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1. The thrust developed by a nozzle is given by

T = ρeu
2
eAe + (pe − patm)Ae, (1)

where the subscript e denotes conditions at the nozzle exit and where patm is the local
atmospheric pressure. The thrust equation is put in non-dimensional form by dividing by
p0Ae, where p0 is the upstream stagnation pressure. The first term on the right hand is
also multiplied and divided by the sound speed squared, a2e = γRTe to give

T

p0Ae
=

(
u2e
a2e

)
γ

(
ρeRTe
p0

)
+

(
pe
p0
− patm

p0

)
. (2)

Noting the definition of the Mach number as well as the fact that ρeRTe = pe by the ideal
gas law, the above equation can be written as

T

p0Ae
= γM2

e

(
pe
p0

)
+

(
pe
p0
− patm

p0

)
. (3)

The nozzle exit pressure will equal the local atmospheric pressure unless the nozzle is either
under- or over-expanded. When the pressure is matched there is no pressure contribution
to the thrust and the non-dimensional thrust depends only on the exit to stagnation
pressure ratio and the exit Mach number.

The area-Mach number relation (Eq. (8.43) in Bertin and Cummings) yields both a
subsonic and a supersonic solution for Ae/At = 8. It is not possible to solve for the Mach
number directly, but a table such as 8.1 in Bertin and Cummings, an online calculator such
as http://www.dept.aoe.vt.edu/~devenpor/aoe3114/calc.html, or a small program
using an iteration scheme can be used to find the values. In any case the values are
M = 0.072567 and M = 3.6772. Given the Mach number, the corresponding pressure
ratios are computed via Eq. (8.36) in Bertin and Cummings, giving pe/p0 = 0.99632 and
pe/p0 = 0.010221. These values along with the resulting thrust are shown in Table 2.

If the atmospheric pressure is slightly below 0.99632p0 the flow will accelerate to su-
personic speeds downstream of the throat. A shock will then form in the nozzle at the
position required to produce an exit pressure that matches the local atmospheric pressure.
The easiest way to generate thrust data for this flow regime is to pick a position for the
shock and then compute the resulting exit pressure (which will also equal the atmospheric
pressure). The steps are:

• Assume a shock position in the form 1 ≤ As/At ≤ 8.

• Compute the Mach number and pressure on the upstream side of the shock via Eqs.
(8.43) and (8.36). Call these M1 and p1/p0.
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• Compute the Mach number and pressure on the downstream side of the shock via
Eqs. (8.75) and (8.72) (with θ = 0). Call these M2 and p2/p1.

• Compute the exit Mach number by repeated application of Eq. (8.43). This is
possible since the flow is isentropic from the downstream side of the shock to the
nozzle exit. Writing the inverse of Eq. (8.43) symbolically as A/A∗ = f(M), we
can evaluate this relation for station 2 (downstream side of the shock) and station
e (the nozzle exit) and then ratio the two expressions to get

Ae
A2

=
f(Me)

f(M2)
. (4)

Since A2 = As, the Area ratio Ae/A2 is

Ae
A2

=
Ae
As

=

(
Ae
At

)(
At
As

)
=

8

(As/At)
. (5)

Thus the exit Mach number is determined from

f(Me) =
8

(As/At)
f(M2). (6)

• Compute the exit pressure via a similar repeated application of Eq. (8.36). Let
p/p0 = g(M) then

pe/p2 = g(Me)/g(M2). (7)

• Compute the exit pressure normalized by the upstream stagnation pressure via

pe
p0

=

(
p1
p0

)(
p2
p1

)(
pe
p2

)
. (8)

As an example of this procedure, let As/At = 2. For this area ratio Eq. (8.43) gives
M1 = 2.1972. Using this Mach number, Eq. (8.36) gives p1/p0 = 0.093933. Given
M1, Eq. (8.75) determines the Mach number on the downstream side of the shock as
M2 = 0.54743, and Eq. (8.72) gives the pressure ratio as p2/p1 = 5.4656. Given M2, Eq.
(6) above, along with Eq. (8.43) yields Me = 0.11586. Equation (7) above, along with
(8.72) then gives the exit pressure as pe/p2 = 1.2145. The required exit to stagnation
pressure ratio is then found from Eq. (8) as pe/p0 = 0.62353. Finally, Eq. (3) gives the
non-dimensional thrust as T/(p0Ae) = 0.011718. These values, along with sets for other
shock positions are shown in Table 1.

