepancy be-
tween the model predictions and observations. This turns
the inverse problem into an optimization problem for the
model parameters.

Because of the high dimensionality and expected multi-

modality of the search space associated with our model, we
opted for a genetic algorithm-based optimizer, more specif-
ically the subroutine pikaia (Charbonneau 1995), which
is designed to maximise a user supplied fitness function
F(x) over a bounded d-dimensional space, where x =
(x1, x2, . . . , xd) and 0 6 xq 6 1 (for each q). Such a genetic
algorithm-based technique has already proved its worth in
other helioseismic contexts (Charbonneau et al. 1998, 1999).

We define two variables that quantify the discrepancy
between a given model and the observations:

∆α2 =

Nα
∑

i=1

(

αi − αi
eig

σi
α

)2

, and ∆δ2 =

Nδ
∑

j=1

(

δj − δj
eig

σj
δ

)2

,

where αi (αi
eig) and δj (δj

eig) represent the observed (theo-
retical) absorption coefficient and phase shift at data points
i and j, respectively, and σi

α and σj
δ are the error estimates

associated with each measurement (details of how these are
calculated can be found in Braun 1995). Only observational
data points with σα < 0.2 or σδ < 18◦ are considered in our
analysis (this is fairly arbitrary, but the idea is to retain the
most reliable observations). For the m-dependent data there
are 1738 absorption and 1761 phase shift observations that
satisfy these selection criteria; for the m-averaged data the
numbers are 207 and 95, respectively (Nα and Nδ may be
less than or equal to these depending on the extent of the
eigenvalues for a given model). Depending on the type of
data we intend to model, χ2 (the sum of the relative discrep-
ancies, ∆α2 and/or ∆δ2, normalised by the total number of
degrees of freedom available) takes a slightly different form;
for the absorption

χ2
α =

∆α2

Nα − d
,

for the phase shift

χ2
δ =

∆δ2

Nδ − d
,

and for the combination of both

χ2
t =

∆α2 + ∆δ2

Nα + Nδ − d
,

where d = 3N − 1 is the number of parameters defining
the model (each shell has 3 parameters: Bs, θs, and Rs, but
θ1 = 0 by assumption, see below). The fitness of a particular
model is then given by F = 1/χ2.

Each input xq for the fitness function is associated with
one of the parameters Bs, θs, or Rs. A mapping is con-
structed to ensure each of these remains within the bounds
of the tabulated values (or desired domain), and that the fol-
lowing additional restrictions are met. (1) The shells must
be at least 1 Mm thick (i.e., min(Ws) = 1 Mm, where Ws is
the radial width of each shell such that Rs = Rs−1 + Ws).
The eigenvalue calculations assumed that the models were
horizontally uniform. Consequently, for the eigenvalues to
be valid the shells must not be too thin. The choice of
1 Mm, though arbitrary, is representative of the typical hor-
izontal/radial scales observed in sunspots but remains sig-
nificantly larger than the vertical scales (the density scale
height is roughly a few hundred kilometres near the sur-
face). (2) The magnetic field is vertical in the inner shell
(i.e., θ1 = 0) and the magnetic field strength (inclina-
tion) decreases (increases) monotonically with radius (i.e.,
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Bs > Bs+1 and θs 6 θs+1 for each shell s). This roughly
accounts for the familiar structure of a typical sunspot,
where the umbra is associated with strong nearly vertical
field and the penumbra with weaker inclined field. (3) The
maximum allowed radius of the sunspot is 30 Mm (i.e.,
max(RN ) = 30 Mm), which corresponds to the inner ra-
dius of the Hankel annulus. (4) We only consider five shell
models (i.e., N = 5). (5) Each shell has the same maximum
width max(Ws) = max(RN )/N = 6 Mm.

As was done in Cally et al. (2003), before making any
comparisons we adjust the quiet Sun frequencies to correct
for the slight discrepancy between the model results and
the observations (Fig. 6). For a given frequency f and radial
order n, the value of the corresponding spherical harmonic
degree l is read from the tables of Braun (1995) and used

to calculate k0 =
√

l(l + 1)/R�. The effective frequency
associated with k0 for our quiet Sun model can then be
found. Consequently, when two data points are compared,
this procedure ensures that they have the same horizon-
tal wavenumber (which makes frequency dependent com-
parisons more reliable). Numerical experiments demonstrate
that this tends to improve the agreement between the ob-
served and theoretical phase shifts.

