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Abstract. Sunspots absorb energy from and shift the phase of f and p modes
incident upon them. Understanding the mechanism causing each of these effects
is vital to the local helioseismology of sunspots (and magnetic flux concentrations
in general). Because the beta-equals-unity layer typically lies in the near surface
layers below the photospheres of sunspot umbrae, MHD mode conversion can
occur. Mode conversion provides a promising absorption mechanism because
the slow magnetoacoustic-gravity waves and Alfvén waves guide energy along
the magnetic field away from the acoustic cavity. Our previous mode conversion
calculations have shown that simple sunspot models with non-vertical magnetic
fields can produce ample absorption to explain the Hankel analysis measure-
ments, along with phase shift predictions that agree well with the observations.
Those calculations only considered the possibility of MHD waves propagating
down the magnetic field into the interior. In this contribution, we consider a sec-
ond additional possibility – waves propagating up into the atmosphere overlying
sunspots.

1. Introduction

Sunspots absorb energy from and shift the phase of f and p modes incident upon
them (e.g., Braun 1995). Recent modelling efforts by Crouch & Cally (2003,
2005), Cally et al. (2003), and Crouch et al. (2005) have demonstrated that
both effects can be explained by simple sunspot models provided the magnetic
field inclination is taken into account. In the first part of this contribution we
summarise the essential findings of the most recent investigation (Crouch et al.
2005). In the last part we use a simple model for the upper atmosphere (based
on isothermal slabs) to evaluate the influence of the top boundary condition and
to test the validity of the boundary condition that was employed by Crouch et
al. (2005).
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2. The Model

The background model, for the variation of the gas pressure, density, adiabatic
index, and local gravitational acceleration with depth, is based on the realis-
tic solar model fgong.l5bi.d.15 from the Aarhus adiabatic pulsation package
(Christensen-Dalsgaard 1997). To this model we introduce a magnetic field that
is straight and uniform, B = B (sin θ êx + cos θ êz), where θ is the angle between
the magnetic field and the vertical, êz, and B is the field strength (curvature of
the solar surface is neglected). The background model is modified to account for
the effects of the magnetic pressure (the total pressure is independent of field
strength). The variation of the sound speed for models of differing field strength
is displayed in Figure 1. The influence of the magnetic pressure is strongest
near the surface, which causes the sound speed to be reduced in models with
larger field strength. On the other hand, at great depth, the gas pressure over-
whelms the magnetic pressure and so there is little difference between the sound
speed profile of the various models. Details of the variation in Alfvén speed and
adiabatic exponent can be found in Crouch et al. (2005).

Figure 1. Squared sound speed, c2, as a function of depth for the non-
magnetic model and four of the magnetised models. The full curve is the
squared sound speed for the non-magnetic model, the dotted curve is B =
1 kG, the dashed curve is B = 2 kG, the dash-dotted curve is B = 3 kG, and
the dash-dot-dotted curve is B = 4 kG. The inset on the upper right shows
an expanded view of the surface layers. The inset on the lower left provides
a comparison between the modified fgong.l5bi.d.15 model with B = 2 kG
(dashed curve) and the corresponding polytrope (full curve), that was used to
develop asymptotic solutions for the wave equations at great depth.

The linearized MHD wave equations are then solved in each of the background
models (which are assumed to be horizontally uniform for the moment). At this
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stage, we will not concern ourselves with modelling wave propagation in the
upper atmosphere (which is complicated by field non-uniformity and non-linear
wave dynamics Rosenthal et al. 2002; Bogdan et al. 2003). Consequently, at
the top of each model (z = 500 km), we impose rigid lid boundary conditions
(each component of the displacement vector vanishes). At great depth in the
model, asymptotic solutions for the wave equations can be developed, which
allow us to impose physical boundary conditions: wave-like disturbances must be
outgoing and evanescent modes must decay (see Crouch & Cally 2003, 2005, for
details). The two-point boundary value problem is then solved numerically and
the resultant complex wavenumber eigenvalues contain the information about
the phase speed (real part of the eigenvalue) and mode conversion efficiency
(imaginary part).

