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Abstract Supergranulation is one of the most visible length scales of solar convection and
has been studied extensively by local helioseismology. We use synthetic data computed
with the Seismic Propagation through Active Regions and Convection (SPARC) code to
test regularized-least squares (RLS) inversions of helioseismic-holography measurements
for a supergranulation-like flow. The code simulates the acoustic wavefield by solving the
linearized three-dimensional Euler equations in Cartesian geometry. We model a single su-
pergranulation cell with a simple, axisymmetric, mass-conserving flow.

The use of simulated data provides an opportunity for direct evaluation of the accu-
racy of measurement and inversion techniques. The RLS technique applied to helioseismic-
holography measurements is generally successful in reproducing the structure of the
horizontal-flow field of the model supergranule cell. The errors are significant in horizontal-
flow inversions near the top and bottom of the computational domain as well as in vertical-
flow inversions throughout the domain. We show that the errors in the vertical velocity are
due largely to cross talk from the horizontal velocity.
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1. Introduction

Wave travel times are influenced by the properties of the medium in which they propagate;
helioseismic holography (Lindsey and Braun, 1990, 2000) can be used to measure travel-
time shifts, and is therefore useful for probing the interior structure of the Sun (Gizon and
Birch, 2005; Gizon, Birch, and Spruit, 2010).

Supergranulation is a visible pattern on the solar surface often interpreted as a scale of so-
lar convection. Despite extensive research by local helioseismology, there remains substan-
tial uncertainty regarding the characteristic scales and fundamental processes responsible
for the creation and sustainment of supergranulation patterns (e.g. Gizon and Birch, 2005;
Rieutord and Rincon, 2010).

Supergranulation cells were first detected by Hart (1954, 1956); observations and anal-
ysis of data over a period of five decades have revealed average cell sizes in the range 15 –
30 Mm (e.g. Hart, 1956; Leighton, Noyes, and Simon, 1962; Duvall, 1980; Hathaway, 1992;
Hagenaar, Schrijver, and Title, 1997; De Rosa and Toomre, 2004; Hirzberger et al., 2008),
with discrepancies in estimated scale due largely to differences in analysis techniques. Sim-
ilarly, direct inferences of the velocity field have produced a range of horizontal-flow es-
timates (e.g. Hart, 1954; Simon and Leighton, 1964; Hathaway et al., 2002). Rieutord et
al. (2010), motivated by observed scale-dependency in surface kinetic-energy distributions,
performed a spectral analysis of velocities estimated using granule tracking and Doppler
measurements. They measured a velocity of 300 m s−1 at a scale of 36 Mm. Estimating ver-
tical velocity has proven more difficult due to the noise contribution and low signal strength,
particularly near the boundaries of supergranulation cells (Rieutord and Rincon, 2010). Re-
sults from SOHO/MDI data (Hathaway et al., 2002) and Hinode/SOT data (Rieutord et al.,
2010) produced estimates of 30 m s−1. Duvall and Birch (2010) estimated cell-center ver-
tical flow to be about 10 m s−1 using direct Doppler measurements averaged over 1100
supergranules.

Several theories have been advanced to explain the development of supergranulation flow
patterns at the observed preferential scale, although confirmation or rebuttal of these theories
is largely lacking. An early theory proposed by Simon and Leighton (1964) attributed su-
pergranular scales to convective instability from the recombination of ionized helium. More
recently, Rieutord et al. (2000, 2001) proposed a model whereby exploding granules trigger
large-scale instability of the granular flow, leading to supergranulation. Ploner, Solanki, and
Gadun (2000) used a 1D model to similarly show that the interaction and merging of in-
dividual granular plumes may determine supergranular scales. Rast (2003) demonstrated
that large spatial and long temporal supergranular scales arise in a simplified advective
model that simulates the interaction of many small-scale and short-lived granular down-
flow plumes. Crouch, Charbonneau, and Thibault (2007) were able to simulate correlations
between cell size and magnetic activity using a model based on a random-walk approxima-
tion to the dispersal and interaction of small-scale magnetic elements at the solar surface.
Qualitatively, they found that this process produced supergranule-like spatial patterns.