We have families of magnetic eigenvalues k tabulated
for field strengths B = 0.5, 1.0, 1.5, 2.0, . . . , 7.5 kG and incli-
nations θ = 0, 5◦, 10◦, . . . , 60◦ (each family consists of radial
orders n = 0, 1, . . . , 9 where most but not all frequencies f
with acceptable observations are covered). The genetic al-
gorithm pikaia searches this parameter space for the glob-
ally optimal solution (i.e., the model with smallest χ2). For
a 5-shell model with vertical field in the inner-most shell,
this yields a 14-dimensional search space, with monotonic-
ity constraints on the Bs and θs, and a global-sum con-
straint on the Rs. From the computational point of view,
the constrained optimization problem so defined is also of
a mixed nature, involving as it does parameters that can
assume continuous (radii of shells) and discrete (inclination
angle and field strength) values. All of this poses no problem
for a forward modelling-based optimization scheme such as
our genetic algorithm, since all model parameters, whether
floating-point or integer quantities, end up being encoded
along each other on the same string, on which the genetic
algorithm’s breeding operators then act to produce succes-
sive generations of trial solutions. Furthermore, constraints
can be accommodated directly at this encoding level, thus
avoiding the production of trial solutions that end up being
eliminated because they do not satisfy the constraints.

For comparisons to the observational data of
NOAA5254 we examine 10 evolutionary runs consist-
ing of a population of 100 trial solutions left to evolve over
5000 generations. This requires a total of 5 × 106 model
evaluations and, thus, the chance of missing the global
solution is very small. However, given the limitations of
the model and, to a lesser extent the observations, any
attempt at quantitative forward modelling would be overly
ambitious at this stage. Instead, we discuss the two best
solutions from the 10 runs in the context of testing our
sunspot model and the mode conversion hypothesis.

Table 2. The two models that produce best fits for the m-
averaged phase shift data (i.e., minimal χ2

δ).

MODEL A (χ2
α = 34.71, χ2

δ
= 1.077, χ2

t = 23.91)

Shell 1 2 3 4 5

Bs (kG) 5.5 5 3.5 3 1
θs (degrees) 0 0 0 0 55
Rs (Mm) 5.88 11.86 15.87 20.33 23.56

MODEL B (χ2
α = 32.38, χ2

δ = 1.084, χ2
t = 22.41)

Shell 1 2 3 4 5

Bs (kG) 6 5 3.5 2.5 1
θs (degrees) 0 0 0 0 60
Rs (Mm) 5.78 11.78 17.06 20.91 23.04

5.1 Results

5.1.1 Modelling the m-averaged phase shift data

To improve the signal-to-noise ratio Braun (1995) averaged
the absorption coefficients and phase shifts over a small
range of azimuthal orders about m = 0 (those results were
displayed in Figs. 1 and 2). Cally et al. (2003) demonstrated
that the polytropic version of our sunspot model produces
phase shifts that agree very well with the m-averaged obser-
vations. For this reason we initially concentrate on finding
models whose axisymmetric modes (m = 0) best fit the m-
averaged phase shift data (models for the m-dependent data
will be addressed later).

The parameters describing the two models that best fit
the m-averaged phase shift data are given in Table 2. Both
models are very similar: the four inner-most shells contain
only vertical field (whose strength decreases gradually with
radius), and both have outer shells with weak, highly in-
clined field. The tendency of MODEL A and MODEL B
to favour vertical field is compatible with the finding that
models with only vertical field can also match the observed
m-averaged phase shifts quite well (as found by numeri-
cal experiments, though the corresponding absorption levels
produced by vertical field models for the higher modes are
insufficient).

We have not imposed any restrictions on the total radii
of our model sunspots RN (except that they must be less
than or equal to 30 Mm). Both MODEL A and MODEL B
have similar total radii, which are somewhat larger than the
observed penumbral radius of NOAA5254 (18 Mm). This is
not entirely unexpected because the phase shifting region
is generally considered to be a little larger than the visible
size of the penumbra (e.g., Fan, Braun & Chou 1995 suggest
R ≈ 25 Mm).

