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A B S T R A C T

We present the first statistical study of gravity waves with periods of 0.3–2.5 h that are persistent and dominant
in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N,
105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of
these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the
observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical
wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and
dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a
coefficient of ~0.76. The phase differences between the vertical winds and temperatures (φ φ−W T ) follow a
Gaussian distribution with 84.2 ± 26.7°, which has a much larger standard deviation than that predicted for
non-dissipative waves (~3.3°). The deviations of the observed phase differences from their predicted values for
non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger
phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The
majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard
deviation of ~18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical
wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those
peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and
median of ~180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium
frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs),
this statistical study provides an important and timely reference for them.

1. Introduction

Due to significantly improved optical efficiency (Smith and Chu,
2015), the University of Colorado Student Training and Atmosphere
Research (STAR) Na Doppler lidar can now measure vertical winds in
the mesosphere and lower thermosphere (MLT) with high precision
and resolution (Smith and Chu, 2015; Lu et al., 2015a). At the Table
Mountain Lidar Observatory (40.1°N, 105.2°W) north of Boulder,
Colorado, the most salient and persistent features in the vertical wind
field, measured with this STAR lidar, are gravity waves with periods of
0.3–2.5 h. Such high-to-medium frequency waves are also discernable
in the temperature field, and contribute significantly to its short-term
variability. The simultaneous observations of monochromatic, 0.3–
2.5 h MLT gravity waves in both the vertical wind and temperature

were rare in previous studies (e.g., Collins et al., 1994; Hu et al., 2002;
Gavrilov et al., 1996; Riggin et al., 1997, Taylor et al., 1997;
Walterscheid et al., 1999; Suzuki et al., 2004; Li et al., 2011; Chen
et al., 2016). In addition, we employ the amplitude ratios of the relative
temperature to vertical wind in order to infer the intrinsic period and
horizontal wavelength from the measured vertical wavelength using the
wave polarization relation with and without dissipation. The current
study not only demonstrates the utility of simultaneous vertical wind
and temperature measurements in the MLT region, but also provides a
method by which to infer these two important wave parameters, i.e.,
the intrinsic period and horizontal wavelength, without knowledge of
the background wind field.

The other science merit of this work stems from the fact that the
0.3–2.5 h waves fall into the mesoscale range horizontally, and have
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vertical wavelengths of mainly ~10–30 km. Such a wave spectrum is
different from, and only partially overlaps with, the short-period and
small-scale waves (usually < 100 km in horizontal wavelength) pre-
ferentially observed by airglow imagers and the long-period and large-
scale waves readily detected by less sensitive lidars and radars. The
significance of such high-to-medium frequency mesoscale gravity
waves on precipitation patterns, weather systems, and the transport
of momentum to the MLT region has been widely appreciated (e.g.,
Koch and O’Handly, 1997; Zhang, 2004; Fritts and Nastrom, 1992),
although the direct observations of them were sparse. Therefore, an
observational and statistical characterization of the gravity waves with
these scales is required. Additionally, recent gravity-wave-resolving,
high-resolution GCMs (e.g., Watanabe and Miyahara, 2009; Becker,
2009; Sato et al., 2012; Liu et al., 2014) can resolve mesoscale gravity
waves with periods of 0.3–2.5 h directly from the physical processes
simulated in the models. Therefore, obtaining information about the
characteristics of these waves from an observational standpoint, as
done in this study, is important and timely.

In a case study by Lu et al. (2015a), we developed a systematic
method to study the characteristics of a quasi-1-h wave using the STAR
lidar in Boulder, CO and a Na Doppler lidar and Advanced Mesospheric
Temperature Mapper (AMTM) in Logan, UT. The horizontal and
vertical wavelengths of this wave were determined to be ~219 ± 4
and 16.0 ± 0.3 km, respectively. Because the Utah State University
(USU) lidar does not have vertical wind measurements currently, we
utilize the STAR lidar observations only for the current statistical study,
and analyze the period from April 2013 through January 2014. During
this period, there were 56 nights of observations totaling ~461 h of
high-quality vertical wind measurements(Table 1). The 0.3–2.5 h
waves occur and dominate in almost every night of the observations.
This dataset therefore provides a compelling opportunity for a statis-
tical study of high-to-medium frequency mesoscale gravity waves.

2. Observations and methodology

2.1. Vertical wind measurements showing prominent 0.3–2.5 h
waves

The University of Colorado STAR Na Doppler lidar saves raw
photon count profiles with a resolution of 3 s temporally and 24 m
vertically. In order to increase the signal-to-noise ratio, the raw photon
counts are smoothed with a 15 min (full width) Hamming window to
derive temperatures and vertical winds, and the window is shifted at a
step of ~5 min. Vertically, the photons counts are binned to 0.96 km to
further increase the precision. Therefore, the effective temporal and
vertical resolutions are 7.5 min and 0.96 km, respectively. With this
resolution, the measurement uncertainties in the STAR temperatures
and vertical winds are ~0.3–1 K and ~0.2–1 m/s near the Na layer
peak and the uncertainties in the winter months are usually smaller
than those in the summer months due to the higher winter Na
abundance. Taking the 27 November 2013 case as an example, the
STAR lidar obtained 1000 counts per laser shot from the Na layer with
an average laser power of ~500 mW at a 30 Hz repetition rate and with
a telescope primary mirror of ~80 cm in diameter (Lu et al., 2015a).

Fig. 1 illustrates examples of the raw vertical wind measurements at
resolutions of 7.5 min and 0.96 km. The most prominent waves are
those with high to medium frequencies. The downward progression of
their phases indicates that these signatures are real and are created by

upward-propagating gravity waves with upward energy propagation.
To obtain the gravity wave perturbations, we first subtract the nightly
mean temperatures and vertical winds. Then, to effectively remove the
anomalous vertical stripes found in some of our raw vertical winds and
the wave spectra with unwanted long periods, we apply the two-
dimensional (2D) Fast Fourier Transform (FFT) filtering with zero-
padding to remove the vertical wavenumbers close to zero and the
periods longer than 3 h. This 2DFFT filtering is fulfilled via the
following two steps. First, we derive the 2DFFT spectra that only keep
the powers contributed by waves with upward energy propagation,
vertical wavenumbers ranging from 0.0081 to 0.5 km−1 and frequen-
cies from 1/0.25 to 1/3 h−1. The lowest wavenumber at 0.0081 km−1 is
determined by the vertical window width after zero padding
(~123 km). Second, an inverse 2DFFT is then applied to recover the
filtered wave perturbations that are used later to discern the dominant
waves and their durations via wavelets. This filtering process selects the
waves with periods of 0.25–3 h and vertical wavelengths of 2–123 km.
Fig. 2b shows an example of the vertical wind field after this 2DFFT
filtering on 10 August 2013. A superposition of multiple upward
propagating waves with periods of 0.3–2.5 h is clearly seen.