Debate continues regarding the structure of supergranule flows below the solar surface
(e.g. Duvall, 1998; Zhao and Kosovichev, 2003; Woodard, 2007; Sekii et al., 2007), largely
due to the difficulties associated with estimating relevant quantities using helioseismology
(e.g. Gizon and Birch, 2005; Rieutord and Rincon, 2010). These challenges are compounded
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by the sound-speed and density stratification, which effectively decrease resolution and
signal-to-noise ratio with depth, making the detection of a return flow elusive. Kosovichev
and Duvall (1997) first used the time–distance helioseismology technique (Duvall et al.,
1993) to make measurements of supergranular-flow patterns from Doppler measurements.
Zhao and Kosovichev (2003) also used time–distance helioseismology to infer supergranule
flow fields; they found that horizontal flows could be derived reliably within a few mega-
meters of the surface, but that vertical flows remained uncertain. They determined super-
granulation to be a relatively deep phenomenon with a full pattern depth of up to 15 Mm
and a return flow measured below a depth of 5 – 6 Mm. Braun, Birch, and Lindsey (2004),
using helioseismic holography, attributed the measured return flow to signal leakage, and
concluded that supergranulation is a relatively shallow phenomenon. Woodard (2007) used
a forward model to perform subsurface inversions of Doppler data; however detection was
limited to 4 – 5 Mm below the photosphere. Jackiewicz, Gizon, and Birch (2008) used a
novel 2 + 1D optimally localized averaging (OLA) method to study supergranulation in the
top few Mm. Braun et al. (2007) and Zhao et al. (2007) used synthetic data from numerical
simulations of wave propagation through supergranule-like flows to test the performance
of helioseismic techniques. The former compared model travel times with those computed
from synthetic observations using helioseismic holography. The latter computed inversions
using time–distance helioseismology and compared the results to the modeled flows. Both
studies documented limitations in the ability of the techniques to detect the full extent of
the flow fields. Švanda et al. (2011) tested the OLA inversion technique of Jackiewicz et al.
(2012) on synthetic travel times and showed improved ability to infer vertical-flow fields.

In this study, we simulate wave propagation through a simple kinematic model of
a supergranule-flow pattern and make helioseismic-holography measurements from ob-
servations of the resulting velocity field. The aim is to test the quality of regularized
least-squares (RLS: e.g. Zhao, Kosovichev, and Duvall, 2001; Kosovichev, 1996, in the
context of local helioseismology) inversions and gain insight into the limitations of this
commonly used technique in local helioseismology by comparing the calculations with
a known, simulated flow field. We find that the RLS technique applied to helioseismic-
holography measurements is able to infer some general features of the horizontal field,
but fails to infer the vertical field throughout the domain. Errors in vertical-flow in-
versions have previously been attributed to cross-talk effects (e.g. Zhao et al., 2007;
Jackiewicz et al., 2012); herein we show the individual contributions from the divergent
flow that comprise these effects.

2. Simulations

2.1. Numerical Algorithm

We used the Seismic Propagation through Active Regions and Convection code (SPARC:
Hanasoge et al., 2006, 2008; Hanasoge and Duvall, 2006) to solve the three-dimensional
linearized Euler equations in Cartesian geometry. The code computes derivatives in the ver-
tical direction using sixth-order compact finite differences (Lele, 1992), while derivatives
in the horizontal directions are computed spectrally with periodic boundaries. An absorbing
sponge is used to damp wave reflection at the top and bottom boundaries (Hanasoge et al.,
2006).

Wave excitation is applied 200 km below the photosphere via a source term in the mo-
mentum equation (Hanasoge, Duvall, and Couvidat, 2007). The forcing is statistically uni-
form in the horizontal directions and Gaussian in the vertical direction with FWHM 200 km.
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In the spectral domain, the forcing distribution is localized to within the wavenumber range
k = 0 – 2 rad Mm−1 and has a frequency maximum at 3 mHz.

Two different 24-hour (solar time) simulation cases were performed. The first case used
the supergranule model with velocity vector v = vx x̂ + vy ŷ + vzẑ, where x and y define
the horizontal coordinate system and z defines vertical distance from the photosphere. The
second simulation case used no background flows, which allowed for application of the
“noise subtraction” technique in the analysis (Werne, Birch, and Julien, 2004).

