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ABSTRACT

We study the interaction between p modes and the many magnetic fibrils that lace the solar convection zone.
In particular, we investigate the resulting absorption of p-mode energy by the fibril magnetic field. Through
mechanical buffeting, the p modes excite tube waves on the magnetic fibrils—in the form of longitudinal
sausage waves and transverse kink waves. The tube waves propagate up and down the magnetic fibrils and out
of the p-mode cavity, thereby removing energy from the incident acoustic waves. We compute the absorption
coefficient associated with this damping mechanism and model the absorption that would be observed for
magnetic plage. We compare our results to the absorption coefficient that is measured using the local-helioseismic
technique of ridge-filtered holography. We find that, depending on the mode order and the photospheric
boundary conditions, we can achieve absorption coefficients for simulated plage that exceed 50%. The observed
increase of the absorption coefficient as a function of frequency is reproduced for all model parameters.

Key words: MHD – Sun: helioseismology – Sun: magnetic fields – Sun: oscillations

Online-only material: color figures

1. INTRODUCTION

It is now well established that magnetic structures within the
solar photosphere are voracious absorbers of acoustic energy.
Sunspots can absorb more than 50% of the incoming acoustic
wave power and plage regions can absorb up to 20%. Braun
et al. (1987, 1988) (see also Braun 1995; Braun & Birch 2008)
measured and characterized the absorption for a variety of
magnetic structures, including sunspots, plages, and pores. They
find that the absorption coefficient is a function of temporal
frequency as well as mode order n and azimuthal order m. The
absorption increases with frequency, saturating at frequencies
higher than roughly 4 mHz. Absorption is most efficient for low
mode order and low azimuthal order. In addition, significant
phase shifts are induced and are strongly dependent on the field
distribution of the magnetic structure (i.e., sunspots cause large
phase shifts, whereas plage produces negligible shifts).

In the case of sunspots, a variety of mechanisms have
been suggested to explain the observed absorption, with
mode conversion, resonant absorption, and mode mixing being
the leading contenders. Presently, mode conversion is probably
the preferred mechanism, but all may play a role. Mode conver-
sion is the partial transformation of acoustic energy into slow
magnetosonic waves that occurs whenever a sound wave passes
through an equipartition layer, a surface in the magnetized atmo-
sphere where the sound speed and Alfvén speed are equal (e.g.,
Cally & Bogdan 1993; Cally 2000; Crouch & Cally 2003). The
slow waves propagate along the field lines removing energy
from the acoustic cavity. Therefore, the spawned slow waves
damp the incident acoustic wave. Another possibility that has
been explored is resonant absorption (Hollweg 1988; Lou 1990;
Keppens et al. 1994; Rosenthal 1992). Incident acoustic waves
can resonantly excite MHD waves in the magnetic structure as
long as the magnetic waves have the same wavelength parallel to
the magnetic–nonmagnetic interface as the incident wave. Suf-
ficiently high absorption has been difficult to achieve with this
mechanism when the atmosphere is stratified because the wave-

lengths are not uniform with height and possess different vertical
profiles inside and outside the region of field. Mode mixing is
the scattering of an incident p mode of one mode order n into an
outgoing p mode with the same temporal frequency but differ-
ent mode order n′ (D’Silva 1994; Fan et al. 1995). Since flux
tubes in the solar atmosphere flare with height (a consequence
of the pressure stratification), mode mixing certainly occurs. To
what extent, however, is still unclear. This uncertainty is further
complicated when one considers the existence of the acoustic
jacket. Bogdan & Cally (1995) demonstrated that a continu-
ous spectrum of laterally evanescent surface waves is necessary
to satisfy boundary conditions at the sunspot interface. These
“jacket modes” are excited by incident acoustic waves and are
capable of carrying away energy along the field lines.

Here, we examine an additional source of absorption that
may operate in plage regions where the field is composed
of a collection of thin fibrils. As suggested in Bogdan et al.
(1996) (hereinafter called BHCC1996) and in Hindman & Jain
(2008) (subsequently referred to as HJ2008), we consider the
following mechanism: within the solar convection zone p-mode
oscillations pummel the many magnetic fibrils that comprise the
plage. This buffeting excites both longitudinal sausage waves
and transverse kink waves which then carry energy up and
down the fibrils. Those waves that travel downward are lost in
the convection zone, whereas those that propagate upward pass
through the photosphere into the upper atmosphere where they
manifest as coronal-loop oscillations and upward-propagating
waves. In either case, the energy is extracted from the p modes
and removed from the acoustic cavity.

In this paper, we calculate—by a semianalytic method—the
absorption coefficient, which is a measure of the difference
between the ingoing and outgoing p-mode power. For our model,
there is more ingoing p-mode power due to the conversion
of acoustic energy into magnetic tube waves. Our present
calculations are a direct extension of the work carried out in
HJ2008 where we demonstrated that f and p modes efficiently
generate tube waves and that an energy flux in excess of

325

http://dx.doi.org/10.1088/0004-637X/695/1/325
mailto:R.Jain@sheffield.ac.uk


326 JAIN ET AL. Vol. 695

105 erg cm−2 s−1 can be driven upward through photospheric
levels. This energy sink for f and p modes depends on the
boundary condition applied at the model photosphere and on
the temporal frequency of the incident wave.