2.2. Identifying wave cases using wavelet spectra

According to the Boussinesq, non-dissipative gravity wave polariza-
tion relation between the vertical wind and temperature perturbations,
their amplitude ratio is approximately proportional to wave's intrinsic
frequency (e.g., Eq. (2) in Lu et al., 2015a),

T iN
gω

w≈ −
ˆ

∼ ∼2

(1)

where T∼ and w∼ are the complex amplitudes of relative temperature and
vertical wind, respectively, ω̂ is the intrinsic frequency and N is the
Brunt–Väisälä frequency. The Boussinesq approximation holds for
λ πH< < 4z , where H is the density scale height (see Eq. (B18) of
Vadas (2013) with the substitution i for i− because of the different
phase definition). We first calculate the Morlet wavelet spectra of T∼ and
w∼ using the method in Chen et al. (2016) and Chen and Chu (2016),
where the bias (found in favor of the low-frequency waves) in the 1-D
Morlet wavelet power spectrum code by Torrence and Compo (1998) is
corrected. Then following the case study by Lu et al. (2015a), the
amplitudes of the temperature wavelet spectra are weighted by their
observed frequencies (i.e., multiplied by the frequencies) in order to be
comparable with the amplitude spectra for the vertical wind and
highlight the high-frequency waves, which are the focus of this study.
Fig. 2c, d show how we identify the dominant waves and their
durations using the vertically averaged wavelet spectra. The local peaks
are first identified from these averaged spectra. If two adjacent peaks
are within 3 wave cycles, they are treated as the same wave. For
example, on the night of 10 August 2013 (Fig. 2d), two local peaks at
8.99 and 9.07 UT with a period of ~0.37 h are so close to each other
that they are considered as the same peak/wave in our analysis.

To establish a wave case, the same wave peaks must be identified
simultaneously in both the temperature and vertical wind perturba-
tions. We allow the periods of these peaks for these two components to
differ by no more than 20% of their mean; this mean is then used as the
period determined from the wavelet. If the wave's amplitude distribu-
tion along the wavelet time axis is central symmetric, we expand the
time window from this peak to both the left and the right sides for

Table 1
Statistics of the Lidar data from April 2013 to January 2014 used for this study.

April May June July August September October November December January Total

Night 2 3 3 1 7 3 8 8 7 14 56
Hour (h) 15.9 18.5 12.9 6.9 42.2 23.0 73.1 73.6 69.2 125.5 460.8
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~1.5–2 wave cycles and regard this window as the duration of the wave,
which therefore lasts about 3–4 wave cycles. Using a uniform window
width of ~3–4 wave cycles for every wave avoids a bias in the
estimation of the wave amplitude which usually relies on a sinusoidal
fitting that employs a constant wave frequency. As the wave amplitude,
phase, or period changes with time, the fitted amplitude is always
larger with a shorter fitting window, and vice versa. In addition,ap-
proximately 3–4 wave cycles are long enough to derive the phase
accurately. If the wave amplitude distribution is asymmetric, we use
the wavelet amplitude to determine the wave duration using the
principle that the wave amplitudes should be larger within the window
than outside. We also require that the wave peaks exist for at least 2/3
of the available altitude range. We divide the altitude ranges into three
regions (i.e., 84.5–89.5, 89.5–94.5, 94.5–99.5 km) and calculate the
averaged amplitude spectra individually. Wave peaks that occur in only
one of these regions are not taken into account, following the practice
in Chen et al. (2016). For example, on the night of 10 August 2013, this
last criterion discards the peak at ~0.5 h occurring from ~6 to 8 UT in
the mean spectra (Fig. 2c and d).

Using the above procedures, 6 wave cases are identified in the 10
August 2013 data (Table 2) and, in most nights, 3–7 wave cases are
identified. A total number of 257 cases are identified from 56 nights of
lidar observations during the 10-month period. We note that, using the
night of 10 August 2013 as an example, we cannot exclude the
possibility that the 0.37-h (occurring at ~9 UT) and 0.38-h (occurring

at ~11 UT) waves might have originated from the same wave packet
since their periods are so similar, and therefore were likely excited by
the same source. However, we count them as two separate waves here
because their magnitudes weakened considerably for a couple of hours
between their occurrences. There are several possible explanations for
the temporal variation of the wave magnitudes, such as interactions
with other waves, modulations by background wind, and/or changes in
source strengths. Instead of studying the physical nature and source of
each wave, the focus of our study is to identify waves when they are
strong locally and study their statistical properties.

2.3. Determining wave amplitude ratios, phase differences, and
vertical wavelengths

To determine the wave amplitude and phase, researchers typically
apply a 1-D sinusoidal fitting with a known wave frequency at each
altitude, then derive the vertical wavelength from the vertical variation
of the wave phase (e.g., Lu et al., 2009; Chen et al., 2013). This 1-D
fitting method fails to employ any a priori constraint on the vertical
wavelength and is not optimal for the current study since the dominant
vertical wavelengths in the temperature and vertical wind fields are not
always identical. In this case, the amplitude ratios and phase differ-
ences of temperature and vertical wind cannot be used in conjunction
with the gravity wave polarization relation because this relation can
only be applied to the parameters for a single wave, which must have
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Fig. 1. Examples of raw vertical wind measurements with resolutions of 7.5 min and 0.96 km that show prominent high-to-medium frequency gravity waves.
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the same vertical wavelength regardless of whether the wave is
observed in the temperature or vertical wind. To overcome this issue,
a 2-D sinusoidal fitting method is adapted for this study using the
following procedure.

After identifying each wave with an observed frequency of ω from
the wavelet analysis, we extract it by applying a 2DFFT filtering with a
bandpass of 0.7–1.3 ω in the frequency domain and 0.0081–0.5 km−1

in the vertical wavenumber domain to the wave perturbations that are
obtained from only subtracting nightly means. This filtering process
selects a quasi-monochromatic wave in the frequency domain that is
reflected by its narrow bandwidth in frequency, but allows for multiple
peaks in the wavenumber domain because of its wide bandwidth in
wavenumber. We then apply a 2DFFT to the filtered wave field that is
confined to the duration window of this wave (e.g., Fig. 3a and b) to
derive the wave amplitude spectrum as a function of frequency and
vertical wavenumber (Fig. 3c and d). The frequency and vertical
wavenumber used as the x- and y-axis in Fig. 3c and d are defined
and derived as τ1/ and λ1/ z, where τ and λz are the wave period in h and
vertical wavelength in km, respectively. Therefore, the frequency and
vertical wavenumber have the units of 1/h and 1/km, respectively.
Multiple peaks in the vertical wavenumber are frequently observed, but
only the first two peaks are considered here since the higher-order ones
are usually weak. It is interesting to note that on the night of 3 May
2013, the 2DFFT spectra show that the first peak in the vertical wind,

characterized by a long vertical wavelength (~40 km), corresponds to
the secondary peak in relative temperature while the first peak in the
temperature, characterized by a short vertical wavelength (~6 km),
corresponds to the secondary peak in the vertical wind (Fig. 3c and d).
Here, the first and secondary peaks correspond to the largest and the
second largest magnitudes in the 2DFFT spectrum, respectively. This
observation is consistent with Fig. 3a and b, which show that the wave
fields are superimposed by two different waves with the temperature/
vertical wind field being dominated by a short/long vertical wave-
length, respectively.

From the 2DFFT spectra, we first identify the peaks for temperature
and vertical wind individually, and then apply the following criterion to
claim the common peak: the differences must not differ by more than
30% of their means for both frequency and vertical wavenumber. After
a common peak is selected, the mean frequency ω and vertical
wavenumber m are fed into the 2D fitting to derive wave amplitude
and phase as follows,

T T t z A cos ωt mz φ
w t z A cos ωt mz φ

′/ ( , ) = ( − − )
′( , ) = ( − − ),

T T

w w (2)

where AT and Aw are the amplitudes in the relative temperature T T( ′/ )
and vertical wind w′, respectively, and φT and φw are the corresponding
phases. Note that the amplitudes (AT and Aw) and phases (φT and φw)
are constant within the 2D fitting window. The fitting uncertainties
(σ σ σ σ, , ,A A φ φT W T W) are taken as the standard deviations for these
parameters from the fitting processes. The relative temperature
perturbations are calculated as the temperature perturbations divided
by the mean temperature averaged over the fitting window. Therefore,
this mean or background temperature includes the effects of nightly
mean, tides, and waves with periods longer than the window length.