2.2. Supergranulation Model

The static background model is a convectively stabilized (CSM_A: Schunker et al., 2011)
variant of Model S (Christensen-Dalsgaard et al., 1996), which specifies the time-invariant
components of the density [ρ], pressure [p], first adiabatic index [�1], gravity [g], and sound
speed [cs ]. The computational box is a 3003 grid, spanning nonuniformly from zbot = −25
Mm to ztop = 2.5 Mm in the vertical direction. The grid spans 100 Mm uniformly in the x-
and y-directions.

We model a single supergranule with a simple axisymmetric mass-conserving flow (Fig-
ure 1) prescribed by the curl of a potential function

ρv = ∇ × A, (1)

where, for the sake of simplicity, we assume that the potential is separable as

A = Aφφ̂ = ρ(z)h(z)F (r)φ̂ (2)

with functions h(z) and F(r) defining the vertical and radial dependence of the potential.
The variables φ, r , and z denote the angular, radial, and vertical cylindrical coordinates,
respectively. The formulation of Equation (1) is chosen so that mass conservation [∇ · ρv =
0] is automatically enforced. We chose the radial distribution F(r) to be of the form

F(r) = J1(kr)e−r/R, (3)

where J1 is the first-order Bessel function of the first kind, k = 2π/30 rad Mm−1, and R =
15 Mm. This formulation forces decaying reversal of flow direction with increasing radial
distance from the axial center. This functional form is similar to the flow associated with the
“average supergranule” as seen by, e.g., Duvall and Hanasoge (2012).

From Equation (1), the radial and vertical mass-flux distributions, respectively, are

ρvr = −∂Aφ

∂z
, (4)

ρvz = 1

r

∂

∂r
[rAφ]. (5)

We chose to model the vr component of flow as a sum of outflow [vout] and inflow [vin]
Gaussian distributions, such that

vr = vout + vin =
[
α1 exp

(
− (z − z1)

2

D2
1

)
− α2 exp

(
− (z − z2)

2

D2
2

)]
F(r), (6)

where α1 = 250 m s−1, α2 = 6.27 m s−1, z1 = 0.2 Mm, z2 = −15 Mm, and D1 = D2 =
5 Mm. Using mass conservation, the coefficient α2 is calculated from the known density
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Figure 1 Two-dimensional
vector plots of the model
supergranulation flow field. The
top panel shows a horizontal slice
through the horizontal-flow field
at the photospheric level (z = 0)
and the bottom panel shows a
vertical slice through the flow
field at the center of the
supergranule (y = 0). The full
computational domain extends
from −50 Mm to +50 Mm in
the horizontal directions, where
(x, y) = (0,0) corresponds to the
center of the supergranulation
cell. Along the photospheric
plane, the maximum horizontal
and vertical velocities are
250 m s−1 and 20 m s−1.

distribution ρ and vout with chosen coefficient α1. The potential function Aφ can then be
calculated directly from

Aφ(r, z) = −
∫ z

zbot

ρ(ζ )vr(ζ )dζ, (7)

In obtaining Equation (7), we set the integration constant equal to zero since we want the
vertical velocity [vz] to be zero at the lower boundary (see Equation (8) below).

With Aφ fully prescribed, the vertical flow [vz] is calculated from Equation (5):

ρvz = Aφ

r
+ ∂Aφ

∂r
= ρ(z)h(z)

[
F(r)

r
+ ∂F (r)

∂r

]
. (8)

Note that due to the large density gradient with solar depth, outflow velocities near the
photosphere are much larger than return-flow velocities at greater depth in order to conserve
mass flux [ρv] (Figure 1).