The paper is organized as follows: the derivation of the first-
order scattering equations is presented in Section 2. In Section 3,
we detail the equilibrium atmosphere and the model flux tube.
Section 4 describes the governing equations for the p-mode
oscillations and the driven tube waves. Section 5 provides a
calculation of the absorption coefficient. In Section 6, we present
our results and in Section 7, we discuss our findings, including
a comparison of our derived absorption coefficients with those
obtained by observations.

2. WEAK FIRST-ORDER SCATTERING

If we assume that we have an isolated, compact region of
magnetic field embedded within a nonmagnetized atmosphere,
we can express the total wave function in the field-free region
as the sum of three components,

Φ(x, t) = Φinc(x, t) + Φsc(x, t) + Φjac(x, t). (1)

Here Φ can be any wave variable we might care to consider.
For example, later in this paper we will define Φ as the
displacement potential. Φinc is the unperturbed p-mode wave
field that would exist in the absence of the magnetic flux
concentration (i.e., the incident wave field). Φsc represents a
discrete set of propagating scattered waves in the form of
outgoing p modes. Φjac is the contribution due to the continuous
spectrum of laterally evanescent jacket modes (see Bogdan &
Cally 1995). We can express an arbitrary wave field of incident
p modes as a Fourier–Bessel decomposition in cylindrical polar
coordinates, x = (r, φ, z), where the origin is centered on the
flux concentration,

Φinc(r, φ, z, ω) =
∞∑

m=−∞

∞∑
n=0

Amn(ω) eimφJm(knr)Qn(z). (2)

In this expression—and in the subsequent two—we have
chosen to apply temporal Fourier transforms (t → ω) and to
work in frequency space. The coefficients Amn(ω) are arbitrary
complex amplitudes that characterize the incident wave field,
Jm(knr) is the Bessel function of the first kind, Qn(z) is the
vertical eigenfunction for the nth-order p mode, and kn = kn(ω)
is the wavenumber eigenvalue for the nth-order p mode with
frequency ω.

Using similar expansions, the scattering terms become

Φsc(r, φ, z, ω) =
∞∑

m=−∞

∞∑
n=0

Amn(ω) eimφ

×
∞∑

n′=0

Sn→n′
m (ω) H (1)

m (kn′r) Qn′(z), (3)

Φjac(r, φ, z, ω) =
∞∑

m=−∞

∞∑
n=0

Amn(ω) eimφ

×
∫ ∞

0
dΛ T n→Λ

m (ω) Km(Λr) q(Λ; z). (4)

Here H (1)
m (kn′r) is the Hankel function of the first kind and

Km(Λr) is the modified Bessel function of the second kind
with Λ−1 being the lateral decay length for the jacket modes.
There are two separate scattering matrices: Sn→n′

m represents
scattering into outgoing propagating p modes, whereas T n→Λ

m

represents the excitation of the acoustic jacket. The functions
q(Λ; z) describe the vertical behavior of each jacket mode and
are generally oscillatory with depth. Note that when Sn→n′

m

is nonzero for n �= n′, mode mixing is occurring where an
incoming p mode of order n is scattered into an outgoing p
mode of order n′.

In general, the two scattering matrices, Sn→n′
m and T n→Λ

m (ω),
tell us everything we need to know about the wave–tube
interaction, including the absorption coefficient and phase shift.
Observationally, the absorption coefficient has traditionally been
defined as the ratio of the difference between the ingoing and
outgoing power to the ingoing power at the same frequency ω,
mode order n, and azimuthal order m,

αmn(ω) ≡ 1 − ∣∣1 + 2Sn→n
m (ω)

∣∣2
. (5)

This definition (e.g., Braun 1995) ignores the existence of
mode mixing and the excitation of the acoustic jacket. This
assumption is assuredly incorrect, but for simplicity and in order
to estimate the relative contribution of energy absorption, mode
mixing and jacket excitation, we adopt a systematic approach
where we examine each effect in isolation. Similar calculations
by Hanasoge et al. (2008), where they examined the excitation
of kink waves by an incident f mode, seem to indicate that the
mode mixing is weak for thin flux tubes. In the current paper,
we will only consider absorption of acoustic waves arising from
the excitation of magnetic tube waves. Mode mixing and the
acoustic jacket will be left to subsequent work.

3. THE MODEL

We investigate the interaction between acoustic waves and
magnetic fibrils beneath the solar photosphere. The fibril field is
assumed to consist of an ensemble of untwisted, axisymmetric,
thin flux tubes embedded inside a polytropically stratified field-
free atmosphere. This model was discussed in detail in HJ2008,
but we describe it here briefly to aid the reader’s understanding.

3.1. The Nonmagnetic Interior

We model the solar convection zone with a plane-parallel
atmosphere with uniform gravity acting in the downward
direction g = −g ẑ, with the height z increasing upward. The
atmosphere is polytropic below the height z < −z0, which
corresponds to the model’s photosphere. The gas pressure, mass
density and sound speed vary with z as power laws,

Pext(z) = gz0ρ0

a + 1

(
− z

z0

)a+1

= P0

(
− z

z0

)a+1

,

ρext(z) = ρ0

(
− z

z0

)a

, c2
ext(z) = −gz

a
.