Fig. 3e and f show the fitted wave fields that correspond to the first

Table 2
Periods and durations of the waves identified from wavelet spectra for August 10, 2013.

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

Period (h) 2.3 1.1 0.78 0.31 0.37 0.38
Duration (UT) 5–12 7.7–11 9.1–11.5 4.7–5.6 8.4–9.6 10.4–11.6
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Fig. 2. (a) Temperature and (b) vertical wind perturbations after the 2DFFT filtering with a bandpass of 0.25–3 h in the time domain and 2–123 km in the vertical domain. (c) Weighted
wavelet spectra for the temperature averaged from 85 to 100 km. (d) Same as (c) except for the amplitude spectra for the vertical wind.
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and secondary peaks in vertical wind and relative temperature,
respectively. Fig. 3g and h are the same, except for the first peak in
relative temperature and the secondary peak in vertical wind. Even
before the fitting, the existence of these two waves is discernable in
Fig. 3a and b. Although the plane wave formula used in the 2D fitting
cannot capture the wave amplitudes varying in time and space, it is
sufficient for estimating the average amplitude and phase for a quasi-
monochromatic wave. When the wave fields are too complex to be
represented by monochromatic waves, the 2D fitting uncertainties are
large and these cases are discarded. We only keep the waves satisfying
σ A σ A σ σ< 0.2 × , < 0.2 × , < 10 , < 10A T A W φ φ

° °
T W T W . There are lidar-

based observations and numerical modeling efforts illustrating that a

gravity wave packet excited by a source of finite duration and size can
evolve from a 1-h wave in temperature perturbations during the early
hours into a 1.5-h wave during the second half of the night at Logan,
Utah (Yuan et al., 2016). This shift in wave period is also accompanied
by a decreasing vertical wavelength. This evolution is a gradual process
and, in most cases, it is still reasonable to assume that within 3–4 wave
cycles, the wave periods and vertical wavelengths will remain approxi-
mately constant. Therefore, the plane wave assumption is valid over
our analysis period. Applying these constraints to our dataset yields
184 waves, of which 134 of them have vertical wavelengths that are the
first peaks in both vertical wind and temperature and 50 of them
involve the secondary peaks.
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3. Statistical results

3.1. Amplitude ratios, phase differences and vertical wavelengths

Fig. 4a and b show the probability density functions (PDFs) and the
accumulative density functions of the wave amplitudes in the tempera-
ture and vertical wind for all 184 cases. The mean amplitudes are 1.90
± 0.014 K and 0.54 ± 0.004 m/s, with maxima reaching 6.5 ± 0.3 K and
2.5 ± 0.2 m/s, respectively. Here, the uncertainties of the mean and
maximum amplitudes are propagated from the fitting errors. Fig. 4c
and d show the same functions, but only including waves with vertical
wavelengths from the first peaks in both the temperature and vertical
wind. We label these waves as TW11 waves for simplicity. The mean
amplitudes of the TW11 waves in the temperature and vertical wind are
1.91 ± 0.016 K and 0.62 ± 0.006 m/s, respectively, which are compar-
able with the means of all the waves in Fig. 4a and b. The PDF of the
wave amplitudes is asymmetric and possesses an extended tail towards
relatively rare but large amplitude events. Similar asymmetric dis-
tributions of the momentum flux and potential energy from satellite
data are explained as being caused by the inherent intermittency of the
waves (Baumgaertner and McDonald, 2007; Alexander et al., 2010;
Hertzog et al., 2012), i.e., the wave amplitudes are not constant but
vary with time scales comparable to those of the wave packets (Chen
et al., 2016). The wave amplitude values we find here should be quoted
with caution because although the 2D fitting with a fixed period and
vertical wavelength and a constant amplitude facilitates the derivation
of the wave amplitude and phase in an averaged sense with minimum

uncertainties, it also imposes strong constraints that lead to an
underestimation of the wave impacts locally. For instance, the 0.7-h
wave shown in Fig. 3a and b can perturb the relative temperature and
vertical wind fields with magnitudes as large as ~3.4% and ~1.6 m/s
locally, while the fitted amplitudes are only around 1% and 0.4 m/s,
respectively.

Amplitude ratios (A A/T W ) with respect to the ground-based ob-
served periods (τobs) are shown in Fig. 5a. There is an apparent positive
correlation between the amplitude ratios and the observed periods. The
linear fitting to the correlation is A A τ/ = (2.85 × − 0.37)%T W obs (the red
line in Fig. 5a). The unit of the amplitude ratios is 1/(m/s) and that of
the observed periods is h for this empirical relation. The correlation
coefficient is ~0.76 with a 95% confidence interval of (0.70, 0.82). The
phase differences (φ φ−W T ) are centered around ~84° and closely
follow a Gaussian distribution in Fig. 5b. The directly calculated mean
and standard deviation of the phase differences are 84.2° and 26.7°,
respectively, which are close to the values of 84.1° and 26.9° obtained
from the Gaussian fitting shown as the red line in Fig. 5b. The
uncertainty of the mean phase difference that propagates from the
fitting errors is ~0.65°. The distribution of vertical wavelengths is
shown in Fig. 5c. The majority of waves have vertical wavelengths of 5–
40 km. The mean and standard deviation of the vertical wavelengths
are 18.6 and 7.2 km, respectively.

As mentioned in Section 2.3, the dominant peaks in the vertical
wavelength for the vertical wind and temperature are often distinct. To
investigate whether there is any dependence of the dominant vertical
wavelength on the wave components, we separate the waves into four
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groups, labeled TW11, TW12, TW21, and TW22, and calculate their
means and standard deviations individually (Fig. 6). Following the
definition of TW11, the vertical wavelengths of the TWmn waves
correspond to those waves with the mth peak in the temperature and
the nth peak in the vertical wind. We see that if the first peaks of
vertical wavelengths are in vertical winds, they are statistically longer
than the first peaks in temperatures, i.e., the mean wavelengths of the
TW 21 waves are longer than those of the TW12 waves. The TW11
waves have statistically longer vertical wavelengths than the TW22
waves, implying that shorter-wavelength waves likely experience more
dissipation and are thus less dominant.

3.2. Derivation of intrinsic periods and horizontal wavelengths from
polarization and dispersion relations with and without dissipation

It is known that molecular viscosity and thermal diffusivity
modulate the dispersion and polarization relations of gravity waves,
and change the amplitude ratios and phase differences between
different wave components (Pitteway and Hines, 1963; Midgley and
Liemohn, 1966; Hickey and Cole, 1987; Vadas and Fritts, 2005; Vadas
and Nicolls, 2012; Nicolls et al., 2012). In particular, the polarization
relation for the temperature and vertical wind perturbations in the
presence of molecular viscosity and thermal diffusivity for the f-plane
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assumption when the Coriolis force can be neglected (i.e., f=0) is given
by Eq. (16) in Vadas and Nicolls (2012). Neglecting f is reasonable if
the gravity wave’s period is much smaller than the inertial period,
which is generally true in the thermosphere (Vadas, 2007).