3. Travel-Time Measurements

Starting from the vertical velocity taken at a height of 200 km, we used helioseismic holog-
raphy (Lindsey and Braun, 2000) to measure center–quadrant local-control correlations.
These correlations are analogous to center–quadrant time–distance correlations that have
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Figure 2 Power spectrum for
waves propagated through the
CSM_A background model
(Schunker et al., 2011). The solid
black lines denote the computed
quiet-Sun Model S mode
frequencies and the dashed line
denotes the horizontal phase
speed corresponding to the sound
speed at the bottom of the
computational box.

traditionally been used to measure time–distance travel times (e.g. Gizon and Birch, 2005;
Gizon, Birch, and Spruit, 2010). We used the quadrant geometry and ridge filters described
by Braun and Birch (2008). In addition to the ridge filters, we also applied band-pass fre-
quency filters to isolate particular ranges in frequency. The filters had central frequencies of
2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, and 4.50 mHz and all had widths of 0.25 mHz.
We use δτx(r) (δτy(r)) to denote x (y) direction center–quadrant travel-time shifts and
δτoi = δτout(r) − δτin(r) to denote out minus in center–quadrant travel-time shifts, where
δτout(r) (δτin(r)) represent travel-time shifts of the observed outgoing (incoming) waves.

Figure 2 shows the power spectrum of the vertical velocity at a height of 200 km above
the photosphere in the simulation without any imposed flows. The resonant frequencies of
the simulation are close to those from Model S. As a result, we apply the ridge filters and
holography Green’s functions of Braun and Birch (2008) without modification. The travel-
time measurements shown in Figures 3 and 4 were produced by subtracting the travel-time
measurements from the simulation without flows (i.e. “noise subtraction”: Werne, Birch,
and Julien, 2004).

Figure 3 shows center–quadrant travel-time differences [δτx ] for a range of radial orders
and frequencies for the case where the synthetic data are produced from the supergranula-
tion model. The flow produces travel-time shifts that generally decrease in amplitude with
increasing radial order and increase in amplitude with increasing frequency (i.e. the travel-
time shifts decrease with increasing horizontal phase speed). The spatial pattern is much the
same in all cases and is what would be expected given the flow geometry in Figure 1.

Figure 4 shows the δτoi travel-time differences resulting from the supergranulation
model. The general trend of the travel-time shifts with radial order and frequency band
is consistent with that in Figure 3, although the δτoi measurements feature a larger signal-
to-noise ratio.



Testing Helioseismic-Holography Inversions for Supergranular Flows 367

Figure 3 Noise-subtracted
center–quadrant travel-time
differences [δτx(r)] calculated
using ridge filters and 0.25 mHz
wide band-pass frequency filters
for the supergranulation
simulation. The label at the
bottom of each column denotes
the radial order of the filter (e.g.
n = 0 is the f -mode, n = 1 is the
p1-mode, etc.) and the factor by
which the mode data have been
scaled (e.g. ×3 means that the
data have been multiplied by a
factor of three).

4. Flow Inversions

The inverse problem is to estimate the flow field defined by the supergranule model given
the travel-time measurements in Section 3. Here we show some example inversions in which
we use the δτx , δτy , and δτoi maps to infer the subsurface flows [v].

We carry out the inversions of the travel-time maps with a noise level corresponding to
what we would expect for an average over 100 supergranules measured for 24 hours each.
To generate the input travel-time maps we start from the noise-subtraction travel-time maps
(Figures 3 and 4) and add noise (computed from the simulations carried out in the flow-free
reference model) with an amplitude reduced by 1/

√
100.

We use kernels computed in the Born approximation using the method of Birch and Gi-
zon (2007) with erratum Birch, Gizon, and Burston (2011), and account for the holography
Green’s functions using the approach of Birch et al. (2011). The vector-valued kernel func-
tions K relate the flows in the interior to the travel-time maps,

δτi(r) =
∫∫∫

Ki

(
r′ − r, z

) · v
(
r′, z

)
dr′dz. (9)

In the above equation, we have separate maps and kernel functions for each combination of
ridge filter and frequency range.
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Figure 4 Noise-subtracted
center–annulus travel-time
differences [δτoi] calculated
using ridge filters and 0.25 mHz
wide band–pass frequency filters
for the supergranulation
simulation. The label at the
bottom of each column denotes
the radial order of the filter (e.g.
n = 0 is the f -mode, n = 1 is the
p1-mode, etc.) and the factor by
which the mode data have been
scaled (e.g. ×3 means the data
have been multiplied by a factor
of three). The signal-to-noise
ratio of the travel-time
differences are generally greater
than those of δτx (Figure 3).

