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Abstract. We summarize the basic principles of holographic seismic imaging of the solar interior,
drawing on familiar principles in optics and parallels with standard optical holography. Computa-
tional seismic holography is accomplished by the phase-coherent wave-mechanical reconstruction
of thep-mode acoustic field into the solar interior based on helioseismic observations at the solar
surface. It treats the acoustic field at the solar surface in a way broadly analogous to how the eye treats
electromagnetic radiation at the surface of the cornea, wave-mechanically refocusing radiation from
submerged sources to render stigmatic images that can be sampled over focal surfaces at any desired
depth. Holographic diagnostics offer a straight-forward assessment of the informational content of
the observedp-mode spectrum independent of prospective physical models of the local interior
anomalies that it represents. Computational holography was proposed as the optimum approach
whereby to address the severe diffraction effects that confront standard tomography in the solar
p-mode environment. It has given us a number of remarkable discoveries in the last two years and
now promises a new insight into solar interior structure and dynamics in the local perspective. We
compare the diagnostic roles of simple acoustic-power holography and phase-sensitive holography,
and anticipate approaches to solar interior modeling based on holographic signatures. We identify
simple computational principles that, applied to high-quality helioseismic observations, make it easy
for prospective analysts to produce high-quality holographic images for practical applications in local
helioseismology.

1. Introduction

In the past two years, the application of seismic holography to helioseismic data
from the Solar Heliospheric Observatory (SOHO) spacecraft has uncovered a re-
markable array of new solar acoustic phenomena. These have included the dis-
coveries of ‘acoustic moats’ surrounding sunspots (Lindsey and Braun, 1998a;
Braun et al., 1998), apparent ‘acoustic condensations’ 10–20 Mm beneath ac-
tive region photospheres (Lindsey and Braun, 1998b; Lindsey and Braun, 1999),
‘acoustic glories’ surrounding complex active regions (Braun and Lindsey, 1999)
and the first helioseismic images of a solar flare (Donea, Braun, and Lindsey, 1999).
Phase-sensitive holography confirms the presence of reduced sound travel-time
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perturbations in sunspots, and has now clearly discriminated and quantified similar
perturbations in acoustic moats and isolated plages. These may explain the solar
cycle dependence of globalp modes (Braun and Lindsey, 2000b). Holographic
phase diagnostics have also lead to the discovery that magnetic regions signifi-
cantly reflectp modes above the acoustic cut-off frequency, where the surface of
the quiet Sun acts as a nearly perfect absorber of incident acoustic radiation (Braun
and Lindsey, 2000a) (see Figure 6). A review of the scientific accomplishments
of helioseismic holography is given elsewhere in this volume (Braun and Lindsey,
2000a).

The basic principle of helioseismic holography is the phase-coherent compu-
tational reconstruction of the acoustic field into the solar interior, or even possi-
bly the far side of the Sun, based on seismic disturbances observed on the near
surface, so as to render stigmatic images of subsurface sources that give rise to
these disturbances. This is very much how the eye treats the electromagnetic field
at the surface of the cornea to secure diagnostics into the outlying world. The
term ‘holography’ derives from the strong analogy to the electromagnetic holog-
raphy conceived by Dennis Gabor in the late 1940s, and developed in the 1960s
by E. Leith and J. Upatnieks using lasers, to render 3-dimensional optical im-
ages by the phase-coherent reconstruction of monochromatic radiation recorded
on photographic ‘holograms’. The analogy to solar seismic holography is clear
once the reader sees past the clever, but somewhat cumbersome, contrivances based
on interference devised to register phase information onto photographic plates.
These schemes generally require radiation with macroscopic coherence lengths.
Holographic reconstruction employing lasers is thus nominally monochromatic,
an encumbrance that does not apply to computational seismic holography.

The basic concept of helioseismic holography was first proposed by Roddier,
(1975). The concept was re-introduced and extensively developed over the 1990s
by Lindsey and Braun (1990), Braunet al. (1992), Lindseyet al. (1996), and
Lindsey and Braun (1997), in what they promoted as a crucial diagnostic to ‘local
helioseismology’ in the SOHO-GONG era. In their opinion, this concept was the
key to the prospect of locating and examining fine structure as deep beneath the
solar photosphere as wave-mechanically possible.

It is important to distinguish seismic holography from the popular concept of
tomography. The tomography that is so powerful in X-ray medical applications
suffers from poor statistics combined with severe diffraction effects that signifi-
cantly impair spatial resolution when applied to the solar acoustic spectrum. Solar
acoustic holography specifically proposes to address these difficulties. Seismic
holography shouldnot be indentified as a method for physicalmodellingof so-
lar interior structure. While holographic imaging offers a firm basis for powerful
local interior modelling techniques, holographic images cannot be treated as actual
physical models of solar interior anomalies themselves in any practical capacity.

The diagnostic that Changet al. (1997) applied to observations from the Tai-
wan Oscillations Network (TON), presenting it under the name ‘ambient acoustic
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solar surfacesurface disturbances
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Figure 1. Seismic waves emanating from submerged sources produce surface disturbances that
propagate symmetrically outward from points directly above, as indicated by arrows.

imaging’ and in subsequent publications (Chenet al., 1998; Chouet al., 1999) as
‘acoustic imaging’, is quite literally helioseismic holography. Lindsey and Braun
(1990) and Braunet al.(1992) define helioseismic holography specifically in terms
of ‘seismic imaging’ by phase-coherent reconstruction of the acoustic field into the
solar interior. They apply the terms ‘seismic imaging’ and ‘helioseismic imaging’
in a broader context that include partially coherent acoustic signatures that Lindsey
and Braun (1990) suggested would appear at the antipodes of far-side acoustic
absorbers. The subject of this review is specificallyholographicseismic imaging,
a generality that we mean to apply to the far surface of the Sun, to the near surface
and subsurface, and to the deep interior alike.