In the thermosphere, molecular viscosity and thermal diffusivity are
the dominant dissipative processes for high-frequency gravity waves.
However, “eddy” dissipation is the main dissipative mechanism in the
mesosphere. Eddy dissipation is created by the turbulence which is
formed when previous gravity waves overturn/break/dissipate. In
order to adapt Eq. (16) in Vadas and Nicolls (2012) for gravity waves
in the mesosphere, we assume that this turbulence is isotropic, which is
a reasonable assumption in a well-mixed atmosphere. We then replace
the coefficient of the bulk molecular viscosity with the eddy viscosity
coefficient via an argument that the eddy viscosity is a rescaled analogy
of the molecular viscosity (Holloway, 1997). Then the eddy viscosity
formulas are the same as the molecular viscosity formulas (e.g., Liu
et al., 2000; Liu et al., 2009; Smith et al., 2011). In order to only
include the bulk viscosity, we set a b= = 0 in Eq. (16) in Vadas and
Nicolls (2012). Additionally, we assume that the eddy viscosity is
constant over our altitude range, which is typically ~15–25 km. In
order to be consistent with our definition of the wave phase in Eq. (2),
we replace i with i− in Eq. (16) of Vadas and Nicolls (2012). This
prescription for the replacement was discussed in Appendix B of Vadas
(2013). We substitute ν (the kinematic molecular viscosity) in Eq. (16)
of Vadas and Nicolls (2012) with K , which we define as the kinematic
eddy viscosity. Then, the polarization relation between the relative
temperature and the vertical wind under the influence of eddy viscosity
and diffusion is:
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where T T A exp iφ/ = (− )∼
T T and w A exp iφ= (− )∼

W W are the complex
relative temperature and vertical wind perturbations, AT and AW are
the corresponding (real) amplitudes, φT and φW are the corresponding
phases, ωI is the intrinsic frequency which includes both the real and
imaginary parts, and kH and m are the horizontal and vertical
wavenumbers, respectively. In the mesosphere, the specific heat ratio
is γ = 1.4 (Kundu, 1990) and the gravitational acceleration is g = 9.5
m/s2. Additionally, H and Cs are the scale height and sound speed,
which are related to the background temperature via H RT g= / and
C γRT=s , respectively. T is the mean temperature obtained from the
lidar measurements. The Prandtl number (Pr) is the ratio of the viscous
diffusion rate to the thermal diffusion rate and we use a value of Pr = 1
for the current study. The amplitude ratio (A A/T W ) is determined from
the absolute value of T T w/ /∼ ∼ while the phase difference (φ φ−W T ) is
determined from the inverse tangent of the ratio of the imaginary to the
real parts of T T w/ /∼ ∼.

Using Eq. (3), the amplitude ratio and phase difference can be
determined from ωI , kH , m and K . A gravity wave within a wave packet
decays explicitly in time from dissipation. Therefore, we fix the vertical
wavenumber to be real, so that the intrinsic frequency consists of both
real and imaginary parts (Eq. (24) in Vadas and Fritts, 2005 (VF05)):

ω ω iω= − .I Ir Ii (6)

Here, ωIr is the real part and equals the intrinsic frequency of the
gravity wave via the dispersion relation and ωIi is the imaginary part
and relates to the inverse decay rate of the wave amplitude with time
due to dissipation. Here, we have substituted i with i− as well. By
knowing the wave's vertical and horizontal wavelengths as well as eddy

viscosity, the inverse decay rate can be calculated using Eq. (25) in
VF05:

⎛
⎝⎜

⎞
⎠⎟ω K k m

H
δ Pr

δ
= −

2
+ − 1

4
[1 + (1 + 2 )/ ]

(1 + /2)Ii H
2 2

2
+ (7)

and the gravity wave dispersion relation involving ωIr , kH , m and K can
be written as (Eq. (26) in VF05):
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Here δ δ Pr= (1 + )+
−1 , K K Pr= (1 + )+

−1 and δ Km Hω= / Ir , and N is
the Brunt–Väisälä frequency calculated from the lidar data using Eq.
(3) in Lu et al. (2015b). Note that Eqs. (7) and (8) are the anelastic
approximation of the full compressible complex dispersion relation
given by Eq. (12) in Vadas and Nicolls (2012). We use Eqs. (7) and (8)
here because they are simpler to solve numerically and because the
waves we analyze here satisfy the anelastic approximation.

In principle, with m known from observations, for each pair of (kH ,
K ) we can use Eqs. (7) and (8) to solve ωIr and ωIi using an iterative
method described in Vadas and Nicolls (2012). By substituting all four
variables (m,kH , K , and ωI) into the polarization relation Eq. (3), the
amplitude ratio (A A/T W ) and the phase difference (φ φ−W T ) corre-
sponding to a set of (m, kH , K ) or equivalently (m, ωI , K ) can be derived.
Therefore, for a given m, there is a one-to-one correspondence between
each pair of (ωI , K ) and its corresponding amplitude ratio (A A/T W ), and
a one-to-one correspondence of (ωI , K ) with horizontal wavenumber
(kH). Such correspondences are plotted in Fig. 7a and b, respectively,
for a 1.15-h wave observed on 10 August 2013, with ωIr shown on the
x-axis. We also overplot the observed amplitude ratio (~0.03) as a
white line in Fig. 7a. This allows us to obtain the intrinsic frequency as
a function of the eddy viscosity (y-axis). For this wave, the amplitude
ratio is more sensitive to the intrinsic frequency than to the eddy
viscosity: Even as the eddy viscosity changes from 0 to 1000 m2/s, the
range of the intrinsic period is quite narrow for a given amplitude ratio.
The values of (ωIr , K ) constrained by the observed amplitude ratio (the
white line in Fig. 7a) are then used in Fig. 7b (white line) to obtain the
horizontal wavelength as a function of the eddy viscosity.

The eddy viscosity reported in the literature for the MLT region has
a wide range, but is usually less than 800 m2/s (e.g., Gardner and
Voelz, 1987; Hocking, 1988; Fukao et al., 1994; Lübken, 1997; Bishop
et al., 2004; Liu, 2009). It is valuable to compare the intrinsic period
and horizontal wavelength with and without including the eddy
viscosity. By setting the eddy viscosity K = 0 in Eq. (3), the polarization
relation without dissipation can be written as (e.g., Eq. (B11) in Vadas,
2013),
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Here, we have used N = γ g
C

2 ( − 1)

s

2

2 . Note that since there is no

dissipation, the imaginary part of the intrinsic frequency is zero and
we have ω ω=I Ir . For our waves of interest, the wave frequencies are
much smaller than the buoyancy frequency (i.e., ω N< <Ir

2 2). If we take
the absolute value of both sides, Eq. (9) can be used to estimate ωIr as,
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The amplitude ratio T T w/ /∼ ∼ and vertical wavenumber m are obtained
from observations. The non-dissipative dispersion relation is then used to
derive the horizontal wavelength (Fritts and Alexander, 2003),
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where f is the inertial frequency, corresponding to a period of 18.7 h in
Boulder.

3.3. Intrinsic periods, horizontal wavelengths, and phase difference
deviations

Fig. 8a–d show the real part of the intrinsic periods versus the
ground-based periods for four different eddy viscosities. The intrinsic

periods used in Fig. 8a and e are calculated directly from Eq. (10),
while those in Fig. 8b–d and f–h are iteratively derived from Eq. (8)
including eddy dissipation. The black diamonds above the red lines
represent the waves with intrinsic periods longer than the observed
periods and those below the red lines represent the opposite situation.
The general distribution patterns of the intrinsic periods are compar-
able for the different eddy viscosities, although the percentage of the
intrinsic frequencies Doppler-shifted to higher frequencies increases
from 77.1%, 78.9%, 80.6%, to 81.1%, respectively, for
K = 0, 100, 400, 800 m2/s (Fig. 8a–d). This implies that 1) a majority
of the waves identified by the wavelet spectra propagate against the
mean wind and are blue-shifted to higher intrinsic frequencies; 2) for
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most of the waves, increasing the eddy viscosity tends to enhance the
Doppler-shifting to higher frequencies. This makes sense because when
waves propagate against the mean wind, they will have longer vertical
wavelengths and experience less dissipation than those waves propa-
gating in the direction of the mean wind. Less dissipation means that a
wave's amplitude will be better preserved and, therefore, that this wave
will be more likely become dominant.