Once the atmospheric pressure drops below 0.15954p0 (the exit pressure when the
shock sits at the exit), any shock or expansion fan required to adjust the exit pressure to
the local atmospheric pressure must occur outside the nozzle. The flow within the nozzle
(including the exit plane) is thus fixed at the supersonic isentropic solution, independent
of the atmospheric pressure. The momentum component of the thrust is also fixed and
any remaining change in thrust due to the pressure component. A few values for thrust
for this regime are shown in Table 2.

The thrust distribution is plotted as a function of the driving pressure ratio (p0/patm)
in Figure 1.
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As/At Ae/As M1 p1/p0 M2 p2/p1 Me pe/p2 pe/p0 T/(p0Ae)
2.0 4.0000 2.1972 0.093933 0.54743 5.4656 0.11586 1.2145 0.62353 0.011718
3.0 2.6667 2.6374 0.047299 0.50069 7.9486 0.16479 1.1645 0.43780 0.016643
4.0 2.0000 2.9402 0.029787 0.47883 9.9188 0.21515 1.1328 0.33468 0.021689
5.0 1.6000 3.1748 0.020993 0.46561 11.592 0.26736 1.1039 0.26865 0.026885
6.0 1.3333 3.3679 0.015841 0.45657 13.066 0.32220 1.0736 0.22222 0.032297
7.0 1.1429 3.5328 0.012515 0.44990 14.394 0.38077 1.0396 0.18728 0.038014
8.0 1.0000 3.6772 0.010221 0.44471 15.609 0.44471 1.0000 0.15954 0.044172

Table 1: Solutions for shocks within the nozzle at the indicated position As/At.

condition patm/p0 pe/p0 Me T/(p0Ae)
no flow 1.0000 1.0000 0.0000 0.0000
sonic throat, isentropic subsonic exit 0.99632 0.99632 0.072567 0.0073452
shock at As/Ae = 2 0.62353 0.62353 0.11586 0.011718
shock at As/Ae = 3 0.43780 0.43780 0.16479 0.016643
shock at As/Ae = 4 0.33468 0.33468 0.21515 0.021689
shock at As/Ae = 5 0.26865 0.26865 0.26736 0.026885
shock at As/Ae = 6 0.22222 0.22222 0.32220 0.032297
shock at As/Ae = 7 0.18728 0.18728 0.38077 0.038014
shock at As/Ae = 8 0.15954 0.15954 0.44471 0.044172
overexpanded 0.15954 0.010221 3.6772 0.044172
overexpanded 0.12221 0.010221 3.6772 0.081502
overexpanded 0.084879 0.010221 3.6772 0.11883
overexpanded 0.047550 0.010221 3.6772 0.15616
overexpanded 0.010221 0.010221 3.6772 0.19349
isentropic supersonic exit matched to
atmospheric pressure

0.010221 0.010221 3.6772 0.19349

underexpanded 0.0076656 0.010221 3.6772 0.19604
underexpanded 0.0051104 0.010221 3.6772 0.19860
underexpanded 0.0025552 0.010221 3.6772 0.20115
underexpanded 0.0000 0.010221 3.6772 0.20371

Table 2: Nozzle flow solutions for various flow regimes.
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Figure 1: Thrust for a nozzle with Ae/At = 8 as a function of the driving pressure ratio.