3. Genetic Magnetohelioseismology

To account for the observed radial variation of the magnetic field strength and
inclination across a sunspot, we construct a simple model of concentric cylinders
(or shells). Given the field strength, field inclination, and radial thickness of each
shell, the eigenvalues can be used to calculate the resultant absorption and phase
speed change produced by the model. We use a genetic algorithm to iteratively
adjust the model parameters controlling the radial structure in order to find the
best fit with observations. Figure 2 shows a typical result from this process.
We have plotted the phase shifts (left hand side) and the absorption coefficients
(right hand side) for the f mode and the first nine p modes. It is clearly evident
that the observed phase shifts (diamonds with error bars) are remarkably well
matched by our simple model (full curve). The absorption coefficients agree
quite well. It is not readily apparent in Figure 2 but it has been shown by Cally
et al. (2003) and Crouch et al. (2005) that these models can produce ample
absorption to explain the observations.

4. Consequences for Sunspot Seismology

It is a commonly held perception that the observed phase speed increase is
indicative of an enhanced sound speed in the subphotospheric layers of sunspots
(see also Fan et al. 1995; Duvall et al. 1996; Kosovichev et al. 2000). Our results
show that this is not the only explanation – those effects may be primarily
magnetic in origin. The sound speed in our magnetic models is actually slightly
reduced in comparison to the non-magnetic quiet Sun model (see Figure 1). Yet
the resultant phase shifts produced by our simple sunspot models can agree
remarkably well with the observations (depending on the specifics of the radial
structure). Further work is needed to determine if this conclusion holds true in
more complex models.

5. Testing the Upper Boundary Condition

In this section we present some preliminary results from a model that relaxes the
rigid lid boundary condition (as employed by Crouch et al. 2005). Despite their
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Figure 2. A comparison of the observations and theoretical predictions
produced by a best fit five-shell model with: B = {3, 3, 3, 2, 2} kG, θ =
{0, 45◦, 55◦, 55◦, 60◦}, and R = {1, 4.1, 5.78, 9.23, 12.53}Mm. Left: Phase
shift δ as a function of frequency for axisymmetric modes (m = 0) with ra-
dial orders n = 0, . . . , 9. The full curves are the theoretical predictions and
the diamonds (and associated error bars) are the observed m-averaged phase
shifts for NOAA5254 (Braun 1995). Only observational data points which
satisfy σδ < 18◦ are displayed. Right: Same as the plot on the left, except the
absorption coefficient α is plotted, and only observational data points which
satisfy σα < 0.2 are shown. From Crouch et al. (2005).

limitations in the atmosphere, as a first approximation we retain the assumptions
of field uniformity and small amplitude waves. We model the atmosphere above
the photosphere with two isothermal slabs. The gravitational acceleration is
constant throughout the atmosphere and matches the value at the top of the solar
interior model (z = 500 km). The lowest slab (which is intended to mimic the
chromosphere) extends from z = 500 km to z = 2000 km, and has a temperature
and adiabatic exponent that match the values at the top of underlying interior
model. The upper slab is semi-infinite and has a temperature T = 2 × 106 K
(consistent with values observed in corona) and adiabatic exponent γ = 5/3.

It turns out that the linear wave equations for an isothermal slab permeated
by a straight, uniform, inclined magnetic field can be solved analytically, when
the direction of wave propagation is parallel to the vertical plane containing
the magnetic field (i.e., φ = 0). In a similar fashion to the vertical field case
(that was studied by Cally 2001), the solutions for inclined field problem can be
written in terms of the hypergeometric 2F3 functions (it should be pointed out