2. Basic Principles of Computational Seismic Holography

The major general advantage which local helioseismology offers to solar interior
diagnostics seems to be the strong parallel of wave mechanics in the solar seismic
domain to electromagnetic optics. The application of holography in the solar seis-
mic context is best illustrated with a simple example. We will consider the idealized
case of a solar interior that contains a few well defined acoustic sources (Figure 1).
These sources emit a pattern of waves that to some degree fills the entire solar
interior, but the only part of this which we observe is a pattern of surface ripples
that propagate concentrically outward (see arrows above surface) from points on
the surface directly above their respective sources. For simplicity, we suppose that
the waves that produce these ripples are absorbed upon their first encounter with
the surface, an assumption that is generally quite accurate for frequencies above
∼5.5 mHz.
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Figure 2.Holographic regression of the surface acoustic field into the solar interior. Surface distur-
bances in the neighborhood overlying submerged sources are applied in time reverse to a sourceless
acoustic model of the solar interior and computationally propagated back into the model interior. The
underlying acoustic field differs in important respects from that actually produced by the sources.
Nevertheless, a well-appropriated sampling of the regressed acoustic field renders localized sources
with strong, compact signatures at appropriate depths. The seismic signature of a source that lies
considerably below or above the sampling surface is rendered by a signature that is substantial but
significantly out of focus.

The basic diagnostic exercise of seismic holography, then, is to apply the seis-
mic observations of the solar surface in time reverse to a computational solar
acoustic model devoid of sources, sinks, or scatterers. This is illustrated in Fig-
ure 2. In general, we do this over a limited part of the solar surface. Borrowing
from standard optical terminology, we call the region over which we apply the ob-
served disturbance to the model the ‘pupil’ of the computation. Given appropriate
computational rules, the now incoming ripples drive appropriately ingoing waves
that converge back towards the locations of the sources. This acoustic regression
is implemented over some extended volume and can be sampled over arbitrary
surfaces. If we sample the acoustic power in a surface, i.e., a ‘focal plane’, at the
depth of a source, the result should be a diffraction-limited signature such as that
which appears beneath the location of the source to the left in Figure 2. If the
focal plane is moved above or below the source, the signature does not generally
disappear but rather defocuses, rendering a diffuse profile like that beneath the
source to the right in Figure 2.

Figure 3 illustrates the 3-dimensional perspective which holographic recon-
struction presents to the analyst who views the regressed acoustic signatures. In
this simulation, random acoustic noise has been introduced into a solar acoustic
model that contains alphanumeric absorbers just beneath the surface and at a depth
of 56 Mm. As the focal plane submerges beneath the absorber, the sharp silhouette
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Figure 3.Holographic images of artificial seismic noise that encounters alphanumeric absorbers just
beneath the surface and at a depth of 56 Mm. In this model, the absorbers are confined to infinitely
thin sheets. Submergence of the focal plane beneath an absorber results not in its disappearance
but rather a defocusing of the signature. Diffuse ‘acoustic stalactites’ extending directly beneath all
surface features are an expected artifact, and not generally the signature of a significant acoustic
perturbation substantially beneath the absorber.

of the absorber does not simply disappear but rather defocuses to a diffuse blur.
We call this underlying plume the ‘acoustic stalactite’ of the absorber. As the focal
plane approaches the depth of the deep absorber, a diffuse ‘acoustic stalagmite’ first
appears, which sharpens to a diffraction-limited silhouette of that absorber when
the focal plane arrives at 56 Mm. Acoustic stalactites and stalagmites are the reason
the images themselves are inappropriate as models of the absorbers that produce
the signatures. In the presentation illustrated in Figure 3, depth diagnostics must
be accomplished by focus/defocus rather than the appearance/disappearance that
would characterize the sampling of a realistic physical model of the absorber that
gives rise to the signature.

Seismic holography isnot in any sense a representation or approximation of
solar acoustics in terms of ray optics. The computational regression illustrated by
Figure 3 is a fully wave-mechanical one incorporating all of the effects of inter-
ference and diffraction, just as these apply to standard electromagnetic holography
and lens optics. As such, seismic holography is subject to the same fundamental
limitations in terms of diffraction and statistics as any other diagnostic based on
helioseismic observations. It is likewise open to the full range of standard opti-
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cal techniques that have been developed to optimize the informational content of
coherent electromagnetic radiation.

3. The Computational Task

The numerical calculations for holographic extrapolation to subsurface layers can
be approached in different ways. Lindsey and Braun (1997) recognize two gen-
eral perspectives: (1) the ‘spectral,’ which represents the disturbance in terms of
the normal modes of the medium, and (2) the ‘time-distance,’ which is closer to
that of the time-distance helioseismology of Duvallet al. (1993). Practicality has
since imposed the need for a more flexible language. We now employ the terms
‘space-time,’ and ‘wavenumber-frequency,’ and combinations thereof to discuss
the computational practicalities of holography. It is the space-time perspective that
is the most amenable to intuition. We will therefore proceed to present the basic
practicalities of computational holography in this language.

In principle, if we are given both the acoustic amplitude and its derivative
normal to any closed surface surrounding a medium free of sources, sinks and
scatterers, then we can extrapolate the acoustic field anywhere in the interior of
the surface, by standard Kirchhoff integral theory (see Born and Wolf, 1975a, for
a presentation of the Kirchhoff integral theory for a uniform medium). In practice,
helioseismic observations are much less complete than this. The ‘reconstruction’
which we derive by applying the Kirchhoff integral to incomplete data over a
limited fraction of the solar surface can be regarded as a significant component
of the underlying acoustic field but not by any means the actual acoustic field, even
for a medium devoid of physical anomalies. From this point, we will therefore
distinguish between our incomplete regression,H , of the acoustic field, and the
acoustic field itself,ψ .

In the space-time perspective, the regression of the acoustic field,ψ(r ′, t ′), from
the surface, where it is secured at timet ′ and horizontal locationr ′, to a depthz,
directly beneath horizontal locationr at timet , is expressed by a formalism which
Lindsey and Braun (1997) call the ‘acoustic egression’. The acoustic egression,
H+(r , z, t), is an incomplete but coherent assessment of the local acoustic distur-
bance that has emanated from the ‘focal point,’(r , z), of the computation at timet
based on its succeeding emergence at the overlying solar surface, over the range of
locations and times expressed by(r ′,0, t ′). This can be represented by an integral
of the form

H+(r , z, t) =
∫

dt ′
∫

a<|r−r ′|<b
d2r ′G+(|r − r ′|, z, t − t ′)ψ(r ′, t ′) . (1)

HereG+ is a Green’s function that expresses how a single transient point dis-
turbance at(r ′,0, t ′) propagates backwards in time to(r , z, t). It equivalently ex-
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presses how a single transient point disturbance at(r , z, t) propagates forwards in
time to arrive at(r ′,0, t ′).