The quantities ρ0 and P0 are the values of the mass density
and gas pressure at the photosphere z = −z0. The value of the
polytropic index a is set such that the stratification is neutrally
stable to buoyancy; this requires a = 1/(γ − 1), where γ is the
ratio of specific heats. Above z = −z0, we assume the existence
of a hot vacuum (ρext → 0 with temperature Text → ∞), with
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the property that the gas pressure (Pext ∼ ρextText) is finite and
continuous across the z = −z0 layer. Note, in the notation of
HJ2008, the polytropic index was denoted with the letter m.
However, to avoid confusion with the azimuthal order, we have
used the variable a here instead.

Following BHCC1996 and HJ2008, we specify the depth of
the photosphere z0 and the surface mass density ρ0 (and therefore
the surface pressure P0) by matching our model photosphere
to the τ5000 = 1 level of a solar model by Maltby et al. (1986).
At this layer in the solar model g = 2.775 × 104 cm s−1,
ρ0 = 2.78 × 10−7 g cm−3, and P0 = 1.21 × 105 g cm−1 s−1.
We will use polytropic index a = 1.5 for our calculations.

3.2. The Magnetic Flux Tubes

We assume that the magnetic fibrils threading this field-free
atmosphere are untwisted, straight, vertically aligned, thin tubes
with a circular cross section. By the term thin, we mean that
all the characteristic scale lengths—such as the wavelength
of the acoustic oscillations and the density scale height—are
much larger than the radius of the tube. Such a thin flux tube,
although in hydrostatic balance, is unable to support internal
lateral structure and hence the temperature and total pressure
will be uniform across the tube and continuous with their
external values. Since the total pressure, therefore, has the
same scale height inside and outside the tube, the magnetic
pressure inside the tube has the same scale height as the gas
pressure. This mandates that the plasma parameter β, defined
as the ratio of gas pressure to the magnetic pressure, is constant
with height inside the tube. Since we only consider tubes below
the photosphere (i.e., z < −z0), we need not worry about the
rapid flaring of tubes into a magnetic canopy that occurs within
the chromosphere.

We ignore lateral variation of the magnetic field strength and
describe the tube’s internal gas pressure P (z), mass density
ρ(z), and field strength B(z) by their axial values. These three
quantities as well as the tube’s cross-sectional area A(z) can be
described uniquely by the total magnetic flux contained by the
tube Θ and the plasma β,

P (z) = β

β + 1
Pext(z) , ρ(z) = β

β + 1
ρext(z) ,

B2(z)

8π
= 1

β + 1
Pext(z), A(z) = Θ

B(z)
=

(
β + 1

8πPext(z)

)1/2

Θ.

For a flux tube with β = 1 embedded in a polytropic
atmosphere with a = 1.5 and with a surface mass density of
ρ0 = 2.78 × 10−7 g cm−3, the magnetic field strength at the
photosphere, z = −z0, is B0 = 1.2 kG.

4. THE GOVERNING WAVE EQUATIONS

The field-free medium supports acoustic oscillations (the f and
p modes), while thin flux tubes permit the propagation of both
longitudinal (sausage) and transverse (kink) MHD waves. Note,
thin flux tubes can also support torsional Alfvén waves; however,
we ignore such waves, because the p modes are irrotational in
our model and do not couple to torsional modes. In the following
subsections, we briefly present the governing equations for these
waves and describe the driving of the tube waves by the acoustic
waves.

4.1. The f and p Modes

For the atmosphere described here, it is easy to demonstrate
that if Φ is the displacement potential, the vertical eigenfunction
Qn(z) that appears in Equations (2) and (3) is proportional to
Whittaker’s W function (Abramowitz & Stegun 1964, p. 507;
see BHCC1996 or HJ2008 for a complete derivation),

Qn(z) = w−(μ+1/2) Wκn,μ(w), (6)

where w = −2knz is a dimensionless depth and

μ ≡ (a + 1)/2 , ν2 ≡ aω2z0

g
, κn ≡ ν2

2knz0
.

The quantization of the horizontal wavenumber kn (or equiva-
lently κn) arises from the requirement that the Lagrangian pres-
sure perturbation vanish at the model photosphere. Mathemati-
cally, this takes the form

Wκn,μ+1(λn) = 0, (7)

where λn = 2knz0 is a dimensionless photospheric depth.
In a subsequent calculation, we will need to know the lateral

energy flux carried by a p mode. We have expressed our p modes
in cylindrical geometry,

Φmn(r, φ, z, ω) = eimφH (1 or 2)
m (knr)Qn(z), (8)

where the Hankel function of the first kind is used for waves
propagating outward, away from the flux tube. The Hankel
function of the second kind is used for waves propagating
inward. Once integrated in azimuth, the lateral energy flux of
such waves is purely horizontal, either toward or away from
the axis of coordinates where the flux tube resides. The lateral
energy flux carried by any individual wave component, can be
obtained by averaging the product of the perturbed pressure δP
and the radial velocity vr in time, followed by integration over
a vertical cylinder of radius r,

F = 1

4

∫ 2π

0
r dφ

∫ −z0

−∞
dz (δP v∗

r + δP ∗vr ), (9)

where the * denotes complex conjugation.
If we utilize v = −iω∇Φ and δP = ρω2Φ, the horizontal

energy flux for an outward propagating wave can be reduced to

Fn ≡ 2
ρ0

z
1/2
0

(g

a

)3/2 ν3

λa+1
n

Hn, (10)

where

Hn ≡
∫ ∞

λn

dwwaQ2
n(w). (11)

We have adopted the convention that the sign of an outward
energy flux is positive. The energy flux for the inward propa-
gating wave component is simply the negative of the result in
Equation (10).