Figure 5 compares the measured travel-time shifts with the travel-time shifts that we
would expect from Equation (9) evaluated for the known flow in the simulation. At low
frequencies there is general, although not perfect, agreement. At high frequencies, especially
4.5 mHz, there are very significant differences. This disagreement may be a result of the
simplifications made in the calculation of the sensitivity kernels, for example the neglect of
the sponge layers in the simulation. We discuss this issue in more detail in Sections 5 and 6.

In order to discretize Equation (9), we parameterized the flow [v] as

v(r, z) =
N∑

j=1

∑
k

aj (k)φj (z)e
ik·r, (10)

where the sum over j is over a total of N basis functions [φj (z)] and the sum over k is
a two-dimensional inverse FFT on the grid that the travel-time maps are measured on (the
simulation domain is periodic; as a result, the travel-time maps are periodic as well). Here
we choose the basis functions [φj (z)] to be ones when zj < z ≤ zj+1 and zero otherwise.
The points zj consist of a grid of 56 points that are equally spaced in acoustic depth and
cover the range from 0.5 Mm above the photosphere to 10 Mm below the photosphere. The
grid spacing in k-space is hk = 0.063 rad Mm−1.

We used the MCD approach (Jacobsen et al., 1999) to split the full inversion prob-
lem into small one-dimensional (z-only) inversion problems at each horizontal wavenum-
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Figure 5 Travel-time
measurements compared with the
expectations from a forward
model based on the true flow in
the simulation (Equation (9)).
Each panel corresponds to a
particular combination of
frequency filter, radial order, and
measurement geometry. The
three images in each panel
contain the forward model
associated with the true flow
(left), the measurement from the
simulation (middle), and the
residual (right), respectively. As
discussed in the text, the forward
model becomes less accurate at
high frequencies. The maps have
been smoothed with a Gaussian
filter (σ = ten pixels) to more
clearly elucidate the differences,
and the panes are scaled
independently.

ber. These problems we solved using RLS (e.g. Zhao, Kosovichev, and Duvall, 2001;
Kosovichev, 1996, in the context of local helioseismology) with a regularization term given
by the depth integral (at each horizontal wavevector k) of the quantity v2

x + v2
y + 10v2

z ; the
factor ten was chosen to reflect the preconception that vertical velocities are on average
smaller than horizontal flows. Following Couvidat et al. (2005), we used a k-dependent reg-
ularization parameter with λ2 = λ2

1 + λ2
2‖k‖2, where (λ1, λ2) are fixed parameters. As the

regularization parameters are increased, the amplitude of the large-scale flow in the inver-
sion result is reduced. We chose the parameters by inspection for each inversion based on
a compromise between the desire to average out small-scale noise and the goal of retain-
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Figure 6 Demonstration of different regularization applied to the vx inversion with correspond-
ing decrease in resolved structure. The left panel shows the true vx at z = −0.8 Mm. From
left to right, the remaining panels show the inversion results for vx for regularization parameters
(λ2

1, λ2
2/h2

x ) = (1.0 × 10−8, 5.66 × 10−5) Mm−1 (m s−1)−2 (second panel from left), (λ2
1, λ2

2/h2
x ) =

(3.24 × 10−8, 1.76 × 10−4) Mm−1 (m s−1)−2 (second panel from right), (λ2
1, λ2

2/h2
x ) = (1.76 × 10−7,

9.31 × 10−4) Mm−1 (m s−1)−2 (right panel), where hx = 1/3 Mm is the grid spacing. The upper (lower)
bound on the color scale in each panel is 150 (−50) m s−1, with black (white) corresponding to positive
(negative) values.

ing the large-scale flow features. Figure 6 shows a comparison of different regularization
parameters applied to an inversion result for a portion of the vx velocity field.

The inversion results presented herein reflect an estimate of the mean flow averaged over
100 supergranules for a 24-hour window. Application to real data necessitates consideration
of the effective averaging window relative to the time scale over which the coherent structure
evolves; a typical supergranule lifetime is estimated to be a day or more (Worden and Simon,
1976; Hirzberger et al., 2008).