The ‘acousticingression’,H−, is the time reverse of theegressionH+. It rather
expresses waves coherently converginginto the focal point,(r , z), to contribute
to the disturbance, rather than emergingfrom the disturbance. The ingression is
computed simply by replacing the Green’s function,G+, in Equation (1) by its
time reverse,

G−(|r − r ′|, z, t − t ′) = G+(|r − r ′|, z, t ′ − t) . (2)

In our applications, the pupil of the computation is generally an annulus surround-
ing the focal point,r , whose inner radius isa and outer radius isb, or a disk, in
which casea = 0.

Once the task of computing the egression,H+, is accomplished over an ap-
propriate region, under an appropriate pupil, over a sufficient range in time,t , it
can simply be squared and integrated over any desired portion of that range in
time to yield an egression power map over that time interval. The first applica-
tions of seismic holography, to observations from the Taiwan Oscillations Network
(Changet al., 1997), confirmed the well knownp-mode absorption in sunspots
discovered earlier from Hankel analysis (Braun, Duvall, and LaBonte, 1988). A
remarkable array of discoveries proceeded from the application of the diagnostic
to SOHO-MDI observations. These include ‘acoustic moats’ surrounding sunspots
(Braunet al, 1998; Lindsey and Braun, 1998a), acoustic glories marking the quiet
outer fringes of complex active regions (Braun and Lindsey, 1999) and apparent
‘acoustic condensations’ 10–20 Mm beneath the photosphere. We refer to Braun
and Lindsey (2000a) for a review.

The computational advantage of the wavenumber-frequency perspective over
the space-time is a result of the temporal and horizontal spatial invariance of the
Green’s function,G+. For a plane parallel atmosphere, the normal modes are func-
tions whose projections at the surface (or any horizontal plane) are simple running
plane waves, for which convolution reduces to a simple product. Ifψ̂(k, ν) rep-
resents the Fourier transform ofψ(r , t) with respect tor andt , andĜ+(|k|, z, ν)
represents the same ofG+(|r |, z, t) truncated by the pupil, then the convolution
theorem reduces Equation (1) to the product

Ĥ+(k, z, ν) = Ĝ+(|k|, z, ν), ψ̂(k, ν) , (3)

where Ĥ+(k, z, ν) is the Fourier transform of the egression. The egression can
thus be computed very rapidly, using the fast Fourier transform to shift expediently
between the wavenumber/frequency to the space/time perspectives as needed. All
of the examples that appear in this paper and those that are reviewed by Braun and
Lindsey (2000a) were computed in the wavenumber-frequency perspective for this
reason.

The plane parallel projection of the Sun’s spherical surface in the foregoing
formalism introduces optical aberrations into the computation. These aberrations
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are modest for small pupils and have their practical analog in the familiar Seidel
aberrations of standard electromagnetic optics. The analogs of spherical aberration,
distortion, and curvature of field are easily corrected (Braunet al., 1998). However,
coma, primary astigmatism and higher-order aberrations cannot be avoided for
the large pupils that are needed to image deep focal planes or the far-side of the
Sun, and this eventually prevents stigmatic imaging substantially away from the
center of the projection under the plane-parallel approximation. The transform to
wavenumber perspective must then be abandoned.

If we let ψ̌(r , ν), Ȟ±(r , z, ν), and Ǧ±(|r |, z, ν) be just the temporal Fourier
transforms ofψ(r , t),H±(r , z, t), andG±(|r |, z, t), respectively, then the egres-
sion computation reduces to

Ȟ+(r , z, ν) =
∫

a<|r−r ′|<b
d2r ′Ǧ+(|r − r ′|, z, ν)ψ̌(r ′, ν) , (4)

wherer andr ′ indicate locations on the Sun’s spherical surface. We do not presently
know of a palatable way to avoid the integral over both spatial dimensions when
the plane-parallel projection is not appropriate. However, the need for a large pupil
is generally commensurate with a spatial spectrum that is restricted to a relatively
compact range in spherical harmonic degree,`, which is amenable to a propor-
tionately coarser sampling both of the pupil and the image field. This requires only
that the data are first appropriately smoothed to prevent aliasing. The computational
load imposed by this task can therefore be considerably alleviated.

4. Subjacent Vantage Holography

In the conceptual examples illustrated by Figures 1 and 2, we considered radiation
that had emanated upward from a submerged source to arrive at the overlying
surface more or less directly. This is what we call ‘superjacent vantage hologra-
phy’. However, if we fashion the pupil of the computation to be an annulus whose
inner radius is much greater than the depth of the focal plane, then the optical
paths that connect the source to the pupil represent radiation that initially emanated
downward, penetrating deep beneath the solar surface before refracting back to the
reach the surface at the pupil a considerable distance away. We call this ‘subjacent
vantage holography’. This geometry is illustrated in Figure 4. Subjacent-vantage
holography is quite often the practical choice, since the superjacent signature di-
rectly above a shallow source of interest typically appears in an attendant active
region whose photosphere introduces phase and amplitude perturbations that offer
confusion. By extending the pupil to a relatively quiet photosphere clear of the
active region, the analyst effectively renders the source from the perspective of a
submerged acoustic observer looking upward into the bottom of the acoustic source
along optical paths that circumvent the overlying surface activity.