Figs. 8e–h show the amplitude ratios as a function of their intrinsic
periods. A quasi-linear relation between them is expected since this
relation is inherently embedded in the wave polarization relation (Eqs.
(8) and (10)). On the other hand, the deviations from the fitted linear
relation (red line in Fig. 5a) can be possibly attributed to the differences
between the ground-based and intrinsic periods, since the ground-
based periods are used as the x-axis in Fig. 5a.

The general distributions of the horizontal wavelengths are com-
parable for the different eddy viscosities (Fig. 9). Most of the waves fall
into the mesoscale range in terms of horizontal wavelength, i.e., from
50 to 500 km (Uccellini and Koch, 1987). The mean is around 180 km
and the uncertainty of this mean propagating from the fitting errors is
~16–17 km. The distribution of the horizontal wavelengths is not
symmetric and has a long tail towards large values. The median value
of the horizontal wavelengths is ~125–126 km.

Eddy dissipation alters the polarization relation that affects the
amplitude ratio and phase difference. The observed phase differences
are characterized by a Gaussian distribution with a mean of ~84.2° and
a large standard deviation of ~26.7° (Fig. 5b). However, the expected
phase differences for non-dissipative waves are characterized by a
much narrower distribution, i.e., they range from ~70–87° with a mean
and standard deviation of 81.6° and 3.3°, respectively (Fig. 10a). From

Eq. (9) and with the condition that ω N< <Ir
2 2, the expected phase

difference for a non-dissipative wave can be simply derived from the
ratio of the real and imaginary parts in the term

⎛
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H
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H
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1
2 2 . In this case, the eddy viscosity K = 0 is

assumed for the non-dissipative waves. The significant differences (or
deviations) of the observed phase differences from the predicted values
for non-dissipative waves are likely indicative of dissipation effects. We
calculate these deviations and examine their relation with respect to
the vertical wavelength (Fig. 10b and c), which show that the deviations
can be both positive and negative, while waves with shorter vertical
wavelengths have larger deviations than those with longer vertical
wavelengths. This may suggest that shorter waves experience more
eddy dissipation than longer ones, consistent with the previous
arguments in Forbes (1982), Fuller-Rowell (1995), and Gavrilov and
Kshetvetskii (2014).

4. Summary

In this study 10 months of STAR lidar measurements of vertical
winds and temperatures in the MLT at Boulder, Colorado are used to
examine the statistics of 0.3–2.5 h waves. Waves with these periods
represent the most persistent and dominant perturbations found in the
vertical wind field. The characteristics of these waves can be divided
into the observed quantities and indirectly inferred parameters. Our
systematic data analysis methods for deriving these wave properties
include three major stages: 1) to identify the dominant waves, 2) to
directly derive the vertical wavelengths, amplitudes, and phases of the
dominant waves, and 3) to infer the intrinsic periods and horizontal
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Fig. 9. (a)–(d) The distribution of the horizontal wavelengths for eddy viscosities equal to 0, 100, 400, and 800 m2/s. The horizontal wavelengths in (a) are computed from Eq. (11),
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wavelengths using the gravity wave polarization and dispersion rela-
tions with and without dissipation. The steps of our methodology are
summarized below.

Stage 1 – to identify the dominant waves:

1. The nightly mean temperatures and vertical winds are subtracted
from the raw fields to obtain the initial temperature and vertical
wind perturbations (T′, W′).

2. 2DFFT filtering with a bandpass of (1/0.25 h−1, 1/3 h−1) in the
frequency domain and (0.0081 km−1, 0.5 km−1) in the vertical
wavenumber domain is applied to (T′, W′) to derive the filtered
perturbations (T′ , W′filt filt).

3. A 1D wavelet analysis is applied to the filtered wave perturbations
(T′ , W′filt filt) to determine the ground-based frequency (ω) of the
dominant waves and their durations (t , tstart end).

Stage 2 – to determine the vertical wavelength, amplitude, and
phase after a wave with a frequency ofωis identified in the time
domain:

1. 2DFFT filtering with a bandpass of (0.7ω, 1.3ω) in the frequency
domain and (0.0081 km−1, 0.5 km−1) in the vertical wavenumber
domain is applied to the initial perturbations (T′, W′) to obtain the
filtered perturbations (T ω ω′ ( ), W′ ( )filt filt ) that are particularly caused
by this wave with the frequency of ω.

2. 2DFFT is applied to the filtered perturbations within the wave
duration window, i.e., T ω t t ω t t′ ( )[ , ], W′ ( )[ , ]filt start end filt start end . The com-
mon peaks in the temperature and vertical wind are identified from
the 2DFFT spectra. The mean frequency ω and vertical wavenumber
m are computed. The vertical wavelength is calculated as π m2 / .

3. ω and m are employed in the 2D fitting to
T ω t t ω t t′ ( )[ , ], W′ ( )[ , ]filt start end filt start end to derive the wave amplitudes
(A A,T W ) and phases (φ φ,T W ).

Stage 3 – to infer the intrinsic periods and horizontal wavelengths
of the waves with and without dissipation:

1. For the derivation with dissipation, the observed amplitude ratio
(A A/T W ), vertical wavenumber (m), and a given eddy viscosity (K ),
are used to determine ωI , using the polarization relation with
dissipation. (m, ωI , K ) are then applied to infer horizontal wave-
length due to their one-to-one correspondence.

2. For the derivation without dissipation, the observed amplitude ratio
(A A/T W ) and vertical wavenumber m are used to determine ωI using
the gravity wave polarization relation without dissipation (Eq. (10)).
(m, ωI) are then used to infer the horizontal wavelength using the
dispersion relation without eddy viscosity (Eq. (11)).

The directly observed quantities include the distributions of wave

amplitudes in the vertical wind and temperature fields, amplitude
ratios and phase differences for these two components of wave
perturbations, the distributions of the vertical wavelengths for all the
waves, and for the four different groups (i.e., TW11, TW12, TW21, and
TW22). The amplitude ratios are positively correlated with their
ground-based periods with a correlation coefficient of ~0.76, while
the deviations from the linear fitting of these two variables may be
explained by the differences between the ground-based and intrinsic
periods. The phase differences have a mean value of ~84.2° and a larger
standard deviation (~26.7°) than that expected for non-dissipative
waves (3.3°). Wave dissipation may cause the phase differences to
significantly deviate from the predications for non-dissipative waves,
and this effect is likely larger for shorter vertical wavelength waves. The
mean vertical wavelength for all of the waves is ~18.6 km, and it is
longer for TW21 waves than TW12 waves. On average, the primary
waves (TW11 waves) exhibit longer vertical wavelengths than the
secondary waves (TW22 waves).