4.2. The Tube Waves

Thin flux tubes support both longitudinal (sausage) waves and
transverse (kink) waves. Here, these oscillations are driven by
the agitation of the tube by external f- and p-mode oscillations.
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Using the formulation of HJ2008, the fluid displacement within
the tube can be described by the following equations:

{
∂2

∂t2
− c2

T

∂2

∂z2
+

γg

2

c2
T

c2

∂

∂z

}
ξ‖ = ρext

ρ

c2
T

V 2
A

∂3Φinc

∂z∂t2

∣∣∣∣
r=0

,

(12)

{
∂2

∂t2
− c2

K

∂2

∂z2
+

γg

2

c2
K

c2

∂

∂z

}
ξ⊥ = 2

ρext

ρ

c2
K

V 2
A

∂2∇Φinc

∂t2

∣∣∣∣
r=0

,

(13)

where VA is the Alfvén speed, cT is the cusp or tube speed and
cK is the kink speed,

V 2
A = B2

4πρ
, c2

T = c2V 2
A

c2 + V 2
A

, c2
K = B2

4π (ρ + ρext)
.

In Equations (12) and (13), ξ‖ indicates the vertical displace-
ment resulting from sausage waves and ξ⊥ applies to the hor-
izontal displacement from kink waves. The terms on the right-
hand side of each equation are due to the forcing by the incident
wave and are evaluated at r = 0 along the flux tube’s axis. We
have implicitly adopted the Born approximation, by assuming
that the driving terms only depend on the incident wave field,
ignoring the scattered field and the acoustic jacket.

The forcing provided by each individual incident p mode can
be obtained by evaluating the expression for the incident wave
field, Equation (2), at r = 0 and inserting the result into these
two wave equations. After Fourier transforming in time t, one
obtains
{
c2
T

∂2

∂z2
− γg

2

c2
T

c2

∂

∂z
+ ω2

}
ξ‖

= ρext

ρ

c2
T

V 2
A

ω2
∞∑

n=0

A0,n(ω)
dQn(z)

dz
, (14)

{
c2
K

∂2

∂z2
− γg

2

c2
K

c2

∂

∂z
+ ω2

}
ξ⊥

= 2
ρext

ρ

c2
K

V 2
A

ω2
∞∑

n=0

iknΥn(ω) Qn(z), (15)

where

Υn(ω) = i

2
[A−1,n(ω) − A1,n(ω)]x̂ +

1

2
[A−1,n(ω) + A1,n(ω)] ŷ.

(16)
Note that only the p modes with m = 0 contribute to the forcing of
the sausage waves and only the |m| = 1 modes drive kink waves.
All other azimuthal components vanish in the limit r → 0.

In HJ2008, it was found that sufficiently below the lower
turning point of the p mode driving the tube waves, the rate at
which energy passes down the tube is constant with depth,

Ė
(d)
‖ = − γβ

2 + γβ

πgρ0ωA0

4(a + 1)(β + 1)

|A0,n|2
z2

0

|Ω‖ + I∗
‖ |2, (17)

Ė
(d)
⊥ = − πgρ0ωA0

4(a + 1)(β + 1)

|Υn|2
z2

0

|Ω⊥ − I∗
⊥|2, (18)

where the leading negative sign indicates downward energy
flux, or energy escaping the p-mode cavity, and the superscript
(d) refers to the downward flux. These energy fluxes are the
fluxes driven by a single p mode of order n. Also, A0 is the
cross-sectional area of the tube at the photosphere (not to be
confused with Amn), I‖ and I⊥ are the interaction integrals
between the p mode and the respective tube wave, and Ω‖ and
Ω⊥ are parameters that specify the boundary condition applied
at the model photosphere (see HJ2008 for the details of these
parameters). The interaction integrals are integrations in depth
over the entire length of the tube and the integrands are the
product of the free oscillations of the tube and the p-mode
driving, the right-hand sides of Equations (14) and (15). The
boundary condition parameters can satisfy any physical choice
of boundary condition with a suitable assignment of values.

A similar result can be obtained at the model photosphere,

Ė
(u)
‖ = − γβ

2 + γβ

πgρ0ωA0

4(a + 1)(β + 1)

|A0,n|2
z2

0

(|I‖|2 − |Ω‖|2 + S),

(19)

Ė
(u)
⊥ = − πgρ0ωA0

4(a + 1)(β + 1)

|Υn|2
z2

0

(|I⊥|2 − |Ω⊥|2). (20)

Here, the S term, which arises due to the nonvanishing driver
at the surface, is the product of the p-mode eigenfunction and
the real part of the vertical displacement (see HJ2008 for a full
definition). The negative sign in the above equations once again
indicates energy escaping the p-mode cavity and the superscript
(u) refers to the upward flux.

5. THE ABSORPTION COEFFICIENT FOR A SINGLE
TUBE

Since we are ignoring the effects of mode mixing and jacket
modes, Equation (1) can be expanded using only a subset of
terms,

Φ(r, φ, z, ω) =
∞∑

m=−∞

∞∑
n=0

Amn(ω)

2
eimφ Qn(z)

× [
H (2)

m (knr) +
(
1 + 2Sn→n

m (ω)
)
H (1)

m (knr)
]
.

(21)

Here, we have used the fundamental relation Jm = (H (1)
m +

H (2)
m )/2. The first term in the braces (with the Hankel function of

the second kind) corresponds to the inward propagating portion
of the incident wave field. The second term (with the Hankel
function of the first kind) contains the contributions from both
the outward propagating component of the unperturbed wave
and the outgoing scattered wave.

