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HW+#2 Solution
1. The thrust developed by a nozzle is given by

T = PeUer + (pe - patm>Ae7 (1)

where the subscript e denotes conditions at the nozzle exit and where py,, is the local
atmospheric pressure. The thrust equation is put in non-dimensional form by dividing by
poAe, where pg is the upstream stagnation pressure. The first term on the right hand is
also multiplied and divided by the sound speed squared, a? = yRT, to give
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Noting the definition of the Mach number as well as the fact that p. RT. = p. by the ideal
gas law, the above equation can be written as
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The nozzle exit pressure will equal the local atmospheric pressure unless the nozzle is either
under- or over-expanded. When the pressure is matched there is no pressure contribution
to the thrust and the non-dimensional thrust depends only on the exit to stagnation
pressure ratio and the exit Mach number.

The area-Mach number relation (Eq. (8.43) in Bertin and Cummings) yields both a
subsonic and a supersonic solution for A./A; = 8. It is not possible to solve for the Mach
number directly, but a table such as 8.1 in Bertin and Cummings, an online calculator such
as http://www.dept.aoe.vt.edu/~devenpor/aoe3114/calc.html, or a small program
using an iteration scheme can be used to find the values. In any case the values are
M = 0.072567 and M = 3.6772. Given the Mach number, the corresponding pressure
ratios are computed via Eq. (8.36) in Bertin and Cummings, giving p./po = 0.99632 and
Pe/Po = 0.010221. These values along with the resulting thrust are shown in Table 2.

If the atmospheric pressure is slightly below 0.99632p, the flow will accelerate to su-
personic speeds downstream of the throat. A shock will then form in the nozzle at the
position required to produce an exit pressure that matches the local atmospheric pressure.
The easiest way to generate thrust data for this flow regime is to pick a position for the
shock and then compute the resulting exit pressure (which will also equal the atmospheric
pressure). The steps are:

e Assume a shock position in the form 1 < A,/A; < 8.

e Compute the Mach number and pressure on the upstream side of the shock via Egs.

(8.43) and (8.36). Call these M; and p1/po.
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e Compute the Mach number and pressure on the downstream side of the shock via

Egs. (8.75) and (8.72) (with # = 0). Call these My and p,/p;.

e Compute the exit Mach number by repeated application of Eq. (8.43). This is
possible since the flow is isentropic from the downstream side of the shock to the
nozzle exit. Writing the inverse of Eq. (8.43) symbolically as A/A* = f(M), we
can evaluate this relation for station 2 (downstream side of the shock) and station
e (the nozzle exit) and then ratio the two expressions to get

Ae _ f(M.)
Ao " FM)’ “
Since Ay = Aj, the Area ratio A./As is
R NCICRE
A2 As At As (As/At) .
Thus the exit Mach number is determined from
8
f(M,) = mf(Mz)- (6)

e Compute the exit pressure via a similar repeated application of Eq. (8.36). Let

p/po = g(M) then
pe/P2 = g(M.)/g(My). (7)

e Compute the exit pressure normalized by the upstream stagnation pressure via

GGG ®
Po Po p1 P2

As an example of this procedure, let A;/A; = 2. For this area ratio Eq. (8.43) gives
M; = 2.1972. Using this Mach number, Eq. (8.36) gives p;/po = 0.093933. Given
M, Eq. (8.75) determines the Mach number on the downstream side of the shock as
My = 0.54743, and Eq. (8.72) gives the pressure ratio as ps/p; = 5.4656. Given M,, Eq.
(6) above, along with Eq. (8.43) yields M, = 0.11586. Equation (7) above, along with
(8.72) then gives the exit pressure as p./pz = 1.2145. The required exit to stagnation
pressure ratio is then found from Eq. (8) as p./po = 0.62353. Finally, Eq. (3) gives the
non-dimensional thrust as T'/(ppA.) = 0.011718. These values, along with sets for other
shock positions are shown in Table 1.

Once the atmospheric pressure drops below 0.15954p, (the exit pressure when the
shock sits at the exit), any shock or expansion fan required to adjust the exit pressure to
the local atmospheric pressure must occur outside the nozzle. The flow within the nozzle
(including the exit plane) is thus fixed at the supersonic isentropic solution, independent
of the atmospheric pressure. The momentum component of the thrust is also fixed and
any remaining change in thrust due to the pressure component. A few values for thrust
for this regime are shown in Table 2.