The Role of MHD Mode Conversion 165

Figure 3. Complex wavenumber eigenvalues k as a function of frequency
f for the modes with n = 0, . . . , 4. The top panels show the real part of k
as a function of f and the bottom panels show the corresponding imaginary
part. The two left hand panels show results for exactly vertical field θ = 0,
the middle panels θ = 30◦, and the right hand panels θ = 60◦. In each case,
the results from the model with an atmosphere placed above z = 500 km are
plotted as full curves, and the results from the model with rigid lid boundary
condition imposed at z = 500 km are plotted as dotted curves. In general
the real parts of these two curves are in indistinguishable. At low frequencies
both Re (k) and Im (k) are largest for n = 0 and decrease with increasing
radial order n. For all these graphs the magnetic field strength is fixed at
B = 2 kG and the propagation direction is fixed at φ = 0 (so the Alfvén
waves are decoupled in all these cases).

that Zhugzhda & Dzhalilov 1984, solved the same equations in terms of Meijer
functions but these are significantly more complicated than the 2F3 functions).
We impose physically consistent boundary conditions at z →∞, such that wave-
like disturbances travel upward and evanescent modes decrease with increasing
height. The fast MAG waves are refracted at great height by the increasing sound
speed and have leading behaviour exp (−kz). The slow MAG waves have lead-

ing behaviour exp
{
−(z/2H)

[
1 + 2ikH cosφ tan θ − sec θ

√
cos2 θ − (ω/ωac)2

]}
,

which shows that the acoustic cutoff frequency ωac is effectively reduced by
a factor of cos θ in regions with inclined magnetic field (in comparison to the
quiet Sun value). Complete details of these solutions will be presented elsewhere
(Crouch 2006).

Some illustrative results are presented in Figure 3. In that figure we have
plotted the real and imaginary parts of the wavenumber eigenvalues for three
field inclinations. Cally et al. (1994) used a similar approach to investigate the
vertical field model. Their results compare well to the results shown in the
left hand panels of Figure 3, although some of the details are sensitive to the
slight differences in the models (such as which modes turn over and terminate
at Re (k) = 0).

One particularly important point demonstrated by Figure 3 is that the real
parts of the wavenumber eigenvalues are fairly insensitive to the specifics of
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the upper boundary condition (in most cases the curves of the two models are
indistinguishable). The real parts of the wavenumbers control the phase shift
produced by the simple shell models (see Figure 2). Consequently, our con-
clusion regarding the interpretation of the phase speed changes is unmodified
(see Section 4. though the influence of field non-uniformity and non-linear wave
dynamics in the atmosphere are yet to be tested).

On the other hand, the imaginary part of the wavenumbers (which control
the absorption) are more sensitive to the nature of the upper boundary condi-
tion. At lower frequencies it appears that the magnitude of Im (k) is actually
slightly reduced in the model that allows waves to propagate upward. At higher
frequencies the difference between the two models is quite dramatic. The os-
cillations of Im (k), exhibited by the model with an atmosphere, are due to
standing wave resonances in the cavity between the temperature minimum re-
gion (z ≈ 500 km) and the transition region (the discontinuity separating the
chromosphere and corona at z = 2000 km). It is evident that the resonances
occur at lower frequencies in models with larger field inclination. This is to be
expected because the acoustic cutoff frequency fac is inclination dependent (as
explained above). For the B = 2 kG model in Figure 3, fac = 5.46 mHz in
vertical field, fac = 4.73 mHz when θ = 30◦, and fac = 2.73 mHz when θ = 60◦.
Those values are in very good visual agreement with the frequencies where the
resonances commence. Waves below these frequencies will not form resonances
as they do not propagate in the model chromosphere. Apart from the reso-
nances, the average overall magnitude of the imaginary parts is quite similar to
the rigid lid model (though the rigid lid values tend to provide an upper bound).

As we have discussed, this model is quite simplistic, but there are several
questions that we intend to investigate: (1) how much acoustic energy is chan-
nelled from the p modes into the solar atmosphere; (2) what are the resultant
absorption coefficients (especially at higher frequencies) and how do they com-
pare with observations (e.g., Braun 1995; Lindsey & Braun 1999); and (3) can
useful information about the mode conversion process be extracted by compar-
ing the displacements in the photospheric layers with observations? Some of
these questions will be pursued in a forthcoming publication (Crouch 2006).
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