Using Equation (5), we can replace the diagonal elements
of the scattering matrix that appear in Equation (21) with the
absorption coefficient,

Φ(r, φ, z, ω) =
∞∑

m=−∞

∞∑
n=0

Amn(ω)

2
eimφ Qn(z)

× [
H (2)

m (knr) +
√

1 − αmn(ω)H (1)
m (knr)

]
.

(22)
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Since the tube is axisymmetric, only the m = 0 component of
the unperturbed solution generates sausage modes and scatters
into m = 0 waves, and a similar statement holds between the
m = ±1 components and kink waves. Thus, conservation of
energy requires that the deficit of power between ingoing and
outgoing waves with m = 0 is equal to the rate that sausage
waves remove energy from the p-mode cavity, while the deficit
for waves with m = ±1 is given by the rate for kink waves.
Using these conservation of energy arguments, one may write

Ė‖ ≡ Ė
(d)
‖ + Ė

(u)
‖ = − Fn

4
|A0,n|2α0,n, (23)

Ė⊥ ≡ Ė
(d)
⊥ + Ė

(u)
⊥ = − Fn

4
(|A−1,n|2α−1,n + |A1,n|2α1,n)

= − Fn

4
(|A−1,n|2 + |A1,n|2)α1,n

= − Fn

2
|Υn|2α1,n, (24)

where we have used the lateral energy flux for the propagating
p modes, Equation (10), to express the rate at which energy is
carried toward and away from the axis of coordinates where the
flux tube resides. Furthermore, we have exploited the fact that
α−1,n = α1,n.

We insert Equations (10) and (17)–(20) into the two previous
Equations (23) and (24), to find an expression for the absorption
coefficient as a function of the interaction integrals and boundary
condition parameters,

α0,n = πβ

2(2 + γβ)(β + 1)

λa+1
n

ν2Hn

A0

z2
0

× (|Ω‖ + I∗
‖ |2 + |I‖|2 − |Ω‖|2 + S), (25)

α±1,n = π

4γ (β + 1)

λa+1
n

ν2Hn

A0

z2
0

(|Ω⊥ − I∗
⊥|2 + |I⊥|2 − |Ω⊥|2).

(26)

In order to use these expressions to compute the absorption
coefficients, we must first specify the boundary condition that
will be applied to the tube waves at the photosphere. In HJ2008,
we presented results derived by applying two different boundary
conditions. The first of these required the stress to vanish at the
photosphere; thus, the energy flux through the upper surface
is identically zero. The second boundary condition requires
minimum reflection at the upper surface. In other words, this
boundary condition allows the maximum energy flux of tube
waves to be driven into the upper atmosphere.

We demonstrated in HJ2008 that the stress-free boundary
produces significant damping of the f mode through the excita-
tion of tube waves. Most of the energy is converted into kink
waves. Conversely, the maximal-flux boundary converts more
acoustic energy into sausage waves and the resulting damping is
important for n < 5. For both boundary conditions the damping
vanishes at zero frequency and rises rapidly as the frequency
increases. We expect similar functional dependences for the ab-
sorption coefficients.

We now present, as Figures 1–3, the absorption coefficient
computed for both of these boundary conditions and for three

different values of β (0.1, 1.0, and 10.0). We assume that the
polytropic index is a = 1.5 and that the photospheric radius
of the tube is R0 = 0.1 Mm. For the maximal-flux boundary
condition, the absorption coefficient due to the excitation of
sausage waves increases with increasing β, whereas it decreases
slightly with increasing β for the kink waves. For the stress-free
boundary condition the behavior is not monotonic due to the
existence of frequencies for which the downward propagating
wave, generated directly by the driver, destructively interferes
with the wave reflected off of the stress-free upper boundary.
This is identical to the behavior that was seen in HJ2008 for the
damping rates.

There are two competing effects at play. As β increases
and the photospheric field strength decreases, the flux tube
increases in cross-sectional area in order to maintain the same
magnetic flux (A0 ∼ √

1 + β). This tends to increase the energy
flux carried by the tube purely by increasing the surface area
over which energy can be transmitted. The second effect is a
change in the excitation itself. Maximal excitation arises when
the wavelength of the tube wave is comparable to the vertical
wavelength of the driving p mode. Since, both wavelengths are
nonuniform with height and have different height profiles, no
direct wavelength matching is possible. However, as the value
of β increases, the tube wave rapidly becomes much shorter
in wavelength and the excitation becomes less efficient. Thus
eventually, for sufficiently high β, the excitation diminishes.
The wavelengths of the kink waves are, in general, shorter than
the wavelengths of the sausage waves at the same frequency.
This means that the value of β for which driving becomes less
efficient is less for the kink mode than the sausage mode. For
the frequency regime covered here, the kink waves fall into the
weak excitation regime for moderate values of β, hence the
observed decrease in the absorption coefficient as β increases.
The sausage mode, however, has not yet entered this weak
excitation regime.

Note that in Figure 1, the absorption coefficients arising from
the excitation of kink waves for the case of the stress-free pho-
tospheric boundary has nulls where the absorption coefficient
vanishes. These nulls are expected due to the destructive inter-
ference between the wave reflected from the photosphere back
into convection zone and the downward propagating wave di-
rectly generated by the driver (see also HJ2008). If we extend
the curves to much higher (and unobserved) frequencies, all of
the absorption curves for the stress-free boundary would display
such nulls.