5. Results

Figures 7 and 8 show inversion results using all available n = 0, n = 1, and n = 2 measure-
ments for (λ2

1, λ
2
2/h2

x ) = (3.24 × 10−8, 1.69 × 10−4) Mm−1 (m s−1)−2 compared to the true
vx and vz velocity components in the supergranule simulation, respectively. The structure of
the vx -inverted fields in Figure 7 shares qualitative agreement with the true flow, although
misses the signal at the top and bottom (below about z = −4 Mm) of the physical domain.
The underestimation of flow magnitude in the lower layers is consistent with prior work
(e.g. Zhao, Kosovichev, and Duvall, 2001). The vz inversion in Figure 8 fails to qualitatively
capture the true flow throughout the physical domain. As we will discuss later, this is due to
cross-talk effects between components of the velocity.

We tested the importance of including the n = 2 measurements by recomputing the in-
versions shown in Figures 7 and 8 using only the n = 0 and n = 1 measurements. There was
no discernible visual difference in the inversion results for the horizontal and vertical veloc-
ity due to exclusion of the n = 2 measurements, which indicates that the RLS technique is
relatively insensitive to the addition of higher radial-order measurements.

We tested the effect of noise in the measurements by recalculating the flow inversions
using only the n = 0 and n = 1 measurements shown in Figures 3 and 4, which excludes the
noisiest measurements (i.e. the whited-out boxes in the grid in Figures 3 and 4) that were
included in the inversion calculations shown in Figures 7 and 8. There was no discernible
visual difference in the inversion results for the horizontal and vertical velocity due to ex-
clusion of the noisiest measurements, which supports the conclusion that the RLS technique
is relatively insensitive to changes in the number and quality of measurements used in the
inversion calculations.
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Figure 7 Result of helioseismic inversion for the x-component of the flow in the supergranule simulation
using all available n = 0, n = 1, and n = 2 measurements. The top-left plot compares the true (top panel)
and inverted (bottom panel) vx(x, y) flow at z = −0.8 Mm. The bottom-left plot compares the true (left
panel) and inverted (right panel) vx(x, z) flow at y = 0 Mm. The plots on the right compare the centerline
true (solid line) and inverted (dashed line with error bars) vx -velocity at z = −0.8 Mm (top panel), z = −2.0
Mm (middle panel), and z = −3.2 Mm (bottom panel). The horizontal axes are cropped relative to the full
computational domain. The inversion produces velocity magnitudes that are comparable to the true signal,
however, misses the velocity signal at the top and lower portion of the domain.

We calculated center–quadrant travel-time differences from Equation (9) using the ker-
nels and the inferred flow from Figures 7 and 8 and compared these to the measurements
from the simulation. Figure 9 shows these comparisons and the calculated residual (differ-
ence between the two) for every combination of frequency filter, radial order, and measure-
ment geometry. There is generally good correspondence between the perturbations in the
n = 0 and n = 1 measurements; however, some of the δτx and δτy measurements, as well
as all of the n = 2 measurements, contain significantly more noise. In some of the higher-
frequency measurements, there is noticeable structure in the residual. This may be due to
inaccuracies in the kernels (see Figure 5). We tested the sensitivity of the inversion to the
high-frequency measurements by repeating the inversion using the same regularization pa-
rameters, but with the measurements at 4.25 mHz and 4.5 mHz removed. The main impact
of removing these measurements was a reduction in the amplitude of the inferred vertical
flow by about a factor of four.