Typical sunspots, like the one in NOAA5254, tend to
have surface field strengths no greater than around 3.5 kG
(though in reality the field will likely concentrate with
depth). We have deliberately supplied pikaia with a range
of field strengths that cover the expected range and beyond.
The central field strengths in both MODEL A and MODEL
B are a little higher than expected for the surface field. Per-
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Figure 11. Phase shift δ as a function of frequency for MODEL
A (Table 2) for axisymmetric modes (m = 0) with radial orders

n = 0, . . . , 9 (full curves). The diamonds (and associated error
bars) are the observed m-averaged phase shifts for NOAA5254
(Braun 1995). Only observational data points which satisfy our
selection criteria σδ < 18◦ are displayed.

haps the model is sensing a stronger field in subsurface lay-
ers, but we will show that the best fits to the other data
sets tend to favour lower (more realistic) field strengths in
general.

Figs. 11 and 12 show the phase shift δ and the absorp-
tion coefficient α as a function of frequency for MODEL A
(for the axisymmetric mode m = 0, full curves) along with
the m-averaged observations (diamonds). Fig. 11 confirms
the finding of Cally et al. (2003) that the phase shifts pre-
dicted by these models are in excellent agreement with the
observations (χ2

δ ≈ 1 for MODEL A and MODEL B further
support this conclusion, see Table 2). The phase shifts in
Fig. 11 fit the data better than the cases presented in Cally
et al. However, this is no real surprise: firstly, we have a
genetic algorithm searching for the best fit on our behalf,
and secondly, our model is more realistic than the complete
polytrope employed by Cally et al.

The predicted absorption levels for MODEL A and
MODEL B are generally ample to explain the observations
for low order modes (especially at higher frequencies). For
the higher order modes, the absorption produced by verti-
cal field models is insufficient to account for the observa-
tions; however, the highly inclined field in the outer shell of
MODEL A and MODEL B generates enough absorption to
almost match the observed levels (at lower frequencies highly
inclined fields can produce some enhancement in Im (k) in

Figure 12. Same as Fig. 11 except the absorption coefficient α
is plotted, and only observational data points which satisfy our

selection criteria σα < 0.2 are shown.

comparison to vertical field, see the lower right-hand panel
of Fig. 7 and the upper right-hand panel of Fig. 9). Better
fits for α will be found in Section 5.1.2.

As pointed out by Cally et al., the small oscillations in
δ and α at higher frequencies (especially in n = 2 and 3) are
caused by leaky resonances in the spot (partial reflections at
the interfaces r = Rs) and would most likely be smeared out
in reality. Because MODEL A and MODEL B are so alike
(see Table 2) it is not surprising that the results for MODEL
B (which are not displayed) are very similar to those shown
in Figs. 11 and 12.

The fact that the phase shifts agree so well with ob-
servations is significant. The reduced mean travel times for
waves passing through sunspots (and the closely related
phase shifts) are widely believed to be indicative of a wave
speed enhancement below active regions (e.g., Fan et al.
1995; Duvall et al. 1996; Kosovichev et al. 2000). Our sim-
ple magnetic models account for the thermal difference be-
tween a sunspot interior and exterior, and actually have a
slightly diminished sound speed in the surface layers (due
to the effect of the field, see Fig. 5). The impressive agree-
ment between the observed and theoretical phase shifts is
strong evidence that sound speed enhancements below ac-
tive regions are probably not necessary – the travel time
effects may be primarily magnetic in origin. As discussed in
Section 1, comparisons of travel times deduced from either
time-distance or holographic techniques with phase shifts
determined from Hankel analysis are complicated by con-
siderations of possible differences between the depth of the
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Figure 13. Same as Fig. 11 except for MODEL C (Table 3).

phase perturbations and the depth of the acoustic cavity.
In general, a comparison of measurements at high degree l
is particularly useful. For the highest degrees observed in
Figs. 2 and 11, the observed phase shifts (with values of ap-
proximately 100◦) correspond to centre-annulus travel times
of approximately 50 seconds at a frequency of 3 mHz. This
is comparable with both time-distance (e.g., Duvall et al.
1996; Braun 1997) and holographic (e.g., Braun & Lindsey
2000) measurements of sunspots.