The thrust distribution is plotted as a function of the driving pressure ratio (po/patm)
in Figure 1.



AgJA | AcJAs | My p1/Po My | p2/m M. | pe/pa | pe/po | T/(poAe)
2.0 | 4.0000 | 2.1972 | 0.093933 | 0.54743 | 5.4656 | 0.11586 | 1.2145 | 0.62353 | 0.011718
3.0 | 26667 | 2.6374 | 0.047299 | 0.50069 | 7.9486 | 0.16479 | 1.1645 | 0.43780 | 0.016643
4.0 |2.0000 | 2.9402 | 0.029787 | 0.47883 | 9.9188 | 0.21515 | 1.1328 | 0.33468 | 0.021639
5.0 | 1.6000 | 3.1748 | 0.020993 | 0.46561 | 11.592 | 0.26736 | 1.1039 | 0.26865 | 0.026885
6.0 | 1.3333]3.3679 | 0.015841 | 0.45657 | 13.066 | 0.32220 | 1.0736 | 0.22222 | 0.032297
7.0 | 1.1429 | 3.5328 | 0.012515 | 0.44990 | 14.394 | 0.38077 | 1.0396 | 0.18728 | 0.038014
8.0 | 1.0000 | 3.6772 | 0.010221 | 0.44471 | 15.609 | 0.44471 | 1.0000 | 0.15954 | 0.044172

Table 1: Solutions for shocks within the nozzle at the indicated position A,/A;.

condition Pam/Po | pefpo | M. | T/(moAJ)
no flow 1.0000 1.0000 0.0000 0.0000
sonic throat, isentropic subsonic exit 0.99632 | 0.99632 | 0.072567 | 0.0073452
shock at A;/A, =2 0.62353 | 0.62353 | 0.11586 | 0.011718
shock at A;/A, =3 0.43780 | 0.43780 | 0.16479 | 0.016643
shock at As/A. =4 0.33468 | 0.33468 | 0.21515 | 0.021689
shock at A;/A. =5 0.26865 | 0.26865 | 0.26736 | 0.026885
shock at A;/A. =6 0.22222 | 0.22222 | 0.32220 | 0.032297
shock at A;/A. =7 0.18728 | 0.18728 | 0.38077 | 0.038014
shock at A;/A. =8 0.15954 | 0.15954 | 0.44471 | 0.044172
overexpanded 0.15954 | 0.010221 | 3.6772 | 0.044172
overexpanded 0.12221 | 0.010221 | 3.6772 0.081502
overexpanded 0.084879 | 0.010221 | 3.6772 0.11883
overexpanded 0.047550 | 0.010221 | 3.6772 0.15616
overexpanded 0.010221 | 0.010221 | 3.6772 0.19349
isentropic supersonic exit matched to | 0.010221 | 0.010221 | 3.6772 0.19349
atmospheric pressure

underexpanded 0.0076656 | 0.010221 | 3.6772 0.19604
underexpanded 0.0051104 | 0.010221 | 3.6772 0.19860
underexpanded 0.0025552 | 0.010221 | 3.6772 0.20115
underexpanded 0.0000 0.010221 | 3.6772 0.20371

Table 2: Nozzle flow solutions for various flow regimes.
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Figure 1: Thrust for a nozzle with A./A; = 8 as a function of the driving pressure ratio.

2. The oblique shock relation is given by Eq. (4.17) in Anderson

tanf = 2cot 3

M2sin? 3 —1

ME(y +cos2B) + 2]’

(9)

where M; is the upstream Mach number, § is the shock angle and 6 is the flow deflection
angle. This equation shows that as 8 — p = sin"'(1/M;), 6 — 0. Thus for small @ it is
appropriate to take

g

=pte

(10)

where € is a small angle. The trigonometric terms above are approximated as follows
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From the Mach triangle in Figure 2 we have
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Figure 2: Mach triangle.