Our findings are generally consistent with those of Zhao et al. (2007), who used the time–
distance method and kernels computed from the ray approximation to perform inversions
of simulated supergranule-scale convection. They were able to obtain reasonable inversion
results only down to about 4 Mm below the surface, although they credit this to a limit in
the largest annulus radius used. Here, the sensitivity functions for many of the travel-time
measurements extend well below z = −4 Mm. This suggests that, with a sufficiently small
noise level, it will be possible to detect flows below this depth (although with a spatial
resolution that decreases with increasing depth). The structure of the horizontal-velocity
inversion results can be better explained by observing the form of the sensitivity kernels.
Figure 10 contains a vertical slice through the vx inversion (left-most panel) and horizontally
integrated δτx kernels grouped by radial order and frequency, and normalized by the rms
noise level. The n = 0 kernels have a single band of sensitivity with a maximum located in
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Figure 8 Result of helioseismic inversion for the z-component of the flow in the supergranule simulation
using all available n = 0, n = 1, and n = 2 measurements. The top-left plot compares the true (top panel)
and inverted (bottom panel) vz(x, y) flow at z = −0.8 Mm. The bottom-left plot compares the true (left
panel) and inverted (right panel) vz(x, z) flow at y = 0 Mm. The plots on the right compare the centerline
true (solid line) and inverted (dashed line with error bars) vz-velocity at z = −0.8 Mm (top panel), z = −2.0
Mm (middle panel), and z = −3.2 Mm (bottom panel). The horizontal axes are cropped relative to the full
computational domain. The inversion fails to qualitatively capture the true vz flow throughout the physical
domain. As we will discuss later, this is due to cross-talk effects between signals.

between 0 and −1 Mm. The n = 1 kernels have two regions of sensitivity which explains
why the vx inversion has two local maxima in the vertical direction. The n = 2 kernels
have several regions of sensitivity; however, inclusion of the n = 2 measurements did not
significantly effect the performance of the inversions because the signal-to-noise ratio of
the n = 2 measurements is about a factor of two lower than that of the n = 0 and n = 1
measurements (Figure 4).

Figure 11 shows the averaging kernel that relates the inferred vx to the true x-component
of the velocity. The RLS inversion procedure is able to produce reasonably localized x-
component averaging kernels with minimal leakage outside the target region.

Zhao et al. (2007) discuss the influence of cross talk on the inversions for the vertical
velocity. Specifically, they describe a region just below the photosphere where the vz in-
version is of the incorrect sign. We find a similar phenomenon in our results, illustrated
by the band of negative vertical velocity near z = 0 Mm (Figure 8). Here we will use the
notation vij to denote the contribution of the j -component of the (known) model veloc-
ity to the inversion result for the i-component of the velocity; computing each of the vij

involves the horizontal convolution of the appropriate averaging kernel with a particular
component of the known model velocity (see, e.g., Jackiewicz, Gizon, and Birch, 2008,
for examples). Figure 12 shows the contributions of each of the components of the model
flow to the inferred vertical flow (i.e. vzx , vzy , vzz). The contribution of the x- and y-
components of the true flow to the inferred vertical flow are as large as the contribution
from the true vertical flow. The sum of these velocities (vtot = vzx + vzy + vzz) is qualita-
tively similar to the vertical flow inferred from the inversion. If the kernels were exactly
correct and there was no noise then vtot would be identical to the inferred vertical flow. This
computation highlights the importance of controlling the cross talk in inversions for veloc-
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Figure 9 Travel-time
measurements calculated from
the forward model compared to
measurements from the
simulation. Each panel
corresponds to a particular
combination of frequency filter,
radial order, and measurement
geometry. The three images in
each panel contain the forward
model associated with the
inversion result (left), the
measurement from the simulation
(middle), and the residual (right),
respectively. All of the n = 0 and
n = 1 measurements generally
reflect the structure of the model
supergranule flow; the n = 2
measurements reflect a
significant noise contribution. For
all radial orders, the δτx and δτy
measurements contain more
noise than the δτoi
measurements. The maps have
been smoothed with a Gaussian
filter (σ = ten pixels) to more
clearly elucidate the differences,
and the panes are scaled
independently.

ity (this has been achieved using OLA inversions by Jackiewicz, Gizon, and Birch, 2008;
Švanda et al., 2011).