An important consideration regarding subjacent vantage holography where dif-
fraction is concerned is that the relation of the pupil to the illuminating cone is
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Figure 4.Subjacent vantage imaging is the result of a holographic regression in which the focal plane
is shallow compared to the inner radius of the pupil. This configuration images seismic radiation that
is initially emitted downward from the source and penetrates thousands of km into the solar interior
before being refracted back to the surface. While the acoustic disturbance is necessarily observed at
the surface, these images render the perspective of an acoustic observer looking upward into the base
of the source from thousands of km beneath it. In subjacent vantage holography, the disposition of
the computational pupil is substantially an inversion of that in familiar lens optics. As the angle,θ ,
of illumination at the focal point increases, the angular distance,ρ, along the pupil from its center,
above the focal point, decreases.

invertedwith respect to that of familiar lens optics. In familiar lens optics, the
greatest angle of illumination,θ , corresponds to the periphery of the aperture. In
this case, and in superjacent-vantage holography of deeply submerged sources, the
resolution limit imposed by diffraction is optimized by using a larger pupil. In
subjacent vantage holography, it is theinner radius of the pupil that is connected to
the optical path of the greatest illuminating angle. The diffraction limit is, therefore,
set not by how wide the outer radius of the pupil is but rather howcompactthe
inner radius is. This principle may come across more intuitively to some readers
in more strictly wave-mechanical language. For this purpose we point out that the
finest diffraction limit for the computation is accomplished by securing the waves
with the highest spherical harmonic degree,`. In the subjacent vantage, these are
the waves with the shortest skip distances from the source. These are therefore the
waves that arrive more towards the inside of the pupil, not the outside as the high-`

waves do in familiar lens optics.
The simulations shown in Figure 3 were made with a annular pupil with inner

radius,a = 15 Mm and outer radiusb = 45 Mm. The signatures shown in the first
two frames, a and b, are entirely from a subjacent perspective and the third from
a mixed perspective that is predominantly subjacent. The deeper alphanumeric
absorber is seen from perspectives that are predominantly superjacent.
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5. An Example

Figure 5, adapted from Lindsey and Braun (1998b), shows the formalism described
above applied to NOAA AR 7973, a single isolated sunspot, integrated over a 24-
hr interval beginning on 25.0 June 1996. The left column shows egression power
maps of the region in a 1 mHz passband centered at 6 mHz. Focal-plane depths are
indicated to the left of respective frames in the left column by numerical values,
and graphically with vertical bars, by their respective vertical dimensions. The right
column shows comparative egression power signatures of localized superficial ab-
sorbers in a plane parallel acoustic model illuminated by a random, isotropic noise
spectrum. The superficial absorbers, represented by Rorschach splotches in the
upper-right frame, were intended for comparison between egression power maps
at depth zero of the active region and the model. The pupil for these computations
is an annulus extending from inner radiusa = 15 Mm to outer radiusb = 45 Mm
(identical to that used in the computations that produced Figure 3). This annulus is
shown in the upper right frame centered on the Rorschach splotch to the right of
frame center.

The model signatures (right column) provide a gauge of the acoustic stalactites
that appear beneath superficial absorbers, and thereby an assessment of the sensi-
tivity of focus with respect to depth. These suggest that the egression signature of
the sunspot umbra is roughly consistent with absorption that is entirely superficial.
A conspicuous satellite appearing north-east of the umbral signature is indicated
in the left column by arrows. This signature persists to 11.2 Mm, at which depth
the stalactite attached to its superficial counterpart in the model has essentially
disappeared.

Acoustic contrasts of the sunspot against its immediate surrounding were com-
puted by comparing the egression power averaged over a small disk (radius 8.4 Mm)
and the west side of a surrounding annulus, to avoid the satellite. This is plotted
in the lower left box of Figure 5. A similar contrast is computed for the satellite
(radius 8.4 Mm) and plotted at lower right. The tendency for the contrast of a very
compact superficial absorber to become negative as the focal plane submerges is
quite real, a result of diffraction effects on which we will not elaborate here.

It should be clearly understood that the egression power maps in Figure 5, and
those of similar depth in Figure 3, show the focal plane from a predominantly
subjacentperspective. The egression power image at zero depth, for example, is
an image of the surface through the surrounding solar interior and should not
be confused with a simple acoustic power map of the local wave amplitude as
directly observed at its surface location. Each pixel in the egression-power image
is a coherent representation of waves that have traveled thousands of km from that
pixel, and deep beneath the solar surface, to re-emerge into an annular pupil 15–
45 Mm from the pixel. The sunspot is therefore quite literally viewed through the
solar interior as from beneath, not through the photosphere overlying the sunspot.
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Figure 5.Egression power maps (left column) of NOAA AR 7973 integrated over 24 hr beginning
at 25.0 June 1996 in 6 mHz acoustic radiation (1 mHz bandwidth). The right column shows respec-
tive egression power maps of acoustic noise propagated by a Christensen-Dalsgaard model locally
depleted by superficial absorbers intended to match the primary signature in the upper left egression
map. The greyscale applies to the egression power, normalized to unity for the quiet Sun. Arrows
in the left column locate a satellite of the primary acoustic deficit signature. Focal-plane depths are
indicated to the left of respective frames by numerical values and by vertical bars. The computational
pupil is indicated by the annulus drawn in the upper right frame. Sunspot and satellite contrasts are
plotted in the lower left and right boxes, respectively.
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An unfortunate optical consequence of the increase in sound speed with depth
in the solar interior is an increasing wavelength and hence a coarser diffraction
limit at the greater depths for any given frequency. The effects of this are evident
in a serially deteriorating resolution of the images shown by Figures 3(d–f) as
the focal plane submerges. This illustrates a fundamental limitation that applies to
holography on the same terms as for all other helioseismic diagnostics.

6. Acoustic Modelling Based on Holographic Images

Comparisons with simple models such as those shown above encourage the prospect
of flexible procedures, including inversions, that would characterize the acoustic
environment in physical terms such as acoustic emissivity and opacity, and refrac-
tivity and flow velocity when phase-sensitive holography is applied.

Inversions can probably be addressed from a broad variety of independent av-
enues. Where the Born approximation applies in zeroth or first order, for example,
holographic images of a source,S(r ′, z′), distributed over a domain of horizontal
locationr ′ and depth,z′, can be represented by a Fredholm integral of the form

〈|H+(r , z)|2〉 =
∫

d2r ′
∫

dz′G(|r − r ′|, z, z′) S(r ′, z′) , (5)

where the angular brackets indicate statistical averaging over appropriate intervals
in time and frequency. Here,G is a Green’s function representing the egression-
power signature of a point emitter of unit acoustic luminosity at(r ′, z′). To the
extent that the egression power signature renders a point source quite sharply in
focal planes at the depth of the source,z = z′, the Green’s function,G(|r−r ′|, z, z′),
can be substantially inverted in practical terms. Broadly speaking, there exists a
fairly straight-forward class of functions,G−1(|r − r ′|, z, z′), such that the integral

S(r , z) =
∫

d2r ′
∫

dz′G−1(|r − r ′|, z, z′)〈|H+(r ′, z′)|2〉 (6)

will generally represent the source distribution faithfully, within resolution limits
consistent with the acuity ofG in the neighborhood of(r ′, z′). The more complex
inversion problems that involve absorbers require the extension of the Born ap-
proximation to higher orders and, in the case of scatterers, the incorporation of
phase-sensitive diagnostics into the formalism.