6. THE ABSORPTION COEFFICIENT FOR PLAGE

In the following section, we will attempt to apply our
theoretical results to model the absorption coefficient for solar
plage. In particular, we will model the plage observed by Braun
& Birch (2008) using the helioseismic technique of ridge-filtered
holography. Braun & Birch (2008) have produced maps of
the absorption coefficient for different wave frequencies and
mode orders. These maps span a 60◦ × 60◦ region of the solar
surface and were obtained using Michelson Doppler Imager
(MDI) data taken over a period of time lasting 27 hr and starting
on 2002 April 1.

Equations (25) and (26) are the absorption coefficient for a
single, thin flux tube. We will model a plage by examining the
effect of a large number of identical thin flux tubes. We assume
that the tubes are sufficiently distant from each other that they
do not sit within each others’ acoustic jackets and that we can
describe the absorption using the first-order Born approximation
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Figure 1. Absorption coefficient as a function of frequency for a single, thin flux tube with a plasma β = 0.1, embedded in a polytropic atmosphere with an index
a = 1.5. Each mode order is plotted with a different color: black (f), red (p1), green (p2), etc. For the kink modes, the sum of the absorption coefficient over m = −1
and m = 1 is shown.

(A color version of this figure is available in the online journal.)

(which is consistent with our method for calculating the tube
wave excitation). For such an ensemble of tubes, we may
estimate their collective absorption coefficient by multiplying
the absorption coefficient for a single tube by the number of
tubes N in the ensemble,

α‖,n = α0,nN, (27)

α⊥,n = (α−1,n + α1,n)N, (28)

where α‖,n is the plage’s absorption coefficient for waves with
m = 0 and α⊥,n is the absorption coefficient for the sum of the
m = −1 and m = 1 waves.

We have previously calculated αm,n; therefore, the only
remaining unknown ingredient is the appropriate number of
tubes to include. Effectively, we need to estimate how many
magnetic flux tubes a measurement samples at any given point
in the absorption map. Within the Born approximation, the
measurement at a single point in the map is actually a spatially
weighted average of the magnetic flux within an extended region
around that point. The spatial weighting function, Kn, is called
the averaging kernel and is a function of both the radial order of
the mode and the frequency. Since the kernel linearly relates the

absorption coefficient to the distribution of magnetic flux, the
number of tubes in the ensemble is equal to the magnetic flux
sampled by the kernel, Θn(ω), divided by the magnetic flux of
an individual tube, Θ = B0A0,

N = Θn(r, ω)

B0A0
, (29)

Θn(r, ω) ≡
∫

d r ′Kn(r ′ − r, ω)|B(r ′)|, (30)

where |B| is the modulus of the photospheric magnetic field as a
function of position, r is the observation point in the absorption
map, and r ′ is any other point on the solar surface.

The kernel’s spatial form depends largely on the wavelength
of the acoustic waves used by the measurement, but may also
depend on details of the observational scheme. At present, the
exact form of the averaging kernel is unknown for this set of
observations; however, prior experience dictates that the kernel
is peaked near the observation point r and decays with distance
from that point with a width roughly equal to the horizontal
wavelength of the acoustic waves. For this study, we make the
reasonable assumption that the kernel is Gaussian in profile
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Figure 2. The same as Figure 1 except that the thin flux tube has β = 1.

(A color version of this figure is available in the online journal.)

with a width equal to the horizontal wavelength of the primary
p modes involved in the measurement,

Kn(r, ω) = exp

(
−k2

n|r|2
π2

)
. (31)

We have tested a variety of kernel profiles, including a top
hat function in radius, and the results that follow are rather
insensitive to the specific profile used as long as the kernel
possesses the same integrated area Akern,

Akern =
∫

d rKn(r, ω) = π3

k2
n

. (32)

In the definition of Θn in Equation (30), we estimate |B| using
MDI magnetograms. Figure 4(a) shows a magnetogram for an
area that spans 60◦ × 60◦ on the solar surface. This is the
same region analyzed by Braun & Birch (2008). Figures 4(b)–
(d) show Θn(r, ω) for three kernels with different frequencies,
2.0 mHz, 3.5 mHz, and 5.0 mHz, respectively.

A more easily interpreted quantity is the mean field strength
sampled by the kernel,

Bn(r, ω) = Θn(r, ω)

Akern
. (33)

Bn can be interpreted as the field strength smoothed by con-
volution with the kernel. To assess the relative size of Bn we

average Bn over all pixels within the magnetogram associated
with the plage. We use the same definition of plage as Braun &
Birch (2008). Umbra and penumbra are rejected by eliminating
all pixels whose brightness falls below 92% of the mean MDI
continuum values. Of the remaining pixels, those with a field
strength greater than 100 G are identified as plage. Figure 5
shows the result of this averaging. The mean field strength is
roughly 200 G at high frequencies and falls at low frequencies
by 10%–25%, depending on the mode order. Low frequencies
and high mode orders have longer horizontal wavelengths; there-
fore, the kernels formed from such waves sample a larger spatial
area. Thus, at low frequencies and high mode orders, a signifi-
cant fraction of the kernel area contains quiet Sun resulting in a
reduction in the mean field strength.