5.1.2 Modelling the m-averaged phase shift and

absorption data

As stated above, MODEL A and MODEL B produce absorp-
tion levels significantly in excess of the observed amount for
modes with low radial orders. The α fit can be improved by
requiring pikaia to simultaneously fit both sets of data (i.e.,
minimize χ2

t , note: there are roughly twice as many absorp-
tion points as phase shift points in this case). The parame-
ters describing the two best models in this case are outlined
in Table 3 and the graphical comparisons for MODEL C are
shown in Figs. 13 and 14 (again, similar results are obtained
for MODEL D but not shown).

As one would expect, the improved fit to the absorption
data (Fig. 14) comes at a slight expense to the phase shift
fits (Fig. 13); accordingly, the χ2

δ values for MODEL C and
MODEL D (see Table 3) are more than double the values for
MODEL A and MODEL B (Table 2), whereas the values for
χ2

α and χ2
t are significantly smaller. To better fit the absorp-

tion the genetic algorithm has made four adjustments: (1)

Figure 14. Same as Fig. 12 except for MODEL C (Table 3).

Table 3. The two models that produce best fits for the m-
averaged phase shift and absorption data (i.e., minimal χ2

t ).

MODEL C (χ2
α = 5.10, χ2

δ
= 2.95, χ2

t = 4.26)

Shell 1 2 3 4 5

Bs (kG) 3 3 3 2 2
θs (degrees) 0 45 55 55 60
Rs (Mm) 1.00 4.10 5.78 9.23 12.53

MODEL D (χ2
α = 5.35, χ2

δ = 2.50, χ2
t = 4.31)

Shell 1 2 3 4 5

Bs (kG) 3 3 3 2 1
θs (degrees) 0 45 60 60 60
Rs (Mm) 1.00 4.09 6.12 12.11 14.00

avoided models containing fields with θ ≈ 30◦ (where mode
conversion, and hence absorption, is greatest, Fig. 9 right-
hand panels); (2) favoured models with smaller total radius
(because absorption scales with size, both MODEL C and
MODEL D have total radii substantially smaller than the
observed size of the sunspot in NOAA5254); (3) favoured
models with weaker field (in comparison to MODEL A and
B, because absorption also scales with B at lower and in-
termediate frequencies, see Fig. 8 right-hand panel); and (4)
minimized the size (and hence influence) of the vertical field
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Table 4. The two models that produce best fits for the m-
dependent phase shift data (i.e., minimal χ2

δ).

MODEL E (χ2
α = 4.42, χ2

δ
= 20.25, χ2

t = 12.34)

Shell 1 2 3 4 5

Bs (kG) 5 3 3 2.5 2.5
θs (degrees) 0 20 20 20 25
Rs (Mm) 1.32 7.00 11.70 17.47 23.31

MODEL F (χ2
α = 4.49, χ2

δ = 20.26, χ2
t = 12.38)

Shell 1 2 3 4 5

Bs (kG) 3 3 3 3 3
θs (degrees) 0 20 20 20 25
Rs (Mm) 4.26 9.72 13.36 18.43 23.37

central core (both models have converged to the minimum
allowed width of 1 Mm).

Despite being somewhat unrealistic, these models con-
firm what we now know about the mode conversion process:
absorption produced by vertical field is too weak to account
for the level observed for the high order p-modes, and the
efficiency of mode conversion in non-vertical field (particu-
larly with θ ≈ 30◦) is ample to explain the α observations.
The compromise lies somewhere between the two extremes
– fields with θ = 45◦ (MODEL C and MODEL D, second
shell) produce less absorption than those with θ ≈ 30◦ but
still enough to account for levels experienced by higher order
p-modes (see Fig. 9, right-hand panels).

For the vertical field polytrope there is a sequence of
troughs in Im (k) associated with the exact decoupling of
the fast and slow MAG waves (and therefore a minimum
in absorption, Cally et al. 1994). The troughs are present
in non-vertical fields but the decoupling is not complete
(Crouch & Cally 2003, 2005). By varying the equipartition
depth (i.e., the field strength), Cally et al. were able to ad-
just the location of these troughs to roughly match the dips
in α at higher frequencies. This is not feasible for the modi-
fied GONG models, because the decoupling troughs are not
as common for the range of frequencies and field strengths
we have examined. However, in comparison to Fig. 12, the
absorption curves do a more reasonable job of reproducing
the high frequency dips (especially for n = 4− 7 in Fig. 14),
though the peaks tend to be below the observations. The
tendency of the model to favour highly inclined field (with
θ ≈ 60◦ as in the outer shells of MODEL C and MODEL D)
is probably due of the presence of large troughs in Im (k) at
roughly the same frequencies as the dips in α (see the lower
right-hand panel of Fig. 7).