7. Phase-Sensitive Holography

The purpose of phase-sensitive holography in the solar acoustic context is to incor-
porate the basic utilities of optical interferometry into solar interior diagnostics.
Phase-sensitive seismic holography finds strong analogies in the phase-contrast
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imaging of Zernike (see Born and Wolf, 1975b), Schlieren imaging (Born and
Wolf, 1975c) and Michelson interferometry (Born and Wolf, 1975d) in famil-
iar electromagnetic optics. The concept is expressed most simply in the space-
frequency perspective, but its strongest analogy in helioseismic research to date
is in the measurement of time-distance correlations as developed by Duvallet al.
(1993). The general concept of seismic holography predates that of ‘time-distance
helioseismology’ by several years. However, the phase-sensitive diagnostics which
Lindsey and Braun (1997) developed for solar acoustic holography can be regarded
as a direct incorporation of the time-distance correlations of Duvallet al. (1993)
into the formalism of seismic holography.

The need for phase-sensitive holography is at least two-fold. It offers us a
straight-forward quantitative probe of refractive anomalies such as we expect from
thermal perturbations and independently of Doppler effects due to submerged flows.
However, it should be kept in mind that local anomalies such as these, illumi-
nated by isotropic acoustic noise, would be altogether undetectable without phase-
sensitive diagnostics. The standard acoustic-power holography we have reviewed
up to now depends for its operation on the existence of anomalous sources and
absorbers. It can even detect refractors and flows by their scattering of an acoustic
anisotropy created by a nearby absorber or an anomalous emitter. However, isotrop-
ically illuminated scatterers simply replace the acoustic radiation they block with
radiation which they scatter from some other direction, and therefore render them-
selves invisible by lack of contrast with respect to the isotropic background.

Phase-sensitive holography can be visualized in terms of a gedanken experiment
in which we contrive to focus monochromatic acoustic radiation, of frequencyν,
into a refractive sample, as illustrated in Figure 6, by driving the solar surface on
the right side of the sample so as to produce waves that converge into it accordingly.
If the sample is refractively similar to that of the ambient medium, the waves
should pass through it with neither a delay nor an advancement. In that case, a
computation of the egression in the pupil covered by the outgoing waves to the
left of the sample will be equal to the ingression from the pupil on the right, and
the phase shift between the two will be null. However, if the sample contains a
refractive perturbation,1n = 1c/c, wherec is the nominal speed of sound in the
neighborhood of the sample, then the transit of the wave through the sample should
be delayed by a time

1t ∼ a 1n/c , (7)

wherea is the characteristic diameter of the sample. The phase,φ, is accordingly
delayed by

1φ ∼ 2πν a 1n/c , (8)

To relate1φ to H+ andH−, we define the temporal Fourier transforms,Ȟ+
(r , z, ν) andȞ−(r , z, ν) of H+(r , z, t) andH−(r , z, t), respectively. Then,
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Figure 6.Solar acoustic holography recognizes that the optimal illumination of a sample is secured
not by random noise or by seismic radiation from a distant point source but rather by a pattern
of seismic radiation that isfocuseddirectly into the sample over a range of illuminating angles that
securely encompasses the diffraction limit,θ = λ/a. If this is accomplished, by appropriately driving
a sufficiently extensive region of the solar surface, then it is possible to extrude most of the acoustic
power through a sample that is little more than a wavelength in diameter. In that case, the phase delay
of the radiation emerging from the sample will be represented by a value of order 2πa1n/c, where
a is the characteristic path length through the sample.

1φ = arg(〈Ȟ+(r , z, ν)Ȟ ∗−(r , z, ν)〉1ν) , (9)

where the angular brackets indicate an average over bandwidth1ν in frequency
that must be sufficient for the statistical requirements that apply. The equivalent
diagnostic in the temporal domain is derived from the temporal correlation,

C(r , z, τ ) =
∫

dt ′H−(z, r , t ′) H+(z, r , t ′ + τ) . (10)

A localized refractive perturbation,1n, almost anywhere in the medium will gen-
erally have a minimal effect on this correlation. However, such a perturbation
centered at a mutual focal point, (r , z), of H+ andH− can be expected to shift the
temporal peak of the correlation fromτ = 0 to a value1t of the order expressed
by Equation (7).

Applications of this diagnostic by Braun and Lindsey (2000b) clearly render
sunspots with travel time reductions of order 40 s, plages with reductions ranging
up to 15 s and acoustic moats with reductions in the range 4–5 s. These pertur-
bations are of roughly sufficient order to explain frequency shifts of low-` modes
with the solar cycle (see Jiménez-Reyeset al., 1998).

Lindsey and Braun (1997) propose an extension of the correlation expressed by
Equation (10) for the purpose of measuring horizontal flows. This is based on the
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concept that a sample moving at velocityv will displace the waves passing through
it a distance1r = v 1t during their transit and therefore physically displace
the attendant egression,H+, with respect to the ingression,H−. Accordingly, they
define the correlation

C(r , z, s, τ ) =
∫

dt ′H−(z, r , t ′)H+(z, r + s, t ′ + τ) , (11)

whose nominal peak in a stationary medium should be spatially located ats = 0.
The effect expected of the flow is to displace the correlation peak spatially by a
distance of order

1r = v 1t = v a 1n/c . (12)

Without further elaboration we note that, in the space-frequency perspective, the
Doppler information contained in Equation (11) can be derived from the complex
vector correlation

U(r , z) = 〈Ȟ ∗−(r , z, ν)∇Ȟ+(r , z, ν)〉1ν . (13)

Preliminary uncalibrated experiments with this diagnostic by Braun and Lindsey
(2000a) (see Figure 10) clearly show supergranular flows, as well as significant
outflows from sunspots.