By combining Equations (25) and (26) with Equations (32)
and (33) we obtain an estimate for the absorption that should be
measured for the plage,

α‖,n = 2π4β

(2 + γβ)(β + 1)

λa−1
n

ν2

Bn

B0

|Ω‖ + I∗
‖ |2 + |I‖|2 − |Ω‖|2 + S

Hn

,

(34)

α⊥,n = 2π4

γ (β + 1)

λa−1
n

ν2

Bn

B0

|Ω⊥ − I∗
⊥|2 + |I⊥|2 − |Ω⊥|2

Hn

,

(35)
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Figure 3. The same as Figures 1 and 2 except for β = 10.

(A color version of this figure is available in the online journal.)

where α⊥,n is the absorption coefficient for the sum of the
m = −1 and m = 1 modes.

Figure 6 presents the absorption coefficients that we obtain
for our model plage, using Equations (34) and (35) and the
mean field strengths shown in Figure 5. The absorption for m =
0 (due to excitation of sausage waves) and for |m| = 1 (due to
excitation of kink waves) is plotted as solid and dashed curves
respectively for p1 through p4. We have shown only p1 through
p4 because the observations of Braun & Birch (2008) only span
this set of modes and, therefore, we only estimate kernels for this
subset of modes. Clearly, for the stress-free boundary condition,
the absorption coefficient due to the excitation of kink waves is
larger than that due to the sausage waves. However, the maximal-
flux boundary condition shows the reverse.

The absorption coefficients measured by Braun & Birch
(2008) were obtained by averaging the holographic observa-
tions in azimuth around the observational pupil. Hence, their
measurements are only sensitive to the m = 0 waves. In or-
der to compare our theoretical results with their observations,
we should therefore only consider the excitation of the sausage
mode. Figure 7 compares their observations with our m = 0 ab-
sorption coefficient α‖,n, which results solely from the excitation
of sausage waves. The solid curves are our theoretical findings
and the symbols correspond to the measurements of Braun &
Birch (2008). The results for the stress-free and maximal-flux
boundary conditions bracket the observations. It is quite likely

that the physical processes that occur near the surface of real so-
lar plages are somewhere between the scenarios represented by
these two extreme boundary conditions. Hence, despite the lack
of exact agreement between the theory and the observations, it
is reasonable to infer from Figure 7 that the excitation of tube
waves is a significant mechanism for the absorption of p-mode
energy by magnetic regions such as plage.

7. DISCUSSION

We have theoretically calculated the absorption coefficient
of p modes for a simulated plage by the application of a weak
scattering assumption. The plage is composed of an ensemble
of magnetic fibrils, each treated as a vertical, axisymmetric, thin
flux tube. Each of the tubes is pummeled by incident p modes
within the solar convection zone, thereby exciting sausage and
kink waves along the length of the flux tube. These tube waves
propagate up and down the tubes carrying energy out of the
acoustic cavity, thus damping the p modes.

Our computations indicate that this absorption mechanism
can easily generate absorption coefficients in excess of 10%.
When compared to observations of the absorption coefficient
within plage obtained with ridge-filtered holography (Braun &
Birch 2008), we find that the level of agreement between the
observations and theory varies depending on the photospheric
boundary condition that we adopt within the thin flux tubes
(see Figure 7). A stress-free photospheric boundary produces
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Figure 4. Images of the (a) magnetogram for a 60◦ × 60◦ area of the Sun taken 2002 April 1 with the MDI instrument. The remaining panels are convolutions of the
modulus of the magnetogram with three different estimated kernels for waves on the p4 ridge with frequencies of (b) 2 mHz, (c) 3.5 mHz, and (d) 5 mHz.

Figure 5. Field strength smoothed with the kernel and then averaged over all pixels within plage. The four different symbols correspond to kernels for waves of
different mode orders: diamonds (p1), triangles (p2), squares (p3), and crosses (p4). For most frequencies the mean field strength falls just below 200 G; however, for
sufficiently low frequency the kernels acquire sufficient spatial extent that quiet Sun begins to fill the kernel domain and reduce the mean field strength significantly.

insufficient absorption, whereas a maximal-flux boundary pro-
duces an excess. For frequencies greater than 4 mHz, the obser-
vations show a rapid decline in the absorption coefficient with
almost zero absorption above 5 mHz. The theoretical curves be-
gin to saturate as well (above 5 mHz for the stress-free boundary
and above 3 mHz for the maximal-flux boundary); but lack the
same sharp fall-off as shown by observations. These two bound-
ary conditions bracket the range of possible reflectivities and the

reality is likely to lie in between. The saturation is not observed
in the absorption coefficient for a single tube (Figures 1–3).
Therefore, for both of these boundary conditions, the saturation
at high frequency is a result of the decrease in the number of
tubes that fall within the averaging kernel. This occurs naturally,
since the horizontal wavelength of the p mode decreases with
frequency and the resulting kernel shrinks in horizontal extent
with increasing frequency.
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(a) (b)

Figure 6. The absorption coefficient for m = 0 (solid curves) and the sum of m = −1 and m = 1 (dashed curves) for the simulated plage. The plage is composed of
thin flux tubes with β = 1. The four colors correspond to different mode orders: red (p1), green (p2), blue (p3) and aqua (p4).

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 7. Absorption coefficient for m = 0 for simulated plage (solid curves) is compared with observations (symbols). The plage is composed of thin flux tubes
with β = 1. The four colors correspond to different mode orders: red (p1), green (p2), blue (p3), and aqua (p4). The symbols are observational results obtained using
ridge-filtered holography (Braun & Birch 2008) for the same four mode orders.