The indirectly inferred parameters are the intrinsic period and the
horizontal wavelength inferred from the measured vertical wavelength
and amplitude ratio, given a designated value of eddy viscosity. The
wave polarization and dispersion relations with and without eddy
viscosity and diffusion are used to infer the intrinsic period and
horizontal wavelength for dissipative and non-dissipative waves,
respectively. This is the first time that such a method has been applied
for MLT waves. Note that this method has been previously applied to
gravity waves in the thermosphere (Vadas and Nicolls, 2012; Nicolls
et al., 2012). For the eddy viscosity coefficients of K = 0, 100, 400, 800
m2/s, the portions of waves that are blue-Doppler-shifted by the mean
wind and have higher intrinsic frequencies than the ground-based
ones, are 77.1%, 78.9%, 80.6%, to 81.1%, respectively. This implies
that the majority of waves identified by the wavelet spectral analysis
propagate against the mean wind. Additionally, we find that increasing
the eddy viscosity tends to increase the intrinsic frequency. The
horizontal wavelengths are mostly within 50–500 km, which falls into
the mesoscale range of gravity waves. Their mean and median values
are ~180 and 125 km, respectively.

This is the first time (to our knowledge) that the amplitude ratios
and the phase differences between the temperature and vertical wind
are derived directly from real observations and their statistical
characteristics are provided considering a total of 184 gravity waves
in the MLT. The high-resolution measurements by the University of
Colorado STAR lidar enable us to quantify the characteristics of these
high-to-medium frequency and mesoscale gravity waves, which provide
a valuable database for the validation of high-resolution GCMs such as
the high-resolution Whole Atmosphere Community Climate Model
(WACCM), Japanese Atmospheric General circulation model for
Upper Atmosphere Research (JAGUAR), and Kühlungsborn
Mechanistic Circulation Model (KMCM). The vertical information of
these waves derived from the range-resolved lidar measurements is
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Fig. 10. (a) Phase difference distribution predicted for non-dissipative waves. The interval is 5°. (b) The deviations of the observed phase differences from the predicted values for non-
dissipative waves. Each diamond corresponds to one wave case. (c) Same as (b) except for the absolute values of the deviations of the phase differences.

X. Lu et al. Journal of Atmospheric and Solar–Terrestrial Physics 162 (2017) 3–15

13



also important and complementary to the horizontal wave information
derived from airglow imagers and satellites. The seasonal variations of
the wave characteristics and their relations with the potential wave
sources and the transition of the background winds are intriguing,
which deserve a future work.

Acknowledgement

We sincerely acknowledge Dr. Bob Robinson for his guidance and
invaluable discussions in the lidar development and research. We are
grateful to Dr. Wentao Huang and Dr. Zhibin Yu for their significant
contributions to the STAR lidar data collection, and are grateful to Dr.
Weichun Fong, Mr. Brendan Roberts and Mr. Ian Dahlke for their key
contributions to the STAR lidar development and instrumentation. The
STAR lidar work was supported by NSF CAREER grant ATM-0645584
and CRRL Grant AGS-1136272. Xian Lu's research was supported by
the NSF CEDAR Grant AGS-1343106. The work of XC, CC and JAS was
partially supported by NSF Grants PLR-1246405, AGS-1115224, and
AGS-1452351, and the work of SLV was supported by NSF Grant PLR-
1246405. The data used in this paper can be requested from the
corresponding authors (xianl@clemson.edu and xinzhao.chu@color-
ado.edu).

References

Alexander, M.J.A., et al., 2010. Recent developments in gravity-wave effects in climate
models and the global distribution of gravity-wave momentum flux from
observations and models. Q. J. R. Meteorol. Soc. 136, 1103–1124.

Baumgaertner, A.J.G., McDonald, A.J., 2007. A gravity wave climatology for Antarctica
compiled from Challenging Minisatellite Payload/Global Positioning System
(CHAMP/GPS) radio occultations. J. Geophys. Res. 112, D05103. http://dx.doi.org/
10.1029/2006JD007504.

Becker, E., 2009. Sensitivity of the upper mesosphere to the Lorenz energy cycle of the
troposphere. J. Atmos. Sci. 66, 647–666. http://dx.doi.org/10.1175/
2008JAS2735.1.

Bishop, R.L., Larsen, M.F., Hecht, J.H., Liu, A.Z., Gardner, C.S., 2004. TOMEX:
mesospheric and lower thermospheric diffusivities and instability layers. J. Geophys.
Res. 109, D02S03. http://dx.doi.org/10.1029/2002JD003079.

Chen, C., Chu, X., McDonald, A.J., Vadas, S.L., Yu, Z., Fong, W., Lu, X., 2013. Inertia-
gravity waves in Antarctica: a case study using simultaneous lidar and radar
measurements at McMurdo/Scott Base (77.8_S, 166.7_E). J. Geophys. Res. Atmos.
118, 2794–2808. http://dx.doi.org/10.1002/jgrd.50318.

Chen, C., Chu, X., Zhao, J., Roberts, B.R., Yu, Z., Fong, W., Lu, X., Smith, J.A., 2016.
Lidar observations of persistent gravity waves with periods of 3–10h in the Antarctic
middle and upper atmosphere at McMurdo (77.83°S, 166.67°E). J. Geophys. Res.
Space Phys. 121. http://dx.doi.org/10.1002/2015JA022127.

Collins, R.L., Nomura, A., Gardner, C.S., 1994. Gravity waves in the upper mesosphere
over Antarctica: lidar observations at the South Pole and Syowa. J. Geophys. Res. 99
(D3), 5475–5485. http://dx.doi.org/10.1029/93JD03276.

Forbes, J.M., 1982. Atmospheric tide: 2. The solar and lunar semidiurnal components. J.
Geophys. Res. 87 (A7), 5241–5252. http://dx.doi.org/10.1029/JA087iA07p05241.

Fritts, D.C., Nastrom, G.D., 1992. Sources of mesoscale variability of gravity waves. Part
II: frontal, convective, and jet stream excitation. J. Atmos. Sci. 49, 111–127.

Fritts, D.C., Alexander, M.J., 2003. Gravity wave dynamics and effects in the middle
atmosphere. Rev. Geophys. 41, 1003. http://dx.doi.org/10.1029/2001RG000106.

Fuller-Rowell, T.J., 1995. The dynamics of the lower thermosphere, the upper
mesosphere and lower thermosphere: a review of experiment and theory.
In: Johnson, M., Killeen, T.L. (Eds.), Geophysical Monograph Series, vol. 87R, AGU,
Washington, DC, pp. 23–36

Fukao, S., Yamanaka, M.D., Ao, N., Hocking, W.K., Sato, T., Yamamoto, M., Nakamura,
T., Tsuda, T., Kato, S., 1994. Seasonal variability of vertical eddy diffusivity in the
middle atmosphere: 1. Three-year observations by the middle and upper atmosphere
radar. J. Geophys. Res. 99 (D9), 18973–18987. http://dx.doi.org/10.1029/
94JD00911.

Gardner, C.S., Voelz, D.G., 1987. Lidar studies of the nighttime sodium layer over
Urbana, Illinois, 2, Gravity waves. J. Geophys. Res. 92, 4673–4694.

Gavrilov, N.M., Fukao, S., Nakamura, T., Tsuda, T., Yamanaka, M.D., Yamamoto, M.,
1996. Statistical analysis of gravity waves observed with the middle and upper
atmosphere radar in the middle atmosphere, 1, Method and general characteristics.
J. Geophys. Res. 101, 29,511–29,521.

Gavrilov, N.M., Kshetvetskii, S.P., 2014. Three-dimensional numerical simulation of
nonlinear acoustic-gravity wave propagation from the troposphere to the
thermosphere. Earth Planets Space, 66–88. http://dx.doi.org/10.1186/1880-5981-
66-88.