8. Green’s Functions

The Green’s function,G±(|r − r ′|, z, t − t ′) (see Equation (1)) characterizes the
acoustics of the solar model to which helioseismic observations,ψ(r ′, t ′), are ap-
plied to accomplish acoustic regressions. Computational seismic holography is
intended as a broad and flexible diagnostic generality, not to be confined to any
particular model. For this purpose it is important to keep a clear distinction between
the solar acoustic model and the solar interior itself. Indeed, the Green’s function
can deviate fairly blatantly from what we know of real solar interior acoustics and
deliver remarkably high-quality and diagnostically useful images. We will proceed
to outline some basic intuitive concepts that make it fairly easy to fashion Green’s
functions appropriate for practical diagnostic applications. It should be kept in
mind that what we present here is only one of any number of suitable ways to
approach this problem.

In Section 3, we used the notationG+(|r − r ′|, z, t − t ′) to indicate a Green’s
function that regresses a disturbance backwards in time from a location and time
(r ′,0, t ′) on the solar surface to a location(r , z, t) in the solar interior. Given an
acoustic formalism in which the field,ψ , is appropriately normalized with respect
to energy flux, and solar interior acoustics in the absence of sources and sinks is
time-reversal invariant, the same Green’s function also characterizes the propa-
gation of an acoustic pulse that emanates from a unit transient source at(r , z, t)
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forward in time to manifest a disturbance at a surface point(r ′,0, t ′). For the
following discussion this will be the interpretation, and in the future we will apply
these interpretations interchangeably.

8.1. DISPERSIONLESS ACOUSTICS

To begin with, we consider the general problem of acoustics in an atmosphere
with no dispersion. In such a model, a transient pulse, emitted at depthz beneath
surface locationr at time t propagates outward from(r , z) in the form of a dis-
turbance confined to an infinitely thin surface, a wavefront. When the wavefront
passes through a distant pointr ′ at the solar surface, this location responds with
a ripple characterized by the same infinitely sharp temporal profile as the source
but appropriately attenuated. We will assume that this Green’s function is invariant
both with respect to time and to horizontal translation. It can therefore be expressed
in the form

G+(|r − r ′|, z, t − t ′) = δ (t − t ′ − T (|r − r ′|, z))f (|r − r ′|, z) . (14)

Here, the functionT expresses the travel time from(r , z) to (r ′,0), f expresses the
amplitude of the pulse at(r ′,0), andδ represents the Dirac delta function.

The dispersionless formalism expressed by Equation (14) should not be con-
fused with an approximation to geometrical optics. When applied to sources of
finite frequency, this Green’s function appropriately reproduces the effects of dif-
fraction, just as it does in the simple case of electromagnetic optics in a vacuum.
Nevertheless, standard geometrical optics does offer a simple and powerful for-
malism whereby to derive practical estimates of Green’s functions that render
diffraction-limited images when applied to holographic computations. It is impor-
tant to understand that what follows is intended as a very particular model, and does
not in any way consign holography itself to optics in the ray approximation, even
in the narrow context of this particular example. Wave-mechanical reconstruction
based on this standard eikonal formalism is the technical equivalent of using lenses
designed by ray tracing to image actual radiation, which is invariably a wave.

Both T andf in Equation (14) depend critically on how the sound speed, c,
varies with depth. We can derive the optimal optical path,0, satisfying Fermat’s
principle from Snell’s law,

dt̂
ds
= t̂ × (t̂ ×∇ ln c) , (15)

where t̂ is the unit tangent vector along0. Once the particular path,0, connect-
ing (r , z) to (r ′,0) is thus determined, the travel time,T , is obtained simply by
integrating the differential travel time along0:

T (|r − r ′|, z) =
∫
0

ds

c
, (16)
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source

d2Ω
d2a
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t̂

n̂

α

Figure 7.The intensity law of geometrical optics provides that the acoustic flux emanating from a
monopolar point source, and passing through an area element d2a on a surface surface,S, remains in
proportion to the solid angle, d2�, subtended by the optical paths that envelop the boundary of d2a.

where ds expresses the differential element of path length along0.
In the same context, the amplitude profile,f , can be derived from the intensity

law of geometrical optics (Born and Wolf, 1975e). For its application to a monopo-
lar Green’s function, this simply requires that the acoustic flux emanating from
a source (see Figure 7), and passing through an area element d2a on a surface,
S, must be in proportion to the solid angle, d2�, subtended by the optical paths
leading to the boundary of the surface element. We represent the acoustic energy
flux density by the square amplitude times the sound speed,cf 2, the unit normal
to S by n̂ and the unit tangent to the optical path, again, byt̂. The amplitude for an
impulse of unit luminosity must then satisfy

cf 2 n̂ · t̂ d2a = d2�

4π
. (17)

For the subjacent-vantage geometry illustrated in Figure 4

d2� = 2π sinθ dθ (18)

and

d2a = 2π sinρ dρ , (19)
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Figure 8.Plots of the single-skip travel time,T (a), and amplitude,f (b), as functions of angular
distance,ρ, from the source computed for the solar model of Christensen-Dalsgaard, Proffitt, and
Thompson (1993). The different curves represent various source depths as indicated in frame a. For
ρ > 0.2 solar radii the amplitudes are also shown multiplied by a factor of 10.

and so Equation (17) reduces to

f 2 = 1

4πc cosα

sinθ

sinρ

dθ

dρ
, (20)

whereα is the angle of vertical incidence of the optical path to the surface. Fig-
ure 8 shows plots ofT andf as functions of angular distance,ρ, from the source
computed by the formalism above for the atmosphere of Christensen-Dalsgaard,
Proffitt, and Thompson (1993).

The foregoing discussion applies to waves that are absorbed by the solar pho-
tosphere on their first encounter after leaving the source, a property that accurately
characterizes waves with frequencies above 5.5 mHz. For frequencies below about
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4.5 mHz the photosphere is a strong specular reflector, and the Green’s function is
more properly characterized by a sum of components,

G+(|r − r ′|, z, t − t ′) =
∑
n

δ
(
t − t ′ − Tn(|r − r ′|, z))fn(|r − r ′|, z) , (21)

wheren is an integer indexing the disturbance that has just completed itsnth skip to
the surface as it is being represented by the sum. The analyst is, nevertheless, free
to omit any part of the Green’s function and apply only that part which she prefers.
She might do what we call 2-skip holography by computating the egression with
only then = 2 term in the Green’s function.