2. The oblique shock relation is given by Eq. (4.17) in Anderson

tan θ = 2 cot β

[
M2

1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

]
, (9)

where M1 is the upstream Mach number, β is the shock angle and θ is the flow deflection
angle. This equation shows that as β → µ = sin−1(1/M1), θ → 0. Thus for small θ it is
appropriate to take

β = µ+ ε, (10)

where ε is a small angle. The trigonometric terms above are approximated as follows

tan θ ' θ, (11)

sin β = sin(µ+ ε) = sinµ cos ε+ cosµ sin ε ' sinµ+ ε cosµ, (12)

sin2 β ' (sinµ+ ε cosµ)2 ' sin2 µ+ 2ε sinµ cosµ, (13)

cos β = cos(µ+ ε) = cosµ cos ε− sinµ sin ε ' cosµ− ε sinµ, (14)

cos 2β = cos(2µ+ 2ε) = cos 2µ cos 2ε− sin 2µ sin 2ε ' cos 2µ− 2 sin 2µε (15)

' cos2 µ− sin2 µ− 4ε sinµ cosµ, (16)

cot β =
cos β

sin β
' cosµ− ε sinµ

sinµ+ ε cosµ
=

cotµ− ε
1 + ε cotµ

' (cotµ− ε)(1 + ε cotµ) (17)

' cotµ+ (1 + cot2 µ)ε = cotµ+ ε csc2 µ. (18)

From the Mach triangle in Figure 2 we have
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Figure 2: Mach triangle.

sinµ =
1

M1

, (19)

cosµ =

√
M2

1 − 1

M1

, (20)

cscµ =
1

sinµ
= M1. (21)

(22)

These results are used to simplify the trigonometric relationships above, yielding

sin β ' 1

M1

(1 + ελ) , (23)

cos 2β ' 1

M2
1

[
(M2

1 − 2)− 4ελ
]
, (24)

cot β ' λ− εM2
1 , (25)

where

λ =
√
M2

1 − 1. (26)

Now returning to the oblique shock relation with the above approximations and neglecting
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any subsequently-generated terms of order ε2 or higher allows the development

θ '
(
2λ− εM2

1

) [ (1 + 2λε)− 1

γM2
1 +M2

1 − 4ελ+ 2

]
(27)

' 4λ2ε

(γ + 1)M2
1

[
1− 4λε

(γ+1)M2
1

] (28)

' 4λ2ε

(γ + 1)M2
1

[
1 +

4λε

(γ + 1)M2
1

]
(29)

' 4λ2ε

(γ + 1)M2
1

(30)

'
[

4 (M2
1 − 1)

(γ + 1)M2
1

]
ε, (31)

which implies

β = µ+ ε = µ+

[
(γ + 1)M2

1

4 (M2
1 − 1)

]
θ. (32)

Thus, to leading order, the shock angle is increased from the Mach angle by an amount
proportional to the flow deflection angle. The Mach number normal to the shock is

M1n = M1 sin β (33)

' M1

[
1

M1

(1 + ελ)

]
(34)

' 1 +
√
M2

1 − 1

[
(γ + 1)M2

1

4 (M2
1 − 1)

]
θ (35)

' 1 +

[
(γ + 1)M2

1

4
√
M2

1 − 1

]
θ. (36)

Again, to leading order, this result shows that the component of Mach number normal to
the shock is greater than 1 by an amount proportional to the flow deflection angle.

Both the results for the shock angle and the normal component of Mach number have
terms proportional to M2

1 − 1 in the denominator. Thus as M1 → 1 the approximations
diverge. Physically this mathematical consequence stems from the fact that maximum
flow deflection angle for a M1 = 1 shock is zero, while the wave angle is 900. A more
careful analysis would show that the maximum flow deflection angle approaches zero faster
than M2

1 − 1. This behavior resolves the singularities in both Eqs. (32) and (36), and
gives the physically correct results that β = µ and M1n = 1 when M1 = 1.
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3. The change in entropy across a shock wave is given by the equation above (3.60) in
Anderson

∆s = cp ln

(
T2
T1

)
−R ln

(
p2
p1

)
. (37)

Using the ideal gas law in the form T2/T1 = (p2/p1)/(ρ2/ρ1) as well as the relations
R = cp − cv, γ = cp/cv, the entropy change can be written equivalently as

∆s

cv
= ln

(
p2
p1

)
− γ ln

(
ρ2
ρ1

)
. (38)

