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Measurements with Local Helioseismology

Douglas C Braun

6.1 Introduction

Local helioseismology encompasses remote observations, data analysis, and theo-

retical modeling of solar oscillations to infer the three dimensional structure within

localized regions of the solar interior. What defines a region as “local” is relative,

however, since targets of interest have included sunspots and convective elements

with spatial scales ∼ 10−2R⊙ as well as large-scale plasma flows spanning much

of a solar hemisphere. As a relatively new discipline first explored in the 1980s,

local helioseismology has two main components: first, a research component to un-

derstand the interaction of solar oscillations (acoustic and surface gravity) with

perturbations within the Sun and, second, the design and application of methods

to infer the properties of the perturbations by modeling the measurements of those

waves. Successful applications require a thorough understanding of the physics of

the waves and their interaction with imhomogeneities inside the Sun. The research

component is particularly critical. For example, the types of perturbations found

in the Sun can include magnetic fields for which the wave interactions can be quite

complicated. Currently the types of structures most amenable to modeling using

local-helioseismic measurements consist of isotropic wave-speed perturbations and

the three components of plasma flows. Assessing the subsurface magnetic field di-

rectly is a challenging, but largely unrealized, goal of the field. While the status of

the field is evolving, the determination of plasma flows in the first few 10s of Mm

below the solar surface remains one of the primary practical applications.

We outline in this chapter the practical applications of, and resulting measure-

ments made with, common local helioseismic methods. Broadly speaking, local he-

lioseismology can be roughly divided into Fourier methods (which operate in the

frequency wavenumber domain) and cross-covariance based methods (which oper-

To appear in Extraterrestrial Seismology, eds. Vincent C. H. Tong and Rafael A. Garcia.
Cambridge University Press 2015



2

ate in the space-time domain). The former (§6.3) can be considered in many ways

as extensions of the analysis of global oscillations (Chapter 5) to localized regions

of the Sun. Another class of methods employs cross covariance functions (§6.4)

made between spatially separate signals obtained by sampling, spatial averaging or

other means. These measurements are sensitive to the temporal and spatial vari-

ations of the target wave-speed perturbations and flows. For each type of method

we describe the data products obtained through its application to remote solar ob-

servations. These products provide modelers with the raw material for inferring

subsurface flows and other physical perturbations.

6.2 Geometry, projections and tracking

For many applications, local helioseismology is employed to probe solar regions

spanning less than 200 Mm horizontally and extending less than a few 10s of Mm

in depth. In these smaller domains one can ignore the curvature of the Sun and

assume that the background medium varies only with depth z from the surface.

This focus on small regions also implies that one generally considers and observes

solar oscillations with smaller wavelengths (or higher degree in a spherical har-

monic representation) than what is utilized in global helioseismology. In this plane

parallel approximation, these high-degree oscillations take the form of plane waves

which have a horizontal propagation described by exp(i[kh · r + ωt]), where r is

the horizontal position vector, kh is a wavevector consisting of the two horizontal

components (kx, ky) of the wavevector, t is time, and ω is the temporal frequency.

As described in Chapter 5 the stratification of the sound-speed with depth gives

rise to vertical standing waves, which can be characterized by discrete values of the

radial order (the number of wave nodes present in the vertical dimension). Sets of

modes with the same radial order occupy parabolic-like ridges in the (kh, ω) do-

main, where kh
2 = kx

2 + ky
2. However, because of wave damping which increases

for waves of shorter wavelength, the horizontal wavenumbers khof the ensemble of

oscillations form a continuous set, rather than take on discrete quantum values as

for global modes.

Helioseismic operations and measurements are performed on remote observations

of the surface wave field ψ. The highest quality and most frequently employed

observations of the wave field used in local helioseismology consist of time series,

spanning hours or days, of Dopplergrams. These are maps of the line-of-sight velocity

of the solar surface obtained either from telescopes operating in space or part of

ground-based networks (see Chapter 2). Starting with observations which might

span the entire observable hemisphere, a region is selected for analysis and tracked

across the solar disk to remove most of the effects of solar rotation. This tracking is

achieved by projecting a subset of the original image, using two-dimensional spatial

interpolation, onto a local coordinate system centered on the region of interest. A
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Postel’s, or azimuthal equidistant projection, is a common choice but is not exclusive