In multiple-skip holography imaging on significantly submerged focal planes,
Tn andfn are double valued functions ofρ outside of a well-defined minimumρ
inside of which no optical paths are allowed to arrive, geometrically. One branch
consists of predominantly subjacent-vantage optical paths for whichρ decreases
as the angle,θ , of illumination increases, whereθ is measured from the reference
that points vertically downward, as in Figure 4. The other branch is composed of
superjacent-vantage optical paths, for whichρ increases after reaching a minimum
as θ continues to increase towards 180◦. The two-skip profiles forT andf are
plotted in Figure 9 for a source at a depth of 0.016R�. The superjacent branch
is indicated by solid curves and the predominantly subjacent branch by dashed
curves. Optical paths from both branches conflate atρmin = 0.068R� to form a
‘caustic’ similar to that which gives rise to the familiar terrestrial rainbow.

In a strict solution of the wave equation at finite frequency, the singularity at
the caustic collapses to an analytic diffraction fringe. These profiles can be de-
rived by analytical techniques based on path integrals, for example those described
by Schlottman (1999). In practice, the profiles plotted in Figures 8 and 9 render
high-quality, diffraction-limited seismic images, provided that the caustics are ap-
propriately smoothed or truncated to control computational accidents otherwise
admitted by the singularities. The egression power images plotted in Figures 3 and
5 were computed from the profiles plotted in Figure 8.

8.2. DISPERSION

The real solar interior significantly disperses acoustic waves, mainly near the sur-
face. The dispersionless Green’s function stated by Equation (14) is entirely ade-
quate for single-skip egression power maps integrated over periods that are long
compared to the range of time over which a transient source is actually dispersed
upon arrival at any particular point in the pupil of the computation. However, coher-
ent holography over more than a single skip-number (see indexn in Equation (21)),
phase-sensitive holography, and even single skip-number holography that proposes
to resolve events over a time short compared to the temporal range of the dispersion
eventually run into the need for a more realistic acoustic model than that expressed
by Equation (14). The WKB approximation of standard quantum mechanics (Mes-
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Figure 9. Plots of the two-skip travel time,T (a), and amplitude,f (b), as functions of angular
distance,ρ, from the source computed by the formalism described in the text for the atmosphere of
Christensen-Dalsgaard, Proffitt, and Thompson (1993). The dashed curves plot these relations for the
predominantly subjacent-vantage branch of optical paths, for which the distance,ρ, from the source
to the second arrival at the surface decreases with illuminating angle,θ (see Figure 4). The solid
curves plot these relations for the fully superjacent-vantage branch, for which the distance,ρ, from
the source increases withθ .

siah, 1961) offers a reliable account of dispersion for most practical purposes. We
will not elaborate on this formalism here.

In the case of surface holography, dispersion can be estimated empirically over
the p-mode band. Both the assessment and the correction are best made in the
space-frequency perspective, that to which Equation (4) applies. The temporal
Fourier transform,Ǧ±, of the dispersionless Green’s function expressed by Equa-
tion (14) is given by
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Figure 10.The phase correlation,〈Ĥ+(r , ν)ψ̂∗(r , ν)〉R , between a dispersionless egression compu-
tation,Ĥ+, and surface amplitude,̂ψ , averaged over a circular region of quiet Sun of radius 100 Mm,
is plotted over the frequency range 2.5–6.5 mHz on successively finer scales proceeding from (a) to
(d). The real part of the phase correlation is expressed by horizontal displacement and the imaginary
part by vertical.

Ǧ+(r , r ′, ν) = f (|r − r ′|)exp
(
2πiνT (|r − r ′|)) . (22)

The effects of dispersion in the solar atmosphere can be estimated by computing
quiet-Sun egressions,̌H+(r , ν), by the application of this dispersionless Green’s
function to Equation (4), and statistically correlating this with the surface ampli-
tude,ψ̌(r , ν), from which the egression was computed:

C(ν) = 〈Ȟ+(r , ν)ψ̌∗(r , ν)〉R . (23)

Here we use angular brackets to express this statistical correlation as an average
over a substantial domain,R, over the solar surface.
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Figure 11.The phase of the correlation plotted in Figure 10 is rendered as a function of frequency
over the range 2.5–6.5 mHz.

An example of such a measurement, averaged over some 17000 quiet-Sun pix-
els, is shown in Figure 10. In these plots, the real part of the correlation in each
frame is the abscissa, with the imaginary part the ordinate. Because of the rapid
attenuation in the acoustic power at the higher frequencies, the correlation must
be plotted over a wide range of scales to cover the entire frequency band from
2.5–6.5 mHz. The phase,φ(ν), of the correlation is plotted over this spectrum in
Figure 11.

Dispersion can be viewed as primarily a result of the depth of the reflecting
layer decreasing rapidly as frequency,ν, increases. In fact, for the case in which
φ(ν) has a constant slope, the effect is not actual dispersion of the wave packet
but simply a temporal delay of the signature. It is thecurvatureof the locus of
φ that brings about actual temporal dispersion of a wave packet. In the case of
Figures 10 and 11, the path of integration for travel time (see Equation (16)) was
terminated 0.5 Mm beneath the photosphere, significantly beneath the reflecting
layers for waves anywhere in the range 2.5–6.5 mHz. The resulting travel-time
deficit significantly increases the slope of the locus ofφ plotted in Figure 11. It
should be kept in mind that the loci plotted in Figures 10 and 11 representtwo
dispersive encounters with the surface, the first as the disturbance begins on its
way into the solar interior from the surface, and the second on its return to the
surface in the pupil. They are also sensitive to other factors beside dispersion and
temporal errors. These include considerations of source depth distribution and the
strong dependence of photospheric reflectivity on frequency. A reliable account
for just dispersion may best be accomplished by a careful acoustic analysis of a
realistic solar interior model.