The density ratio across a shock wave is given by Eq. (3.53) in Anderson

ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

. (39)

In order to investigate the behavior for M1 slightly greater than 1, set M1 = 1 + ε. As a
consequence M2

1 = 1 + 2ε+ ε2 and thus the expression for the density ratio can be written
as

ρ2
ρ1

=
(γ + 1)(1 + 2ε+ ε2)

2 + (γ − 1)(1 + 2ε+ ε2)
(40)

=
(γ + 1)(1 + 2ε+ ε2)

(γ + 1)
[
1 + 2

(
γ−1
γ+1

)
ε+

(
γ−1
γ+1

)
ε2
] (41)

=
(1 + 2ε+ ε2)

(1 + 2Aε+ Aε2)
, (42)

where

A =
γ − 1

γ + 1
. (43)

Making use of the binomial expansion

1

1 + δ
= 1− δ + δ2 − δ3 + . . . , (44)

the expression for the density ratio can be rewritten as

ρ2
ρ1
'

(
1 + 2ε+ ε2

) [
1−

(
2Aε+ Aε2

)
+
(
2Aε+ Aε2

)2 − (2Aε+ Aε2
)3]

(45)

' 1 + 2(1− A)ε+ (1− A)(1− 4A)ε2 − 4A(1− A)(1− 2A)ε3. (46)

The expression for the entropy change requires the logarithm of the density ratio.
Before doing this step it is useful to derive a general result that can be used for the
logarithm of the pressure ratio as well. Starting with the Taylor series expansion of the
logarithm about unity, we have

ln(1 + δ) = δ − 1

2
δ2 +

1

3
δ3 + . . . . (47)
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Noting that the expression for the density ratio is of a form equivalent to the argument
of the logarithm above, in which the small quantity δ can written symbolically as

δ = c1ε+ c2ε
2 + c3ε

3, (48)

we can write

ln(1 + δ) = (c1ε+ c2ε
2 + c3ε

3)− 1

2
(c1ε+ c2ε

2 + c3ε
3)2 +

1

3
(c1ε+ c2ε

2 + c3ε
3)3 + . . . . (49)

After performing the products and retaining terms only out to ε3 we have

ln(1 + c1ε+ c2ε
2 + c3ε

3) ' c1ε+

(
c2 −

1

2
c21

)
ε2 +

(
c3 − c1c2 +

1

3
c31

)
ε3. (50)

Application of this rule to Eq. (46) with c1 = 2(1− A), c2 = (1− A)(1− 4A),
c3 = −4A(1− A)(1− 2A) yields

ln

(
ρ2
ρ1

)
' (1− A)

[
2ε− (1 + 2A)ε2 +

2

3
(1 + A+ 4A2)ε3

]
. (51)

The pressure ratio across a shock is given by Eq. (3.57) in Anderson

p2
p1

= 1 +
2γ

γ + 1

(
M2

1 − 1
)
. (52)

Making use of the replacement M1 = 1 + ε =⇒ M2
1 − 1 = 2ε + ε2, the above equation

can be written as
p2
p1

= 1 + 2Bε+Bε2, (53)

where

B =
2γ

γ + 1
. (54)

Note that the pressure ratio expression is still exact as no approximations have been made
up to this point. We can now apply Eq. (50) with c1 = 2B, c2 = B, c3 = 0 to get

ln

(
p2
p1

)
' B

[
2ε− (2B − 1)ε2 +

2

3
(4B − 3)ε3

]
. (55)

By comparing Eqs. (43) and (54) it is seen that A and B are related via

B = γ(1− A). (56)

This result allows to write Eq. (55) as

ln

(
p2
p1

)
' γ(1− A)

[
2ε− (1 + 2A)ε2 − 2

3
γ(1− A)(3− 4γ(1− A))ε3

]
. (57)
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Now returning to Eq. (38) with the results of Eqs. (51) and (57) we have

∆s

cv
' γ(1− A)

[
2ε− (1 + 2A)ε2 − 2

3
γ(1− A)[3− 4γ(1− A)]ε3

]
−

γ(1− A)