in practice (e.g. Zaatri et al., 2008). Typically, the tangent point of the Postel’s

projection (or other reference point) is placed at a point on the solar surface which

moves with the solar rotation. Sometimes this tracking uses the Carrington rotation

rate, for which the tangent point is at a fixed Carrington coordinate. But tracking

rates which account for the latitudinal variation of the solar rotation may also

be employed. Regardless of the rotation rate selected, it is to be understood that

subsurface flows inferred from helioseismic analysis are only determined relative to

this tracked rate. A three-dimensional (3D) datacube results from the time-series

of projected images and forms the basis for many subsequent local helioseismic

analyses.

6.3 Fourier-based methods

Spectral decomposition, through the application of Fourier transforms to the ob-

served wave field, form the basis of several local helioseismic methods. Hankel anal-

ysis and Ring-diagram analysis use primarily transforms applied in polar and Carte-

sian coordinates respectively. Both methods represent the earliest applications of

local helioseismic procedures and were developed to study specific solar phenom-

ena, consisting of the scattering properties of sunspots in the former (Braun et al.,

1987) and convective flows in the latter (Hill, 1988).

Because the waves sources on the Sun (believed to be caused by the turbulence

of small-scale convection near the surface) are widely and randomly distributed the

propagation of the resulting waves is isotropic. Thus, for a given radial order (or

ridge) the power for a given wavevector kh is distributed uniformly in all directions.

If a three-dimensional Fourier transform (in two spatial dimensions and time) is

performed of a tracked datacube the amplitude (or power) spectra shows a set of

trumpet-like structures (see Figure 6.1). These concentric “trumpets” represent the

extension into the 3D Fourier domain of of the f− and p-mode ridges.

6.3.1 Ring-diagram analysis

Ring-diagram analysis (Hill, 1988) provides a good starting point for discussing

Fourier-based methods of local helioseismology. At a constant temporal frequency

ω a slice through the power spectra exhibits concentric “rings” of mode power.

The measurement and analysis of these spectra, collectively known as ring-diagram

analysis seeks to determine and model the distortion of the rings due to flows

and sound-speed perturbations beneath the local patch outlined by the tracked

datacube.

The most common application of ring-diagram analysis has been the inference of

subsurface flows. A uniform flow U with horizontal components Ux and Uy relative
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to the tracking rate will produce a Doppler shift of the wave frequencies, at constant

kh, by an amount δω = kh ·U = kxUx +kyUy. Figure 6.1 shows an example of how

the rings are distorted in (kx, ky) space due to a horizontal flow. A more general case

is when the flow varies with depth. In this case, the frequency shift is proportional to

a weighted average over depth of the horizontal component of flow. The weighting

is described by a kernel function (see Chapter 9). A uniform change (δc) to the

background sound speed beneath the area of interest will expand or contract the

rings independently of direction, i.e. δω = khδc.

Figure 6.1 (left) a nested trumpet-like model of how the power of solar oscillations is
concentrated in Fourier space. The frequency axis points upward, and the two other axes
are the horizontal components of the spatial wavenumber. (From Patrón et al., 1997, and
reproduced with the permission of the AAS.). (right) a slice of the 3D power spectra of
actual solar observations at constant frequency showing the distortion and displacement
of the rings due to a horizontal flow, in this case, due to solar rotation (figure courtesy of
M. Roth).

Data products

It is the goal of ring-diagram analysis to determine, through fitting a parametrized

model to the power spectra, the values of the flow parameters Ux and Uy as well as

the azimuthally-averaged frequency ω0. A variety of models and fitting procedures

have been proposed. These include directly fitting the power in the rings at slices

of constant frequency (Hill, 1988; Basu and Antia, 1999). Another approach is to

fit the power in cylindrical slices defined by constant horizontal wavenumber kh

(e.g. Schou and Bogart, 1998). Other parameters in the models typically include

mode amplitudes and a characterization of a background term, contributed by

solar convective motions and noise. Typically, Lorentzian functions are used to

characterize the resonant peaks of the p-mode ridge. Asymmetries in the these

peaks (see Chapter 5) can be included as well (Basu and Antia, 1999).
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In principal, the offset of the mean frequency ω0 from a theoretical value com-

puted from a solar model can help infer sound-speed perturbations. In practice,

the desire to minimize systematic effects makes it advantageous to consider relative

frequency shifts between a target region and one or more reference regions whose

power spectra have been subject to identical parametrized fits.