Hertzog, A., Alexander, M.J., Plougonven, R., 2012. On the intermittency of gravity-wave
momentum flux in the stratosphere. J. Atmos. Sci. 69, 3433–3448.

Hickey, M.P., Cole, K.D., 1987. A quartic dispersion equation for internal gravity waves
in the thermosphere. J. Atmos. Terr. Phys. 49, 889–899.

Hocking, W.K., 1988. Two years of continuous measurements of turbulence parameters
in the upper mesosphere and lower thermosphere made with a 2-MHz radar. J.
Geophys. Res. 93, 2475–2491. http://dx.doi.org/10.1029/JD093iD03p02475.

Holloway, G., 1997. Ocean circulation, Flow in probability under statistical dynamical
forcing. In: Molchanov, S.A., Woyczynski, W.A. (Eds.), Stochastic Models in
Geosystems, Springer-Verlag, New York, pp 137–148.

Hu, X., Liu, A.Z., Gardner, C.S., Swenson, G.R., 2002. Characteristics of quasi-
monochromatic gravity waves observed with Na lidar in the mesopause region at
Starfire Optical Range, NM. Geophys. Res. Lett. 29 (24), 2169. http://dx.doi.org/
10.1029/2002GL014975.

Koch, S., O’Handly, C., 1997. Operational forecasting and detection of mesoscale gravity
waves. Weather Forecast. 12, 253–281.

Kundu, P., 1990. Fluid Mechanics. Academic Press, San Diego, 638.
Li, Z., Liu, A.Z., Lu, X., Swenson, G.R., Franke, S.J., 2011. Gravity wave characteristics

from OH airglow imager over Maui. J. Geophys. Res. 116, D22115. http://
dx.doi.org/10.1029/2011JD015870.

Liu, A.Z., 2009. Estimate eddy diffusion coefficients from gravity wave vertical
momentum and heat fluxes. Geophys. Res. Lett. 36, L08806. http://dx.doi.org/
10.1029/2009GL037495.

Liu, H.-L., Hagan, M.E., Roble, R.G., 2000. Local mean state changes due to gravity wave
breaking modulated by the diurnal tide. J. Geophys. Res. 105 (D10), 12,381–12,396.

Liu, H.-L., Marsh, D.R., She, C.-Y., Wu, Q., Xu, J., 2009. Momentum balance and gravity
wave forcing in the mesosphere and lower thermosphere. Geophys. Res. Lett. 36,
L07805. http://dx.doi.org/10.1029/2009GL037252.

Liu, H.L., McInerney, J.M., Santos, S., Lauritzen, P.H., Taylor, M.A., Pedatella, N.M.,
2014. Gravity waves simulated by high-resolution whole atmosphere community
climate model. Geophys. Res. Lett. 41, 9106–9112. http://dx.doi.org/10.1002/
2014GL062468.

Lu, X., Liu, A.Z., Swenson, G.R., Li, T., Leblanc, T., McDermid, I.S., 2009. Gravity wave
propagation and dissipation from the stratosphere to the lower thermosphere. J.
Geophys. Res 114, D11101. http://dx.doi.org/10.1029/2008JD010112.

Lu, X., Chen, C., Huang, W., Smith, J.A., Chu, X., Yuan, T., Pautet, P.-D., Taylor, M.J.,
Gong, J., Cullens, C.Y., 2015a. A coordinated study of 1h mesoscale gravity waves
propagating from Logan to Boulder with CRRL Na Doppler lidars and temperature
mapper. J. Geophys. Res. Atmos. 120, 10,006–10,021. http://dx.doi.org/10.1002/
2015JD023604.

Lu, X., Chu, X., Fong, W., Chen, C., Yu, Z., Roberts, B.R., McDonald, A.J., 2015b. Vertical
evolution of potential energy density and vertical wave number spectrum of Antarctic
gravity waves from 35 to 105km at McMurdo (77.8°S, 166.7°E). J. Geophys. Res.
Atmos. 120, 2719–2737. http://dx.doi.org/10.1002/2014JD022751.

Lübken, F.-J., 1997. Seasonal variation of turbulent energy dissipation rates at high
latitudes as determined by in situ measurements of neutral density fluctuations. J.
Geophys. Res. 102, 13,441–13,456.

Midgley, J.E., Liemohn, H.B., 1966. Gravity waves in a realistic atmosphere. J. Geophys.
Res. 71, 3729–3748.

Nicolls, M.J., Vadas, S.L., Meriwether, J.W., Conde, M.G., Hampton, D., 2012. The
phases and amplitudes of gravity waves propagating and dissipating in the
thermosphere: application to measurements over Alaska. J. Geophys. Res. 117,
A05323. http://dx.doi.org/10.1029/2012JA017542.

Pitteway, M.L.V., Hines, C.O., 1963. The viscous damping of atmospheric gravity waves.
Can. J. Phys. 41, 1935–1948.

Riggin, D., Fritts, D.C., Fawcett, C.D., Kudeki, E., Hitchman, M.H., 1997. Radar
observations of gravity waves over Jicamarca, Peru, during the CADRE campaign. J.
Geophys. Res. 102 (D22), 26263–26281.

Sato, K., Tateno, S., Watanabe, S., Kawatani, Y., 2012. Gravity wave characteristics in the
southern hemisphere revealed by a high-resolution middle-atmosphere general
circulation model. J. Atmos. Sci. 69, 1378–1396. http://dx.doi.org/10.1175/JAS-d-
11-0101.1.

Smith, A.K., Garcia, R.R., Marsh, D.R., Richter, J.H., 2011. WACCM simulations of the
mean circulation and trace species transport in the winter mesosphere. J. Geophys.
Res. 116, D20115. http://dx.doi.org/10.1029/2011JD016083.

Smith, J.A., Chu, X., 2015. High-efficiency receiver architecture for resonance-
fluorescence and Doppler lidars. Appl. Opt. 54 (11), 3173–3184. http://dx.doi.org/
10.1364/AO.54.003173.

Suzuki, S., Shiokawa, K., Otsuka, Y., Ogawa, T., Wilkinson, P., 2004. Statistical
characteristics of gravity waves observed by an all-sky imager at Darwin, Australia. J.
Geophys. Res. 109, D20S07. http://dx.doi.org/10.1029/2003JD004336.

Taylor, M.J., Pendleton, W.R., Jr., Clark, S., Takahashi, H., Gobbi, D., 1997. Image
measurements of short-period gravity waves at equatorial latitudes. J. Geophys. Res.
102, 26283–26299.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Am.
Meteorol. Soc. 79, 61–78.

Uccellini, L.W., Koch, S.E., 1987. The synoptic setting and possible energy sources for
mesoscale wave disturbances. Mon. Weather Rev. 115, 721–729.

Vadas, S.L., Fritts, D.C., 2005. Thermospheric responses to gravity waves: influences of
increasing viscosity and thermal diffusivity. J. Geophys. Res. 110, D15103. http://
dx.doi.org/10.1029/2004JD005574.

Vadas, S.L., 2007. Horizontal and vertical propagation and dissipation of gravity waves in
the thermosphere from lower atmospheric and thermospheric sources. J. Geophys.
Res. 112, A06305. http://dx.doi.org/10.1029/2006JA011845.

Vadas, S.L., Nicolls, M.J., 2012. The phases and amplitudes of gravity waves propagating
and dissipating in the thermosphere: theory. J. Geophys. Res. 117, A05322. http://
dx.doi.org/10.1029/2011JA017426.