[
2ε− (1 + 2A)ε2 +

2

3
(1 + A+ 4A2)ε3

]
. (58)

The ε and ε2 terms are seen to cancel completely, leaving

∆s

cv
' 8

3
γABε3 =

16

3

(
γ

γ + 1

)
Aε3 =

16

3

(
γ(γ − 1)

(γ + 1)2

)
ε3. (59)

This is a very important result. It indicates that the entropy rises only as the third power
of the fraction of Mach number in excess of 1. Thus shock losses are quite small for
weak shocks (where M1n is only slightly greater than 1). Conversely, the losses become
enormous for strong shocks (where M1n > 2 say).

0

c
t = 0.1

0.5c
δ 0.5t

1 2

43

4. The symmetric diamond airfoil is shown above. The wedge angle δ is computed via

δ = tan−1
(

0.5t

0.5c

)
= tan−1

(
t

c

)
= tan−1 (0.1) = 5.71060. (60)

Prandtl-Meyer (P-M) theory requires the change in the flow angle for each segment of
the upper and lower surfaces. Here we use the linear flow analysis convention that a
compression surface has a positive flow deflection angle and an expansion surface has a
negative angle. Unfortunately this convention is opposite to that used for P-M analysis
where an a positive deflection angle is used for an expansion surface. We account for the
discrepancy by listing −∆θ in the table below and then use this quantity as a direct input
to the P-M analysis. Under our convention, the flow angle is related to the surface slope
and the angle of attack separately on the upper and lower surfaces, viz

θu = tan−1
(
dyu
dx

)
− α, (61)

θl = − tan−1
(
dyl
dx

)
+ α. (62)

Solution to the Prandtl-Meyer equation yields the Mach number for each airfoil seg-
ment. The pressure is then computed from the following isentropic relation, obtained by
ratioing the results of Eq. (8.36), evaluated at (p,M) and (p∞,M∞)

p

p∞
=

[
1 + 0.5(γ − 1)M2

∞
1 + 0.5(γ − 1)M2

]( γ
(γ−1))

. (63)
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station dy/dx tan−1(dy/dx) (deg) -∆θ (deg) ν (deg) M p/p∞
0 0.0000 0.0000 0.0000 26.380 2.0000 1.00000
1 0.1000 5.7106 -3.7106 22.669 1.8677 1.22735
2 -0.1000 -5.7106 11.4212 34.090 2.2923 0.633292
0 0.0000 0.0000 0.0000 26.380 2.0000 1.00000
3 -0.1000 -5.7106 -7.7106 18.669 1.7293 1.51646
4 0.1000 5.7106 11.4212 30.090 2.1373 0.807151

Table 3: Solution to the symmetric diamond airfoil using Prandtl-Meyer theory. t/c = 0.1,
M∞ = 2.0, α = 20.

Starting with a free-stream Mach number M∞ = 2.0 and angle of attack of α = 20 we can
fill out Table 3. Here we have listed the flow deflection angle as ∆θ to emphasize the fact
that it is the change in the flow angle from segment to segment. The net pressure force
normal to the airfoil axis is

n =

∫ c

0

(pl − pu) dx, (64)

or in non-dimensional form

n

1/2ρ∞u2∞c
= cn =

p∞
1/2ρ∞u2∞

∫ 1

0

(
pl
p∞
− pu
p∞

)
d
x

c
=

2

γM2
∞

∫ 1

0

(
pl
p∞
− pu
p∞

)
d
(x
c

)
(65)

. The contributions to the integral are constant over each section, while the surface
element ∆x/c = 0.5 for all segments. Thus the normal force coefficient can be evaluated
to give

cn =
2

γM2
∞

[
p3
p∞

+
p4
p∞
− p1
p∞
− p2
p∞

]
∆x

c
(66)

=
2

1.4 ∗ 22
[ 1.51646 + 0.807151− 1.22735− 0.633292 ] 0.5 (67)

= 0.082673. (68)