5.1.3 Modelling the m-dependent phase shift data

The radial structure of the regions that induce the phase
shifts and absorption is best probed using a range of az-
imuthal orders m (Braun (1995) observed |m| 6 20). For
example, as the value of the impact parameter, m/k0, ap-
proaches the radius of the phase shifting region we expect δ

Table 5. The two models that produce best fits for the m-
dependent phase shift and absorption data (i.e., minimal χ2

t ).

MODEL G (χ2
α = 2.18, χ2

δ
= 21.05, χ2

t = 11.62)

Shell 1 2 3 4 5

Bs (kG) 3 3 2.5 2 2
θs (degrees) 0 10 10 10 20
Rs (Mm) 5.64 11.46 16.89 21.63 27.62

MODEL H (χ2
α = 1.92, χ2

δ = 21.32, χ2
t = 11.63)

Shell 1 2 3 4 5

Bs (kG) 3 3 2 2 2
θs (degrees) 0 5 5 10 20
Rs (Mm) 5.93 11.80 17.70 23.70 28.97

to drop off to zero (likewise for α). To this end, we now turn
our attention to modelling the m-dependent data.

The two best fits for the phase shifts in this case are
presented in Table 4 (no plots of these are shown). It is in-
teresting to note that the internal parameters for MODEL
E and F are quite different to those of MODEL A and B
(best fits for the m-averaged phase shifts, Table 2), yet the
outer radii are similar. Again, the size of the model is con-
sistent with what has been inferred previously for the phase
shifting region (Fan et al. 1995). Evidently, enough informa-
tion about the total radius of the phase shifting region is
retained in the frequency (and l) dependence of δ after the
m-averaging is performed, despite there being reasonable
variation in δ with m (indeed, the range of azimuthal orders
for the averaging of δ was limited to avoid the substantial
drop-off at larger m, depending on l, Braun 1995).

For MODEL E the field strength is quite high in
the inner-most shell but decreases with radius, whereas in
MODEL F the field strength is constant (the values are more
realistic than in MODEL A and MODEL B). MODEL E and
MODEL F contain only moderately inclined fields (θ 6 25◦).
The reason for this is clear. In general, the observed phase
shifts peak at m = 0 and drop off as |m| increases. Broadly
speaking, this indicates that the contribution to the phase
shifts is strongest in the umbral core and weaker in the outer
penumbral regions (though this point is not entirely consis-
tent with the recent findings by holography Lindsey & Braun
2005a,b; Schunker et al. 2005, the reason for the discrepancy
in unclear). In our models, highly inclined fields induce rela-
tively strong phase shifts (Fig. 9, left-hand panels, θ & 30◦).
Consequently, pikaia has avoided placing highly inclined
fields in the outer shells. It is not completely obvious how
to rectify this scenario. Allowing for field strengths weaker
than 0.5 kG or increasing the number of shells may help, but
it may be that uniform field is an inadequate assumption in
the penumbra.
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Figure 15. Phase shift δ versus azimuthal order m for modes
with radial orders n = 0, . . . , 7 for MODEL H (full curve). In all

of these plots the spherical harmonic degree is fixed at l = 288
(the frequencies for n = 8 and 9 are above the acoustic cutoff
in this case). The diamonds (and associated error bars) are the
phase shifts observed by Braun (1995) and satisfy σδ < 18◦.