The selection of the size of the analysis region largely determines the spatial reso-

lution. Specifically, the horizontal resolution is essentially the diameter (sometimes

called the tile size) of a circular mask which is typically applied to the datacube

(Birch et al., 2007). The ability to resolve smaller scale flows improves with smaller

tile sizes, but this happens at the cost of the ability to resolve individual p-mode

ridges in the wavenumber domain, particularly at high kh. Since the ability to infer

deeper flows requires flow parameters of ridges with high wavenumber (or radial

order), there is a general trade-off between horizontal resolution and depth sensitiv-

ity. Recently, progress has been made in modeling sets of tiles with multiple sizes to

optimize both quantities (Featherstone et al., 2011). Historically, most ring-diagram

analyses have been performed with tiles spanning about 15 degrees or smaller and

which employ the plane-parallel approximation. Applications (see Chapter 13) have

included the probing of a wide variety of flows in the Sun, including differential ro-

tation, meridional (north-south) circulation, convective flows, and flows associated

with sunspot groups (also known as active regions).

6.3.2 Fourier-Hankel and Legendre decomposition

Early, and still widely studied, targets of local helioseismology include sunspots

which provide obvious localized imhomogeneities on the solar surface and have

been observed visually for centuries. Arguably, the roots of local helioseismology

can be found in observations and interpretations of waves inside sunspots and the

accompanying theoretical analysis of wave propagation in magnetic fields (see, for

example, Thomas and Weiss, 2012).

The conceptual basis for Fourier-Hankel methods (Braun et al., 1987) of local

helioseismology is the assessment of waves impinging upon, and scattering from,

localized perturbations like a sunspot. A cylindrical coordinate system is chosen,

with the center located at the target of interest. In these (r, φ) coordinates, the

wave equation has general solutions of the form

ψ(r, φ, t) = ei(mφ+ωt)[Am(kh, ω)H(1)
m (khr) + Bm(kh, ω)H(2)

m (khr)], (6.1)

where t is time, m is the azimuthal order, ω is the temporal frequency. Am and Bm

are the amplitudes of wave modes which have a variation in r described by Hankel

functions of the first and second kind and correspond to modes propagating towards

and away from the origin, respectively. Applied to observations of the solar wave

field, a straightforward modification of the Hankel transform (Olver et al., 2010)

which substitutes the functions H
(1,2)
m for Bessel functions, is used to evaluate the



6

amplitudes Am and Bm over the (m, kh, ω) domain. Figure 6.2 shows sample power

spectra |Am|2 and |Bm|2 for a set of observations centered on a sunspot. One of the

first results of this application was the discovery of absorption of incoming waves

by sunspots (Braun et al., 1987).

Figure 6.2 Power spectra for incoming (top panel) and outgoing (bottom panel) wave
modes with respect to a target sunspot. The outgoing power is substantially reduced
compared to the incoming power. (From Braun et al., 1988, reproduced with the permission
of the AAS).

Some considerations on selecting the annulus size for a given temporal duration,

and other details, may be found elsewhere (Braun, 1995). Analyses over large annuli,

for which the curvature of the Sun can not be neglected can be performed with basis

functions consisting of Legendre functions of the first and second kind (Olver et al.,

2010). Obviously these methods are most effective for certain types of perturbations,

typically those involving compact and isolated scatterers and which have a general

azimuthal symmetry.

Data products

Absorption and emission estimates can be inferred from differences in amplitude

between incoming and outgoing wave components. Phase shifts between Am and

Bm are additional parameters describing the scattering properties of the target.

These shifts can be caused by refractive perturbations in the target. Observed phase

shifts provided the basis for the first inferences of wave-speed perturbations below
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sunspots (Fan et al., 1995). The apparent absorption seen in magnetic regions has

also lead to considerable theoretical study of mode conversion and simple models

consistent with both absorption and phase shifts have been derived (e.g. Crouch

et al., 2005). It is worth mentioning that the amplitudes determined through these

methods may be affected by a variety of physical mechanisms, including absorption,

a reduction of emission, and local amplitude suppression (see, e.g. Chou et al., 2009).