A similar development leads to the axial force coefficient

ca =
2

γM2
∞

∫ 1

0

[(
pu
p∞

)(
dyu
dx

)
−
(
pl
p∞

)(
dyl
dx

)]
d
(x
c

)
=

2

γM2
∞

[(
p1
p∞

)(
dy1
dx

)
+

(
p2
p∞

)(
dy2
dx

)
−
(
p3
p∞

)(
dy3
dx

)
−
(
p4
p∞

)(
dy4
dx

)]
∆x

c

=
2

1.4 ∗ 22
[ 1.22735(0.1) + 0.633292(−0.1)− 1.51646(−0.1)− 0.807151(0.1) ] 0.5

= 0.023274. (69)

The lift and drag coefficients are then computed from

cl = cn cosα− ca sinα = 0.082673 cos(20)− 0.023274 sin(20) = 0.081810.

cl = ca cosα + cn sinα = 0.023274 cos(20) + 0.082673 sin(20) = 0.026145.
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station dy/dx tan−1(dy/dx) ∆θ (deg) β (deg) ν (deg) M p/pleft p/p∞
(deg)

0 0.0000 0.0000 0.0000 N.A. 26.380 2.0000 1.00000 1.000000
1 0.1000 5.7106 3.7106 33.132 22.652 1.8671 1.22741 1.22741
2 -0.1000 -5.7106 -11.4212 N.A. 34.073 2.2917 0.516056 0.633412
0 0.0000 0.0000 0.0000 N.A. 26.380 2.0000 1.00000 1.00000
3 -0.1000 -5.7106 7.7106 36.917 18.520 1.7242 1.51704 1.51704
4 0.1000 5.7106 -11.4212 N.A. 29.941 2.1317 0.532838 0.808337

Table 4: Solution to the symmetric diamond airfoil using shock-expansion theory. t/c =
0.1, M∞ = 2.0, α = 20.

We now repeat the problem using oblique shock relations for the compression surfaces.
The pressure ratio across the shocks is computed from Eq. (8.72) in Bertin and Cummings.
Equation (63) can no longer be used for the expansions since the shocks add a non-
isentropic element. However, a similar equation can be used to compute the pressure
ratio across the expansion itself, viz

p

pleft
=

[
1 + 0.5(γ − 1)M2

left

1 + 0.5(γ − 1)M2

]( γ
(γ−1))

, (70)

where the subscript left refers to the conditions to the left (upstream) of the expansion
corner. With this change, we must use a slightly more complicated relation to arrive
at the required pressure ratio p/p∞. For example, in order to compute the pressure on
segment 2 of the airfoil, we proceed as follows

p2
p∞

=

(
p1
p∞

)(
p2
p1

)
. (71)

The revised computation is shown in Table 4. Here we list the change in the flow angle
(∆θ) as being positive for a compression and negative for an expansion. The normal and
axial force coefficients are then computed as

cn =
2

γM2
∞

[
p3
p∞

+
p4
p∞
− p1
p∞
− p2
p∞

]
∆x

c
(72)

=
2

1.4 ∗ 22
[ 1.51704 + 0.808337− 1.22741− 0.633412 ] 0.5 (73)

= 0.082956. (74)

ca =
2

γM2
∞

[(
p1
p∞

)(
dy1
dx

)
+

(
p2
p∞

)(
dy2
dx

)
−
(
p3
p∞

)(
dy3
dx

)
+

(
p4
p∞

)(
dy4
dx

)]
∆x

c

=
2

1.4 ∗ 22
[ 1.22741(0.1) + 0.633412(−0.1)− 1.51704(−0.1)− 0.808337(0.1) ] 0.5

= 0.023263. (75)
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The lift and drag coefficients are then computed from

cl = cn cosα− ca sinα = 0.082956 cos(20)− 0.023263 sin(20) = 0.082094.

cl = ca cosα + cn sinα = 0.023263 cos(20) + 0.082956 sin(20) = 0.026143.

The estimated obtained from P-M theory compare very well to these exact values. The
lift coefficient is in error by only 0.35% and the drag coefficient is almost perfect with a
0.0077% error.

12