6. Discussion

We computed RLS inversions from travel-time measurements of simulated data created by
numerically propagating waves through a simple supergranule-like flow field. The benefit of
this approach is the opportunity for comparison with a known flow field for direct evaluation
of the performance of the measurement and inversion techniques. Furthermore, the use of
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Figure 10 Horizontally integrated δτx kernels grouped by radial order and frequency, normalized by their
respective rms noise level. Shown are n = 0 kernels (solid lines), n = 1 kernels (dashed lines), and n = 2
kernels (dot–dashed lines). The left-most panel shows a slice through the vx -inversion result for reference.
The figure demonstrates that the lobed nature of the vx -inversion is due to the form of the kernels, which
exhibit localized minima and maxima as a function of z. Furthermore, the sensitivity of the n = 2 kernels is
generally less than the n = 0 and n = 1 kernels, which means that use of higher radial-order measurements
in the inversion calculations will have decreasing impact on the result.

Figure 11 Averaging kernel for the vx inversion for z = −2.0 Mm. The left plot shows the two-dimen-
sional slice through the kernel at z = −2.0 Mm and the right plot shows the horizontally integrated vertical
distribution of the averaging kernel.

simulated data allows for isolation of complicating effects. For instance, here travel-time
differences are due solely to the supergranule flow; travel-time differences calculated from
observational solar data contain the effects of many more physical variables.
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Figure 12 Convolutions
between the z-directional kernel
and components of the model
flow [vzx , squares; vzy , circles;
vzz , triangles], the summation of
the convolved components
[vtot = vzx + vzy + vzz ,
dot–dashed line], the inversion
result [vz inv, dashed line], and
the model supergranule flow [vz

sim, solid line]. The vzx - and
vzy -components have a large
effect on the calculation of the
total signal [vtot], which
demonstrates that much of the
error in the vz-inversion can be
attributed to cross-talk effects.

We found that the inversion of the vx - and vy -velocity shared general features of the true
flow reasonably well down to a depth of about 4 Mm below the surface. The inversion of
the vertical velocity performed poorly throughout the domain, particularly near the surface
where the computations produced a result that was of incorrect sign.

Underestimation of large-scale signal strength may be attributed to choice of regulariza-
tion, which averages out noise but also causes some loss of flow amplitude. We tested the
inversions over a broad range of regularization parameters, and the results presented here
reflect the best scenarios.

We found the inversions, and hence the averaging kernels, to be relatively unresponsive
to an increase in the number of input travel-time maps or to exclusion of noisy travel-time
maps. This is a credit to the capability of the RLS technique in minimizing the effects of
noise; however, the significant error in the inversion results suggests that the forward mod-
eling is inadequate.

The sensitivity kernels relate variations in travel-time shifts to variations in the solar
model; capturing this sensitivity accurately is dependent on making appropriate assumptions
regarding the physical state (in our case, the simulated state) and the measurement procedure
(e.g. Gizon and Birch, 2002; Birch, Kosovichev, and Duvall, 2004). As a test of the kernels,
we convolved the resulting averaging kernels with the components of the true supergranule
flow field, and compared these results with the respective inversion results. We found that
the convolutions contained qualitatively the same structure (and hence comparable errors)
as the inversion results.

There is very little sensitivity to flows above the photosphere because only waves of fre-
quency comparable to the acoustic cutoff frequency (about 5.5 mHz) sample this region.
The calculation of the kernels uses a zero Lagrangian-pressure-perturbation upper boundary
condition, an assumption that is likely not accurate for high-frequency waves. Furthermore,
the simulation uses absorbing sponges at the top and bottom boundaries, which may affect
the wave dynamics significantly differently from what is accounted for in the kernel calcu-
lations. Perhaps for these reasons, the inversions are unable to reproduce the flow structure
near the top of the computational domain. Other constraints on the forward modeling and
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approximations used in the design of the sensitivity kernels may need to be considered in
order to improve the performance of flow inversions.

In conclusion, our findings indicate that errors in the RLS inversions result from the
combined effects of cross talk between signals, choice of regularization parameters, de-
sign of sensitivity kernels, and inconsistencies among boundary conditions, all of which
are open areas of research requiring further study. We note that improvement in perfor-
mance, particularly in regard to cross-talk effects, has been seen in the optimally local-
ized average (OLA) approach to reduce the size of the side lobes on the averaging ker-
nels and limit spatial leakage (Jackiewicz, Gizon, and Birch, 2008; Švanda et al., 2011;
Jackiewicz et al., 2012).
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