1
i = — 19
sin 1 A (19)
M1
= 20
cos fu M (20)
L _u (21)
cscp = = .
a sin p !
(22)
These results are used to simplify the trigonometric relationships above, yielding
1
sinff ~ A (1+eN), (23)
1
cos23 ~ e (M —2) — 4e)], (24)
cotf ~ \—eM?, (25)

where

A= /M2 -1 (26)

Now returning to the oblique shock relation with the above approximations and neglecting



any subsequently-generated terms of order €2 or higher allows the development

h ~ (2/\—6M12)[ (1+2%e) — 1 }
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which implies
B _ (v + 1)M?
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Thus, to leading order, the shock angle is increased from the Mach angle by an amount
proportional to the flow deflection angle. The Mach number normal to the shock is

M, = Msinf (33)
~ M, [Mil(lee)\)} (34)

12
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(v + 1)Mf] 0

4/MZ =1

Again, to leading order, this result shows that the component of Mach number normal to
the shock is greater than 1 by an amount proportional to the flow deflection angle.

Both the results for the shock angle and the normal component of Mach number have
terms proportional to M? — 1 in the denominator. Thus as M; — 1 the approximations
diverge. Physically this mathematical consequence stems from the fact that maximum
flow deflection angle for a M; = 1 shock is zero, while the wave angle is 90°. A more
careful analysis would show that the maximum flow deflection angle approaches zero faster
than M? — 1. This behavior resolves the singularities in both Eqs. (32) and (36), and
gives the physically correct results that § = p and My,, = 1 when M; = 1.
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3. The change in entropy across a shock wave is given by the equation above (3.60) in

Anderson T
As = ¢, In —2>—R1n<]2). 37
\ (TI - (37)

Using the ideal gas law in the form T5/T) = (p2/p1)/(p2/p1) as well as the relations
R = ¢, — ¢y, 7 = ¢/ ¢y, the entropy change can be written equivalently as

25 (]2) —~In (ﬁ) . (38)
Cy P1 P1

The density ratio across a shock wave is given by Eq. (3.53) in Anderson

1)M?
p1 2+ (v —1)M;

In order to investigate the behavior for M; slightly greater than 1, set M; =1+¢€. Asa
consequence M} = 1+ 2¢+ €2 and thus the expression for the density ratio can be written
as

p2 . (y+1( + 2¢ + €) (40)
p1 24 (y=1)(1+2e+¢€2)
(v +1)(1+ 2+ €?)
- - (41)
) [1+2 () e+ (22) €]
2
(14 2¢+€%) , (42)
(14 2Ae+ A€?)
where .
fy —_—
A= 43
v+1 (43)
Making use of the binomial expansion
1
——=1-0+08-8+... 44
1+6 * T (44)

the expression for the density ratio can be rewritten as

P2

p ~ (1 + 2¢ + 62) [1 — (2Ae + A€2) + (2Ae + A€2)2 - (2A€ + A€2)3] (45)
1

~ 1+2(1—A)e+ (1 —A)(1—44)e —4A(1 — A)(1 — 2A)é. (46)

The expression for the entropy change requires the logarithm of the density ratio.
Before doing this step it is useful to derive a general result that can be used for the
logarithm of the pressure ratio as well. Starting with the Taylor series expansion of the
logarithm about unity, we have

1n(1+5):5—%52+%53+.... (47)
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Noting that the expression for the density ratio is of a form equivalent to the argument
of the logarithm above, in which the small quantity  can written symbolically as

0= C1€ + 0262 + 0363, (48)
we can write

1 1
In(1+06) = (cre + co€® + c3e®) — 5(016 + o€ + c3€®)? + g(cle + o€ + c3e?)? + ... (49)

After performing the products and retaining terms only out to €3 we have

1 1
11’1(1 + c1€ + 0262 -+ 6363) ~ Cc1€ + (CQ — 50?) 62 -+ (Cg — C1Co + 50?) 63. (50)

Application of this rule to Eq. (46) with ¢ =2(1 — A), co = (1 — A)(1 — 4A),
c3 = —4A(1 — A)(1 — 2A) yields

In (%) ~ (1 - A) [26 — (14 2A)e® + 2(1 + A+ 4A2)63} : (51)

The pressure ratio across a shock is given by Eq. (3.57) in Anderson

@:1+2—71(M12—1). (52)