Mode mixing can occur when incoming wave components are scattered into dif-

ferent azimuthal orders or horizontal wavenumbers. Evidence of this in sunspots has

been observed (Braun, 1995). However, a practical problem persists in distinguish-

ing true mode mixing from artifacts created by the limitations of the methods or

measurements. Spectral leakage is one example of this, where a finite time series or

spatial size produces a spread of wave amplitude from one discrete bin of frequency

or wavenumber into another.

Frequency shifts can be measured for flows beneath the annular domain. These

can be determined in a manner similar to how flow parameters are determined

from ridge-shifts in ring-diagram analysis. Using Legendre functions appropriate

for larger regions of the solar surface, this approach has been used to probe the

depth variation of meridional circulation (see Chapter 13).

6.3.3 Cross-power-spectral and Mode Coupling methods

In a local volume which is stratified vertically but uniform in the horizontal di-

rections and in time, the Fourier wavenumber components of the wave field are

uncorrelated, or in other words, independent of each other. Horizontally varying per-

turbations within the volume introduce a coupling of wave components of the same

frequency but different horizontal wavenumbers. This implies that, in principle,

perturbations can be inferred from analyses of cross-power spectra (e.g. Woodard,

2002). Figure 6.3 shows an example of the cross-power spectra for solar oscillation

modes correlated by the presence of solar rotation and meridional circulation.

Methods for measuring mode coupling and modeling the subsurface flows have

been developed and applied to a variety of problems. These include the analysis of

mode coupling in a local plane-parallel approximation to deduce small-scale flows

(Woodard, 2002) as well as the analysis of global spherical-harmonic modes to

study meridional circulation (e.g. Schad et al., 2012). Analogous to the use of cross-

power spectra to probe coupling of modes in the frequency-wavenumber domain, we

discuss in the next section how local helioseismic methods using cross-covariances

are used to assess correlations of the wave field directly in the space-time domain.
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Figure 6.3 Observed and theoretical cross-power spectra for solar oscillations between
spherical harmonic degree 200 and 202 and radial order n = 8 as a function of temporal
frequency (horizontal axis) and azimuthal order m (vertical axis). The gray scale in the
left and right pair of panels indicate the amplitudes of the real and imaginary part of the
spectra respectively. The left (right) panel of each pair indicates the observed (theoretical
model) of the cross-power spectra. The model assumes a solar-like differential rotation and
meridional circulation flow. Note that the scale of the imaginary component is ten times
less than the real part, and the observed imaginary component is averaged over vertical
blocks in the frequency–azimuthal order domain. Figure by the author from unpublished
measurements provided by M. Woodard (see Woodard, 2009, for details of the analysis)

6.4 Cross-covariance methods

6.4.1 Basic considerations

Two local helioseismic methods we focus on here are based on the cross-covariance

in time between signals ψ(r1, t) and ψ(r2, t) at positions r1 and r2:

C(τ, r1, r2) =

∫ T

0

ψ(r1, t)ψ(r2, t + τ)dt, (6.2)

where T is the duration of the observed signals. Both time-distance helioseismology

(§6.4.2) and helioseismic holography (§6.4.3), as well as the myriad flavors of these

methodologies, can be defined in terms of which signals and which locations are

used in the cross covariance function. The generality which unites both of these

methods is that, for a wide variety of local helioseismic applications, the cross-

covariance function C is used to extract travel-time anomalies (§6.4.4) of acoustic

or surface-gravity waves propagating between the two points. By anomalies we

mean the difference between the wave travel times in the presence of subsurface

perturbations to the solar interior and the travel times without those perturbations.

These travel-time anomalies can be modeled, and in many cases inverted (Chapter

9) to yield the subsurface structure of the perturbations, which may include wave

speed changes and plasma flows. The left panel of Figure 6.4 shows an example of

an averaged cross-covariance function in the (τ,∆) domain from an application of
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time-distance helioseismology to solar observations, where ∆ is the distance between

two points on the surface and the average is performed over many pairs of surface

points.

It is helpful to understand how waves propagate between two points at the surface

under the ray approximation where the wavelengths are smaller than the spatial

scale of changes in the solar interior (Figure 6.4). From a starting point at the

solar surface, downward propagating rays are refracted by Snell’s law as the sound

speed increases with depth. At a lower turning point the rays are horizontal and

the horizontal component of the phase speed (ω/kh) is equal to the sound speed.