5.1.4 Modelling the m-dependent absorption and phase

shift data

In contrast to the models for the m-averaged absorption
and phase shift data (MODEL C and MODEL D, Table 3),
the models for the m-dependent version of the two data
types tend to be somewhat larger than the size of the actual
sunspot (see MODEL G and MODEL H, Table 5). They are
also larger than the models that best fit the m-dependent
phase shift data alone (MODEL E and MODEL F, Table 4).
To some extent, this was to be expected. Because α does
not drop off substantially as m increases (in the way that δ
does, see Figs. 15 – 18), we know that the absorption region
is larger than both the inner radius of the Hankel annulus
and the phase shifting region. This conclusion is supported
by the presence of magnetic plage in the annulus (for which
Hankel analysis detects some small levels of absorption but
no phase shifts (Braun et al. 1988; Braun 1995), though
holography finds otherwise – the source for the disagreement
is uncertain). Consequently, the rather large total radii of
our models is not detrimental. It does not converge to the
maximum allowed radius (30 Mm, coincident with the inner
radius of the Hankel annulus) because pikaia is also trying
to fit the phase shifts (which are induced over a smaller
region), rather it settles somewhere in the middle.

Graphical comparisons between the theoretical predic-

Figure 16. Same as Fig. 15 except the absorption coefficient α
is plotted and only data points that satisfy σα < 0.2 are shown.

tions of MODEL G and the observations are provided by
Figs. 15 – 18, where α and δ are plotted as a function of az-
imuthal order m for l = 288 and l = 208 (which correspond
to horizontal wavelengths of 15.16 Mm and 20.97 Mm, re-
spectively). Because the horizontal wavelengths are roughly
the scale of the spot, the results in Figs. 15 – 18 are more
sensitive to the behaviour of the sunspot as a whole rather
than the small-scale structure within the spot – it turns out
that our models tend to perform better for these modes.

In general, MODEL G reproduces the decline in δ with
m fairly well, although the magnitude of δ for modes with
n = 3 − 6 at azimuthal orders around m = 0 tends to be
little low. The overall decline in δ as l decreases is also well
produced. However, the quality of the fits for δ (as given
by χ2

δ, see Tables 4 and 5) are generally quite poor for the
m-dependent data. On the other hand, the α fits in these
cases appear to be much better (χ2

α is substantially lower
than χ2

δ for both types of fits, see Table 4 and 5), though
there is considerably more scatter in α than in δ.

The outer shells of MODEL G and MODEL H contain
field with θ = 20◦ which tends to absorb quite strongly
(Fig. 9, right-hand panels). The presence of this can be seen
as the little ‘horns’ in α at larger m in Figs. 16 and 18, which
are especially noticeable for modes with higher radial orders.
This outer shell presents a wide target to the incoming waves
without absorbing them too much and, therefore, overcomes
the preference for smaller radii in MODEL C and MODEL
D (see Table 3). The presence of the vertical field (weakly
absorbing) core shows up as a small (though broad) dip in
α around m ≈ 0 for the higher order modes. The phase
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Figure 17. Same as Fig. 15 except l = 205 and modes with radial
orders n = 2, . . . , 9 are plotted.

shift produced by the outer shell is much less noticeable in
Figs. 15 and 17 – field inclined at θ = 20◦ only produces a
slightly different phase shift to more vertical field (see Fig. 9,
left-hand panels).

6 CONCLUSIONS

We have developed a model for p-mode absorption by
sunspots which, though simplistic in some respects, is much
more realistic than the previous polytropic calculation of
Cally et al. (2003). The model representing the convection
zone includes the vertical variation of the density, pres-
sure, adiabatic exponent, and local gravitational accelera-
tion (along with the sound and Alfvén speeds), and prop-
erly accounts for the difference in thermal structure between
a sunspot interior and exterior. Using this model, we con-
firmed our earlier findings (based on a complete adiabatic
polytrope, Crouch & Cally 2003, 2005) that modes with ra-
dial orders n > 1 suffer significantly enhanced absorption
(due to conversion to slow MAG waves and Alfvén waves)
when the field is inclined at approximately 30◦ in compari-
son to vertical field (depending on the frequency and the ra-
dial order); and that the f -mode (n = 0) is most efficiently
damped by vertical (and slightly inclined) field. Employing
that realistic representation for the convection zone in con-
junction with a simple model for the interaction between
the f - and p-modes and the oscillations in magnetic regions
(i.e., sunspots), we have confirmed that mode conversion can
explain the levels of absorption observed in sunspots.

Figure 18. Same as Fig. 16 except l = 205 and modes with radial
orders n = 2, . . . , 9 are plotted.