Making use of the replacement M; = 1 +€¢ = M} — 1 = 2¢ + €%, the above equation
can be written as

P2 14 2Be+ B, (53)
y4!
where 5
p= 2 (54)
v+1

Note that the pressure ratio expression is still exact as no approximations have been made
up to this point. We can now apply Eq. (50) with ¢; = 2B, ¢co = B, ¢3 = 0 to get

In (%) ~ B {26 — (2B -1)é& + %(43 —3)é . (55)

By comparing Egs. (43) and (54) it is seen that A and B are related via
B=n~(1—-A). (56)

This result allows to write Eq. (55) as

In (1;_?) ~ (1 — A) [26 _(14+24) — §7<1 By (1—ANE| . (57)



Now returning to Eq. (38) with the results of Eqgs. (51) and (57) we have

As

Co

~ (1 A) [26 _(1+24) — §7(1 _ A3 dy(1 — A)]eﬂ _
(1 —A) {26 — (1 +24)e + %(1 + A+ 4A2)e3} : (58)

The € and €2 terms are seen to cancel completely, leaving

As 8 16 vy 16 (v(y—1)
~ —yABe = — | —— | A = [ ~L—2 | €.
o, T3P (7+1) T3 <(v+1)2 ‘ (59)

This is a very important result. It indicates that the entropy rises only as the third power
of the fraction of Mach number in excess of 1. Thus shock losses are quite small for
weak shocks (where Mj,, is only slightly greater than 1). Conversely, the losses become
enormous for strong shocks (where M;,, > 2 say).

@ ‘ © t
@ —==—r Py o |
€ @
4. The symmetric diamond airfoil is shown above. The wedge angle ¢ is computed via
0.5t t
R L U -1(tYy _ ~1 _ 0
§ = tan <O.50> tan (c) tan™ (0.1) = 5.7106". (60)

Prandtl-Meyer (P-M) theory requires the change in the flow angle for each segment of
the upper and lower surfaces. Here we use the linear flow analysis convention that a
compression surface has a positive flow deflection angle and an expansion surface has a
negative angle. Unfortunately this convention is opposite to that used for P-M analysis
where an a positive deflection angle is used for an expansion surface. We account for the
discrepancy by listing —A# in the table below and then use this quantity as a direct input
to the P-M analysis. Under our convention, the flow angle is related to the surface slope
and the angle of attack separately on the upper and lower surfaces, viz

dyu
0, = tan! (%) —a, (61)

d
0, = —tan™! (d_?:ﬁ) + a. (62)

Solution to the Prandtl-Meyer equation yields the Mach number for each airfoil seg-
ment. The pressure is then computed from the following isentropic relation, obtained by
ratioing the results of Eq. (8.36), evaluated at (p, M) and (peo, M)

p [1+0.5(7— 1)M§O}(<31>>' -

Pee L 1405(y—1)M2
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station | dy/dx | tan~!(dy/dx) (deg) | -Af (deg) | v (deg) | M P/Poo
0 0.0000 0.0000 0.0000 26.380 | 2.0000 | 1.00000
1 0.1000 5.7106 -3.7106 22.669 | 1.8677 | 1.22735
2 -0.1000 -5.7106 11.4212 34.090 | 2.2923 | 0.633292
0 0.0000 0.0000 0.0000 26.380 | 2.0000 | 1.00000
3 -0.1000 -5.7106 -7.7106 18.669 | 1.7293 | 1.51646
4 0.1000 5.7106 11.4212 | 30.090 | 2.1373 | 0.807151

Table 3: Solution to the symmetric diamond airfoil using Prandtl-Meyer theory. t/c = 0.1,
My, =20, a=2°

Starting with a free-stream Mach number M., = 2.0 and angle of attack of o = 2" we can
fill out Table 3. Here we have listed the flow deflection angle as Af to emphasize the fact
that it is the change in the flow angle from segment to segment. The net pressure force
normal to the airfoil axis is

n= /Oc (p1 — pu) dx, (64)

or in non-dimensional form

n Poo Yoo opu\ e 2 (Yo pa x
1/2pscu.c 1/2p0u2, Jo \Poo  Peo) € YMZ Jo \ P Poo ¢
(65)
The contributions to the integral are constant over each section, while the surface

element Az/c = 0.5 for all segments. Thus the normal force coefficient can be evaluated
to give