At the solar surface, the returning upward propagating waves are again reflected

when the wavelength becomes comparable to the vertical scale of the change in

the density. Deeper lower turning points are achieved by waves with greater phase

speeds. Waves which do not otherwise suffer significant damping can bounce several

times from the surface or even around the entire Sun.
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Figure 6.4 (left) A time-distance cross-covariance function in time (horizontal axis) and
between samples of the wave field spaced different distances (horizontal axis) on the solar
surface. The amplitude of the function, modulated by the five-minute solar oscillations,
reaches maxima at times corresponding to the travel times of rays propagating through
different paths of acoustic ray paths in the solar interior. (Figure by the author using
unpublished cross-covariance measurements provided by T. Duvall, Jr.) (right) Ray paths
of sound waves propagating downward from a specific origin S near the surface, refracting
back upward to the surface, and reflecting down again to advance a number of “skips”
away. (Figure by the author)

6.4.2 Time-distance helioseismology

Time distance helioseismology primarily uses the cross-covariance function between

observations of the wave field sampled between two points, or averaged over patches.

Frequently, the signal-to-noise is enhanced for practical purposes by using many
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averages of point pairs and making the measurements over several hours or even

days. The cross-covariance functions are the analog, in local helioseismology, of the

seismogram in terrestrial seismology.

A common scheme employed in time-distance helioseismology is to combine cross-

covariances between a point and the signal averaged over a concentric annulus (this

is termed center-annulus geometry). In many cases, the annulus is broken up into

four quadrants (Duvall et al., 1997, see Figure 6.5). Deep-focusing methods may also

be employed, which use cross-covariance functions from signals from the opposing

quadrants. In all geometries, the positive and negative time lags τ in the cross-

covariance functions distinguish the travel-time anomalies for waves propagating

in opposite directions. Thus, the quadrant geometry is ideal for assessing the two

spatial components of directionally sensitive perturbations like flows.

-40 190661

731

focus

a)

pupil pupil

b)

E W

S

N

c)

focus

pupil pupil

Figure 6.5 (a) the geometry employed with lateral vantage holography which selects waves
which pass through a common focus point below the surface. Here the waves propagate
through the focus at angles up to 45 degrees from the horizontal direction. Similar geom-
etry is used for deep-focus time-distance methods, although frequently narrower annuli
are used. (b) looking from above, the annulus used in panel (a) is divided into quadrants
extending north, south, east and west on the solar surface to facilitate the assessment of
the horizontal components of flows. (c) a side view of the waves selected with surface-focus
methods of time-distance (also referred to as center-annulus geometry) and holography.
Waves propagating from one side of the annulus bounce once at the surface focus point
before reaching the other side (Figure by the author).

The cross-covariance functions in the (τ,∆) domain made using time-distance

helioseismology reveal ridge-like structures (see Figure 6.4 - these should not be

confused with the p-mode ridges in the frequency-wavenumber domain). The lowest

ridge (along the τ axis) corresponds to acoustic waves which reflect once from

the lower turning point to arrive again at the surface a distance ∆ away without

additional surface reflections. At longer time lags τ , additional ridges represent the

surface arrival of waves undergoing one or more skips to the surface.

Filtering

Filters are often applied to the datacube before cross-covariance methods are ap-

plied. Phase-speed filters are used to isolate wave modes with common ray paths
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through the solar interior, and to eliminate the noise caused by unwanted contribu-

tions of other waves or by solar convective motions. These are applied to the data

in the 3D Fourier domain, and usually take the form of Gaussians in the variable

ω/kh which peak at the desired phase speed and have a constant width (Couvidat

and Birch, 2006).

Filters which isolate surface gravity waves (f -modes) are useful for probing imho-

mogeneities near the solar surface, where the energy of f -modes is concentrated.

Ridge filters can also be employed which isolate the set of p-modes of fixed ra-

dial order. Filters in temporal frequency are also in wide use in cross-covariance

methods. Typically, it is desirable to remove low frequency components of the ob-

servations which are dominated by solar convection. Filters covering narrow bands

in frequency are also used in some instances. All of these filters are also commonly

used in holography as well (§6.4.3). In principle, the presence and type of filter(s)

used should be incorporated into the modeling and inference of the travel-time

anomalies, for example, in the computation of the sensitivity functions.