We have approached the task of testing our model as
an optimisation problem, where a genetic algorithm, pikaia

(Charbonneau 1995), searches for the set of parameters
which give the best fit between the model predictions and
the observations. A broad range of parameter space was
tested: field inclinations up to 60◦ (in 5◦ increments), spot
radii up to the size of the inner radius of the Hankel annulus
(30 Mm), and field strengths B = 0.5, 1.0, . . . , 7.5 kG. The
largest allowed field strengths are roughly twice what would
be expected in a typical sunspot (such as NOAA5254), yet
the fittest solutions tend to favour field strengths in the
range 1 − 3 kG. In part, this confirms the validity of the
model.

When the genetic algorithm is required to find the
optimal fit to the m-averaged phase shifts the resultant
agreement between theory and observations is remarkable
(though the field strengths are a little high in those cases).
The corresponding absorption levels produced by those
models are generally in excess of the observations (especially
at higher frequencies where the observed α drops signifi-
cantly). Better fits to the absorption data can be achieved,
but come at a slight expense to the phase shift fits.

Our results are also consistent with the conclusions of
Lindsey & Braun (2005a,b); Schunker et al. (2005) in that
a more realistic proxy for the showerglass effect is likely to
require the inclusion of magnetic field inclination. In addi-
tion, we have demonstrated that highly inclined fields (with
θ & 30◦, characteristic of sunspot penumbrae) generally in-
duce strong phase shifts.

There are several possible reasons why we would ex-
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pect our model to produce absorption in excess of the level
observed by Hankel analysis at higher frequencies. Firstly,
acoustic glories in the quiet Sun surrounding sunspots are
strong emitters of acoustic energy (Donea et al. 2000) and
may mask the real absorption produced within the sunspot
(Lindsey & Braun 1999). Secondly, our model does not ac-
count for processes like the suppression of acoustic emission
inside spots or convective dissipation. And thirdly, by as-
sumption the regions responsible the absorption and phase
shifts are of the same size in our model, but from the per-
spective of Hankel analysis they are not (due to the absorp-
tion produced by nearby magnetic plage, Braun et al. 1988;
Braun 1995).

In fact, we suspect that our models themselves are un-
derestimating the true level of absorption. We have only al-
lowed the energy to propagate one way – down the magnetic
field lines into the interior. There is, of course, a second op-
tion – up the magnetic field into the atmosphere. As we dis-
cussed, the upper boundary condition adopted in this inves-
tigation is only valid for frequencies below the acoustic cut-
off frequency, ωac. However, in regions with uniform inclined
magnetic fields the acoustic cutoff frequency is reduced by a
factor of cos θ. We have completely ignored this effect. In our
magnetic models with 2 kG vertical field ωac = 5.46 mHz
(greater than the non-magnetic value), but in regions with
field inclined at 30◦ it is reduced to 4.73 mHz and if the
field is inclined further (to 60◦) it is more like 2.73 mHz.
Therefore, in the Sun (or an improved sunspot model) it is
likely that substantial amounts of acoustic energy will be
lost into the atmosphere at the frequencies we considered in
this investigation (e.g., Cally et al. 1994 found that to be
the case for vertical field; and De Pontieu et al. 2004, 2005
have demonstrated that this process can occur in inclined
magnetic flux tubes). The likely consequences of this effect
on the phase shifts is less clear – we defer that calculation
to a subsequent investigation.

To confirm our conclusions, several of our assumptions
must be relaxed in future work: field non-uniformity should
be correctly incorporated into more advanced sunspot mod-
els (e.g., Bogdan 1999; Cally 2000), and the matching across
the interface separating the magnetic and non-magnetic re-
gions should include the acoustic jacket and the possibility
of mode mixing (e.g., Bogdan & Cally 1995; Barnes & Cally
2000).

It is a commonly held perception that the phase shifts
and mean travel time reductions for waves travelling through
sunspots (e.g., Duvall et al. 1996; Kosovichev et al. 2000)
are indicative of an enhanced sound speed in the subpho-
tospheric layers of sunspots (see also Fan et al. 1995). Our
results show that this is not the only explanation – those
effects may be primarily magnetic in origin. The sound
speed in our magnetic models is actually slightly reduced
in comparison to the non-magnetic quiet Sun model (see
Fig. 5). Yet the resultant phase shifts produced by our simple
sunspot models can agree remarkably well with the obser-
vations (depending on the specifics of the radial structure).
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