(A color version of this figure is available in the online journal.)

7.1. Systematic Errors in the Observations

When comparing the theoretical estimates and the obser-
vational results for the absorption coefficient in plage, one
must keep in mind the systematic errors in the observations.
In particular, the measured absorption coefficient samples not
only absorption, but potentially emission as well. The differ-
ences between the frequency dependence of the absorption co-
efficients measured with Fourier–Hankel decomposition (e.g.,
Braun 1995) and ridge-filtered holography have been attributed
to the different ways in which the two techniques sample the
halo of emission that surrounds active regions (Lindsey & Braun
1999). The high-frequency portion of the spectrum is singularly
susceptible to contamination, since the halo power peaks at
6 mHz. Furthermore, absorption can be effectively masked in
observation if the lifetime of waves is sufficiently short that the
waves do not travel completely across the observational domain
before being absorbed, damped or scattered. For these reasons,
Braun & Birch (2008) doubt that the fall-off that occurs in their
observation beyond 4 mHz is real.

7.2. Weaknesses of the Calculation

There are also several issues that might cause problems for
the theoretically derived absorption coefficients. The primary is
a poor approximation for the observational kernel. Our choice
of a Gaussian form for this calculation is physically reasonable
and probably reproduces the core of the kernel well; however, it
is less likely to match in the wings. The effect of a poor choice
for a kernel is a poor assessment of the total number of tubes
that should be included in the calculation for the absorption
coefficient. If our approximation for the kernel has wider wings
than the real kernel, our calculation will overestimate the number
of tubes by integrating magnetic flux over a broader area
than the observations, resulting in an overly large theoretical
absorption coefficient. This problem can be exacerbated by the
presence of nearby umbrae which increase the flux dramatically
if oversampled. We would also like to note that without accurate
calculations of the observational kernel it is difficult to assess the
exact magnitude and the frequency dependence of the observed
absorption in the plage since umbral contamination from nearby
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sunspots could well lie within the kernel averaging function. We
also ignored the treatment of energy carried downward by the
acoustic jacket modes in our theoretically derived absorption
coefficients. This requires further investigation.

A final weakness in our calculation is the weak scattering
approximation where we assume that the flux tubes are non-
interacting and that multiple scattering is unimportant. Since
the absorption coefficient for our simulated plage can reach
values as large as 70% (see Figure 7(b)), this assumption is
clearly suspect. A proper treatment would require a full multiple-
scattering calculation. Such calculations are notoriously dif-
ficult, and the results strongly depend on the mean separa-
tion of scatters. We will delay such a calculation for a later
paper.

7.3. Destructive Interference Nulls

For tubes with low plasma β and with a reflecting pho-
tospheric boundary (i.e., stress free), nulls in the absorption
coefficient appear in the range of observed helioseismic fre-
quencies. These nulls arise because at certain frequencies to-
tal destructive interference occurs between the waves that are
generated by the p-mode driving and propagate downward and
those waves that propagate upward and are then reflected down-
ward by the photospheric boundary condition. Since, no en-
ergy escapes the cavity, the absorption coefficient vanishes at
these special frequencies. Such absorptive nulls occur for tubes
with all values of β; however, for larger values, the nulls oc-
cur at extremely high frequency and outside the helioseismic
frequency range. Even if the photosphere truly acted as a com-
pletely reflecting surface, these nulls are unlikely to result in a
strong observational signature within a plage. Unlike our sim-
ulated plage, real plage lacks a uniformity of tube sizes and
strengths. Therefore, the absorptive nulls for different tubes will
occur at different frequencies and the collective behavior of the
tubes will be an average response where the nulls have been
filled in.

7.4. Resonant Absorption

The mechanism of acoustic energy absorption that we have
examined here is similar in some ways to resonant absorption.
Since the tubes in our model are stratified and reside in a
stratified atmosphere, it is impossible for a true resonance to
occur where the wavelength along the tube interface is the
same for both the incident acoustic wave and the internal
magnetosonic wave. However, the interaction integrals, I‖(ω)
and I⊥(ω), can be maximized by matching the tube wave
solution with the incident p-mode eigenfunction as closely
as possible. The largest values of course occur when the
nonmagnetic and magnetic wave forms have similar (if not
identical) vertical wavelengths.

7.5. Conclusions

We have demonstrated that p-mode buffeting of thin flux tubes
can generate a significant flux of longitudinal (sausage) or trans-
verse (kink) waves. The energy carried by these tube waves,
and thereby removed from the incident p mode, can result in
large absorption coefficients. Our estimates for a plage region
can reach well over 50% for some boundary conditions and
low mode orders. Unlike absorption models for sunspots using
mode conversion, significant absorption is achieved without the
existence of substantial horizontal magnetic field. We find that
our theoretical estimates are qualitatively similar to the observa-
tions at low frequency where the observations are trustworthy.
Both the theoretical and observational absorption coefficients in-
crease rapidly with frequency reaching a maximum or saturation
value near 4 mHz. Above 4 mHz, the observations and theory
behave quite differently. The observations show a rapid fall-
off of the absorption coefficient with frequency, whereas our
calculations reveal only a gentle decline. We suspect that the
discrepancy lies in the observations which underestimate the
absorption, because of the existence of high-frequency halos
and finite lifetime effects.
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