6.4.3 Helioseismic Holography

Helioseismic holography (also known as computational seismic holography and am-

bient acoustic imaging) is a set of procedures based on phase-coherent imaging of

the solar interior. Conceptually, the idea is to start with the observed wave field

at the solar surface and computationally regress it, either forward or backward in

time, into a solar model to estimate the amplitudes of waves propagating into and

out of a remote focus point. These amplitudes are called the ingression H− and

egression H+ (Lindsey and Braun, 2000a) and are estimated at time t and position

ρ by a convolution of the surface wave field ψ with appropriate Green’s functions

(G+, G−):

H±(ρ, t) =

∫ T

0

dt′
∫

P

d2
ρ
′ ψ(ρ′, t) G±(ρ′,ρ, t − t′), (6.3)

where ρ is the three-dimensional position vector and ρ
′ defines the solar surface.

The integral in time is performed over the duration T of the observations and the

integral over the surface is made over an area P called the pupil which is borrowed

from optical terminology. The convolution expressed by Equation 6.3 is an analog,

in local helioseismology, of the Kirchhoff integral theorem (e.g. Jackson, 1999). In

general, Green’s functions are the basic solutions to particular differential equations

and are subject to the type of equations and the boundary conditions of the system.

For the wave equation appropriate for the solar interior, the helioseismic holography

Green’s function G−(ρ′,ρ, t−t′) conceptually represents the response at the surface

position ρ
′ and time t′ due to an impulse located at position ρ and time t, while

G+ is the time-reverse of this, i.e. G+(ρ′,ρ, τ) = G−(ρ′,ρ,−τ). These functions
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regress the observed surface wave field either forwards (for G−) or backwards (for

G+) in time and into the interior of the Sun.

One can consider a single frequency component of the wave field ψ observed at

the surface ρ
′ by taking the Fourier transform in time of Equation 6.3. If one also

restricts the analysis to a local region and assumes a plane-parallel approximation,

the convolution above simplifies to

H±(r, z, ω) =

∫
P

d2
r
′ ψ(r′, ω) G±(|r − r

′|, z, ω), (6.4)

where z and r is the depth and horizontal position at which the amplitudes are to

be assessed. Under these conditions it is noteworthy that the convolutions needed

to compute H± using Equation 6.4 can be performed efficiently using Fast-Fourier

transforms.

To study travel-time anomalies analogous to those determined by time-distance

helioseismology, one considers cross covariances between the ingressions and egres-

sion, or between either of these and the wave field ψ. For example, if the ingression

and egression are both regressed, from different pupils, to some subsurface focus at

depth z and horizontal position r, then the cross-covariance of the two amplitudes

can be used to determine the travel-time anomalies of waves propagating between

the two pupils through the focus. This is the basis for lateral vantage holography

(Figure 6.5), and is highly analogous to deep-focus methods in time-distance he-

lioseismology. Other common applications include local control correlations, which

represent the cross covariances between the surface wave field ψ with either the

ingression or egression assessed over a concentric annulus, which may be divided

into quadrants. This is also termed surface-focus holography and is analogous to

center-annulus time-distance methods.

Unfortunately, the limited information available from surface Dopplergram ob-

servations requires that helioseismologist use only approximate forms of the Green’s

function. However, different types of Greens functions have been derived numeri-

cally using models of the solar interior under a variety of approaches and approx-

imations. One example of their construction may be found in Lindsey and Braun

(2000a). Remarkably, when the point source is located at the surface the Green’s

function closely resembles the time-distance cross-covariance function (e.g. Fig-

ure 6.4), which provides a conceptual linkage between holography and time-distance

helioseismology.