Vadas, S.L., 2013. Compressible f-plane solutions to body forces, heatings, and coolings,
and application to the primary and secondary gravity waves generated by a deep
convective plume. J. Geophys. Res. Space Phys. 118, 2377–2397. http://dx.doi.org/

X. Lu et al. Journal of Atmospheric and Solar–Terrestrial Physics 162 (2017) 3–15

14

http://refhub.elsevier.com/S1364-16)30319-sbref1
http://refhub.elsevier.com/S1364-16)30319-sbref1
http://refhub.elsevier.com/S1364-16)30319-sbref1
http://dx.doi.org/10.1029/2006JD007504
http://dx.doi.org/10.1029/2006JD007504
http://dx.doi.org/10.1175/2008JAS2735.1
http://dx.doi.org/10.1175/2008JAS2735.1
http://dx.doi.org/10.1029/2002JD003079
http://dx.doi.org/10.1002/jgrd.50318
http://dx.doi.org/10.1002/2015JA022127
http://dx.doi.org/10.1029/93JD03276
http://dx.doi.org/10.1029/JA087iA07p05241
http://refhub.elsevier.com/S1364-16)30319-sbref9
http://refhub.elsevier.com/S1364-16)30319-sbref9
http://dx.doi.org/10.1029/2001RG000106
http://dx.doi.org/10.1029/94JD00911
http://dx.doi.org/10.1029/94JD00911
http://refhub.elsevier.com/S1364-16)30319-sbref12
http://refhub.elsevier.com/S1364-16)30319-sbref12
http://refhub.elsevier.com/S1364-16)30319-sbref13
http://refhub.elsevier.com/S1364-16)30319-sbref13
http://refhub.elsevier.com/S1364-16)30319-sbref13
http://refhub.elsevier.com/S1364-16)30319-sbref13
http://dx.doi.org/10.1186/1880-66-,0,0,2
http://dx.doi.org/10.1186/1880-66-,0,0,2
http://refhub.elsevier.com/S1364-16)30319-sbref15
http://refhub.elsevier.com/S1364-16)30319-sbref15
http://refhub.elsevier.com/S1364-16)30319-sbref16
http://refhub.elsevier.com/S1364-16)30319-sbref16
http://dx.doi.org/10.1029/JD093iD03p02475
http://dx.doi.org/10.1029/2002GL014975
http://dx.doi.org/10.1029/2002GL014975
http://refhub.elsevier.com/S1364-16)30319-sbref19
http://refhub.elsevier.com/S1364-16)30319-sbref19
http://refhub.elsevier.com/S1364-16)30319-sbref20
http://dx.doi.org/10.1029/2011JD015870
http://dx.doi.org/10.1029/2011JD015870
http://dx.doi.org/10.1029/2009GL037495
http://dx.doi.org/10.1029/2009GL037495
http://refhub.elsevier.com/S1364-16)30319-sbref23
http://refhub.elsevier.com/S1364-16)30319-sbref23
http://dx.doi.org/10.1029/2009GL037252
http://dx.doi.org/10.1002/2014GL062468
http://dx.doi.org/10.1002/2014GL062468
http://dx.doi.org/10.1029/2008JD010112
http://dx.doi.org/10.1002/2015JD023604
http://dx.doi.org/10.1002/2015JD023604
http://dx.doi.org/10.1002/2014JD022751
http://refhub.elsevier.com/S1364-16)30319-sbref29
http://refhub.elsevier.com/S1364-16)30319-sbref29
http://refhub.elsevier.com/S1364-16)30319-sbref29
http://refhub.elsevier.com/S1364-16)30319-sbref30
http://refhub.elsevier.com/S1364-16)30319-sbref30
http://dx.doi.org/10.1029/2012JA017542
http://refhub.elsevier.com/S1364-16)30319-sbref32
http://refhub.elsevier.com/S1364-16)30319-sbref32
http://refhub.elsevier.com/S1364-16)30319-sbref33
http://refhub.elsevier.com/S1364-16)30319-sbref33
http://refhub.elsevier.com/S1364-16)30319-sbref33
http://dx.doi.org/10.1175/JAS-0101.1
http://dx.doi.org/10.1175/JAS-0101.1
http://dx.doi.org/10.1029/2011JD016083
http://dx.doi.org/10.1364/AO.54.003173
http://dx.doi.org/10.1364/AO.54.003173
http://dx.doi.org/10.1029/2003JD004336
http://refhub.elsevier.com/S1364-16)30319-sbref38
http://refhub.elsevier.com/S1364-16)30319-sbref38
http://refhub.elsevier.com/S1364-16)30319-sbref38
http://refhub.elsevier.com/S1364-16)30319-sbref39
http://refhub.elsevier.com/S1364-16)30319-sbref39
http://refhub.elsevier.com/S1364-16)30319-sbref40
http://refhub.elsevier.com/S1364-16)30319-sbref40
http://dx.doi.org/10.1029/2004JD005574
http://dx.doi.org/10.1029/2004JD005574
http://dx.doi.org/10.1029/2006JA011845
http://dx.doi.org/10.1029/2011JA017426
http://dx.doi.org/10.1029/2011JA017426
http://dx.doi.org/10.1002/jgra.50163


10.1002/jgra.50163.
Walterscheid, R.L., Hecht, J.H., Vincent, R.A., Reid, I.M., Woithe, J., Hickey, M.P., 1999.

Analysis and interpretation of airglow and radar observations of quasi-
monochromatic gravity waves in the upper mesosphere and lower thermosphere
over Adelaide, Australia (35°S, 138°E). Atmos. Sol. Terr. Phys. 61, 461–478.

Watanabe, S., Miyahara, S., 2009. Quantification of the gravity wave forcing of the
migrating diurnal tide in gravity wave-resolving general circulation model. J.

Geophys. Res. 114, D07110. http://dx.doi.org/10.1029/2008JD011218.
Yuan, T., et al., 2016. Evidence of dispersion and refraction of a spectrally broad gravity

wave packet in the mesopause region observed by the Na lidar and Mesospheric
Temperature Mapper above Logan, Utah. J. Geophys. Res. Atmos. 121, 579–594.
http://dx.doi.org/10.1002/2015JD023685.

Zhang, F., 2004. Generation of mesoscale gravity waves in the upper-tropospheric jet-
front systems. J. Atmos. Sci. 61, 440–457.

X. Lu et al. Journal of Atmospheric and Solar–Terrestrial Physics 162 (2017) 3–15

15

http://dx.doi.org/10.1002/jgra.50163
http://refhub.elsevier.com/S1364-16)30319-sbref45
http://refhub.elsevier.com/S1364-16)30319-sbref45
http://refhub.elsevier.com/S1364-16)30319-sbref45
http://refhub.elsevier.com/S1364-16)30319-sbref45
http://dx.doi.org/10.1029/2008JD011218
http://dx.doi.org/10.1002/2015JD023685
http://refhub.elsevier.com/S1364-16)30319-sbref48
http://refhub.elsevier.com/S1364-16)30319-sbref48

	Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT
	Introduction
	Observations and methodology
	Vertical wind measurements showing prominent 0.3–2.5h waves
	Identifying wave cases using wavelet spectra
	Determining wave amplitude ratios, phase differences, and vertical wavelengths

	Statistical results
	Amplitude ratios, phase differences and vertical wavelengths
	Derivation of intrinsic periods and horizontal wavelengths from polarization and dispersion relations with and without dissipation
	Intrinsic periods, horizontal wavelengths, and phase difference deviations

	Summary
	Acknowledgement
	References