Once dispersion and travel-time errors,φ(ν), are known, these are easily cor-
rected by simple multiplication:

Ǧ′+(|r − r ′|, ν) = Ǧ+(|r − r ′|, ν)e−iφ(ν) . (24)
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Recent applications of seismic holography employing such a correction include the
seismic imaging of a solar flare (Donea, Braun, and Lindsey, 1999), the study of
the temporal properties ofp-mode emission from acoustic glories and the quiet-
Sun (Donea, Lindsey, and Braun, 2000), and phase sensitive holography of active
regions (Braun and Lindsey, 2000b). In the formalism expressed by Equations
(23) and (24) it is implicit that the correction,φ, for dispersion depends only on
frequency,ν. For shallow sources surrounded by more compact pupils than those
applied in the examples herein, this assumption introduces significant phase errors
(Cally and Barnes, 2000). In that case, a more careful formalism expressingφ as a
function of(|r − r ′|, z, ν) is needed.

9. Summary

Our intention with this review has been to provide the most flexible introduction
possible to the basic principles of solar acoustic holography. We hope to accom-
modate the reader who simply wants to be educated on a level that is as intuitive
as possible. At the same time, this review should contain sufficient technical sub-
stance to be of practical service to readers interested in applying the technique to
helioseismic observations. In fact, it is remarkably easy for the novice to compute
high-quality phase-coherent images from publically available SOHO-MDI obser-
vations by following the basic guidelines expressed in this paper. The foregoing
review has relied substantially on practical examples for this purpose. It is impor-
tant that these should not be mistaken for a general prescription of ‘how to do’
seismic holography. Indeed, these examples do not begin to exhaust the concept,
even in its present infancy. It should be understood that seismic holography was
fashioned as a broad diagnostic generality that can and will be approached from
any number of technical avenues, most of which are as yet untouched. The practical
development and application of seismic holography is now at a most encouraging
outset with the advent of SOHO and GONG. It is a little bit sobering to reflect
that we are just beginning to enjoy with solar acoustics something that we have
done habitually with electromagnetic radiation for eons in the application of our
eyesight. How this new perspective will influence the direction of solar interior
research is unpredictable, even in the near term. It will be very interesting indeed
to see what new discoveries come out of solar acoustic holography over the next
few years.

Acknowledgements

We greatly appreciate the support our research has received from the SOHO SOI-
MDI team and the fine quality of the data which they have given us. We especially
appreciate the conscientious support of Dr P. Scherrer, head of the SOHO-MDI



284 C. LINDSEY AND D. C. BRAUN

project. SOHO is a project of international cooperation between ESA and NASA.
D.C.B., a visitor at the Joint Institute for Laboratory Astrophysics, is grateful to
Ellen Zweibel and the staff of JILA for their hospitality and support. The ex-
traordinary dedication of our colleagues, particularly A.-C. Donea, M. Fagan, Y.
Fan, Y. Gu, S. Jefferies, S. Redfield and M. Woodard, has been crucial to the
successful development and fruitful application of solar acoustic holography over
the past ten years. Solar acoustic holography was developed under grants from the
National Aeronautics and Space Administration and from the Solar-Terrestrial and
Stellar-Astronomy-and-Astrophysics branches of the National Science Foundation.

References

Born, M. and Wolf, E.: 1975a,Principles of Optics, Pergamon Press, Oxford, p. 375.
Born, M. and Wolf, E.: 1975b,Principles of Optics, Pergamon Press, Oxford, p. 424.
Born, M. and Wolf, E.: 1975c,Principles of Optics, Pergamon Press, Oxford, p. 425.
Born, M. and Wolf, E.: 1975d,Principles of Optics, Pergamon Press, Oxford, p. 300.
Born, M. and Wolf, E.: 1975e,Principles of Optics, Pergamon Press, Oxford, p. 113.
Braun, D. C. and Lindsey, C.: 1999,Astrophys. J.513, L79.
Braun, D. C. and Lindsey, C.: 2000a,Solar Phys.192, 285 (this issue).
Braun, D. C. and Lindsey, C.: 2000b,Solar Phys.192, 307 (this issue).
Braun, D. C., Duvall, T. L. Jr., and LaBonte, B. J.: 1988,Astrophys. J.335, 1015.
Braun, D. C., Lindsey, C., Fan, Y., and Jefferies, S. M.: 1992,Astrophys. J.392, 739.
Braun, D. C., Lindsey, C., Fan, Y., and Fagan, M.: 1998,Astrophys. J.502, 968.
Cally, P. and Barnes, G.: 2000, private communication.
Chang, H.-K., Chou, D.-Y., LaBonte, B., and the TON Team: 1997,Nature, 389, 825.
Chen, H.-R., Chou, D.-Y., Chang, H.-S., Sun, M. T., Yeh, S.-J., LaBonte, B., and the TON Team:

1998,Astrophys. J.501, L139.
Chou, D.-Y., Chang, H.-S., Sun, M. T., LaBonte, B., Chen, H.-R., Yeh, S.-J., and the TON Team:

1999,Astrophys. J.514, 979.
Christensen-Dalsgaard, J., Proffitt, C. R., and Thompson, M. J.: 1993,Astrophys. J.403, L75.
Donea, A.-C., Braun, D. C., and Lindsey, C.: 1999,Astrophys. J.513, L143.
Donea, A.-C., Lindsey, C., and Braun, D. C.: 2000,Solar Phys.192, 321 (this issue).
Duvall, T. L. Jr., Jefferies, S. M., Harvey, J. W., and Pomerantz, M. A.: 1993,Nature362, 430.
Jiménez-Reyes, S. J., Régulo, C., Pallé, P. L., and Roca Cortés, T.: 1998,Astron. Astrophys.329,

1119.
Lindsey, C. and Braun, D. C.: 1990,Solar Phys.126, 101.
Lindsey, C. and Braun, D. C.: 1997,Astrophys. J.485, 895.
Lindsey, C. and Braun, D. C.: 1998a,Astrophys. J.499, L99.
Lindsey, C. and Braun, D. C.: 1998b,Astrophys. J.509, L129.
Lindsey, C. and Braun, D. C.: 1999,Astrophys. J.510, 494.
Lindsey, C., Braun, D. C., Jefferies, S. M., Woodard, M. F., Fan, Y., Gu, Y., and Redfield, S.: 1996,

Astrophys. J.470, 636.
Messiah, A.: 1961,Quantum Mechanics, Wiley, New York, p. 231.
Roddier, F.: 1975,Compt. Rend. Acad. Sci.281, B993
Schlottmann, R. B.: 1999,Geophys. J. Int.137, 353.