6.4.4 Data Products

For many purposes, the travel-time anomalies, extracted from the cross-covariance

functions form the main data products of interest for further modeling and infer-

ences of the solar subsurface. However, wave excitation and absorption can be stud-
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ied with egression and ingression amplitudes. Deep focus methods employing four

quadrants, aligned with the cardinal directions on a region of the Sun (Figure 6.5),

require the extraction of four travel time anomalies (corresponding to propagation

from east to west, west to east, north to south, and south to north). Surface-focused

holography and center-annulus time-distance methods use eight measurements to

determine the directional components of the travel-time anomalies. In addition,

sums of cross-covariance functions over the four quadrants in the annulus can be

used to assess the net inward and outward travel-times. The difference of these

(net outward minus inward) is sensitive to the horizontal divergence of flows and

to vertical flow components. In general, the sets of measurements used for model-

ing flows consist of maps of the directional (east-west and north-south) travel-time

differences and net (out-in) difference. The directionally averaged (or mean) travel-

time anomaly is defined relative to mean travel-times computed from a solar model

or (more typically) measured empirically from solar observations. This quantity is

sensitive to directionally-invariant perturbations like changes in the sound speed.

A main practical difference between the cross-covariance functions determined

from each method is that, in time-distance helioseismology, one extracts for further

analysis the portions of the two branches of the function centered around time lags

±τ given by the time for wave propagation between the two measurement points in

the quiet Sun while, for holography, the time lag τ is near zero since the egression

and ingression signals are computationally regressed towards each other in time

by means of the Green’s functions. There are a variety of methods to model or fit

the cross-covariances to extract the travel-time anomalies and their uncertainties.

Common methods include fitting cross-covariance to wavelet functions, such as

the Gabor function, or to theoretical models. Couvidat et al. (2012) provides a

comparison of a number of popular methods. Figure 6.6 shows some examples

of maps of travel-time anomalies around a sun spot as determined from different

methods.

Travel-time anomalies from cross-covariance based methods have been used to

model wave-speed variations beneath active regions as well as flows on almost all

spatial scales. An important application of multiple-skip cross-covariance analyses

has been to map travel-time anomalies over much of the spherical solar surface, in-

cluding the hemisphere on the opposite side of the Earth (Figure 6.7). This method

makes use of the strong travel-time anomalies that are associated with magnetic

regions which can be seen even in global oscillation modes which propagate one or

more times around the Sun within their mode lifetimes. Farside imaging was first

achieved with holography-based methods (Lindsey and Braun, 2000b) and subse-

quently with time-distance helioseismology (Zhao, 2007).
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Figure 6.6 Sample maps of observed travel-time anomalies around a sunspot, employing
different methods to extract the travel-times. Both maps show a decrease in travel-times
within a sunspot. (Figure by the author from using measurements by the author and T.
Duvall Jr.)
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Figure 6.7 Compos-
ite far-side-seismic
(left color scale) and
near-side-line-of-sight
magnetic maps (right
grey scale) show an
active region (NOAA
AR11498) passing the
far-side meridian (top
panel) and rotating
into view from earth at
Carrington coordinate
(190W, 13N) in the near
hemisphere (bottom) in
May-June, 2013. Figure
provided by C. Lindsey.

6.5 Limitations and Challenges

While instrumental noise and the effects of the turbulence in the terrestrial atmo-

sphere can affect the measurements described above, for space-based observations

the main source of random errors is typically solar realization noise which results

from the stochastic nature of the wave excitation process (e.g. Gizon and Birch,

2004). This noise provides the ultimate limits to the precision of both local and

global helioseismology. While this noise can be substantially reduced by spatial and

temporal averaging for some problems (e.g the probing of long-lived and large-scale
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flows on the Sun), this is not practical for the study of smaller-scale flows or individ-

ual sunspots with short life-spans. Strategies that have been developed include the

ensemble averaging of measurements which are employed to model the (averaged)

properties of supergranules (Duvall and Birch, 2010) and small magnetic elements

(Felipe et al., 2012).

Data products for local helioseismology, much like those for global helioseismol-

ogy can be improved by long-duration observations free of the day-night duty cycle.

Multiple vantage points away from the Earth-Sun line of sight, now routine for

other types of solar observations, have not yet been achieved for helioseismic data

and is clearly a desirable goal for future space missions. Recent theoretical develop-

ments are also facilitating the interpretation of local helioseismic data products and

guiding improvements in analysis methods. For example, increasingly sophisticated

magnetoconvective computations are making it possible to understand sources of

systematic errors due to magnetic fields (e.g. Braun et al., 2012) and convective

motions (e.g. Baldner and Schou, 2012) in the Sun.

The author is grateful for support from the NASA Heliophysics Division and

from the Solar Terrestrial Program of the US National Science Foundation.
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