2 |[ps  pa m pz] Az
e = | L2 = 66
M2 |j%o Poo  DPoo  Poo] € (66)
2
= .7 [1.51646 + 0.807151 — 1.22735 — 0.633292 ] 0.5 (67)
= 0.082673. (68)

A similar development leads to the axial force coefficient
2 [ pu\ [ dyu Y [ dy r
a = - —_— | = | — —_ d|—
‘ VM&/O Kpoo> (dﬂf) (poo dx (c)
_ 2 (e Ay (P2 (dwe (s (dys) _ (P (dya)| AT
YM2 |\ Poo dx Poo dx Poo dx Poo dx c

2
= T, | 1:22735(0.1) +0.633292(~0.1) — 1.51646(—0.1) — 0.807151(0.1) ] 0.5

— 0.023274. (69)

The lift and drag coefficients are then computed from
€ = cpcosa—cgsina = 0.082673 cos(2°) — 0.023274sin(2°) = 0.081810.
¢ = cqcosa+c,sina = 0.023274cos(2°) + 0.082673sin(2°) = 0.026145.
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station | dy/dx | tan~!(dy/dx) | A0 (deg) | B (deg) | v (deg) | M D/ Dieft P/Doo
(deg)
0 0.0000 0.0000 0.0000 N.A. 26.380 | 2.0000 | 1.00000 | 1.000000
1 0.1000 5.7106 3.7106 33.132 | 22.652 | 1.8671 | 1.22741 | 1.22741
2 -0.1000 -5.7106 -11.4212 N.A. 34.073 | 2.2917 | 0.516056 | 0.633412
0 0.0000 0.0000 0.0000 N.A. | 26.380 | 2.0000 | 1.00000 | 1.00000
3 -0.1000 -5.7106 7.7106 36.917 | 18.520 | 1.7242 | 1.51704 | 1.51704
4 0.1000 5.7106 -11.4212 N.A. 29.941 | 2.1317 | 0.532838 | 0.808337

Table 4: Solution to the symmetric diamond airfoil using shock-expansion theory. t/c =
0.1, My, = 2.0, a = 2°,

We now repeat the problem using oblique shock relations for the compression surfaces.
The pressure ratio across the shocks is computed from Eq. (8.72) in Bertin and Cummings.
Equation (63) can no longer be used for the expansions since the shocks add a non-
isentropic element. However, a similar equation can be used to compute the pressure
ratio across the expansion itself, viz

_ 2 ( 'Yzl )
p [1+0-5(7 l)Mleft:|< ) ’ (70)

Diesi | 1+ 05(y — 1)M2

where the subscript left refers to the conditions to the left (upstream) of the expansion
corner. With this change, we must use a slightly more complicated relation to arrive
at the required pressure ratio p/p.,. For example, in order to compute the pressure on
segment 2 of the airfoil, we proceed as follows

P2 _ (p_> (@)
P Poo b

The revised computation is shown in Table 4. Here we list the change in the flow angle
(A0) as being positive for a compression and negative for an expansion. The normal and
axial force coefficients are then computed as

(71)

2 |ps  p1 M pz] Az
Cn = LR N 72
TMZ, {poo P Poo  DPoo] € (72)
2
= i [1.51704 + 0.808337 — 1.22741 — 0.633412]0.5 (73)
= 0.082956. (74)

- ) ) ()@ -() ) @)

2
= Tas02 [ 1.22741(0.1) + 0.633412(—0.1) — 1.51704(—0.1) — 0.808337(0.1) ] 0.5

= 0.023263.

(75)
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The lift and drag coefficients are then computed from

¢ = cpcosa—cgsina = 0.082956 cos(2°) — 0.023263sin(2°) = 0.082094.
= cocosa+c,sina = 0.023263 cos(2°) + 0.082956 sin(2°) = 0.026143.

The estimated obtained from P-M theory compare very well to these exact values. The
lift coefficient is in error by only 0.35% and the drag coefficient is almost perfect with a
0.0077% error.
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