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Abstract We analyze the results of the gravity wave (GW)-resolving, high-resolution Kühlungsborn
Mechanistic general Circulation Model in July at McMurdo Station (166.69∘E and 77.84∘S), where strong
downslope eastward winds create strong mountain wave (MW) events. These MWs have horizontal
wavelengths of 𝜆H ≃ 230 km, propagate to z ∼ 40–60 km, and can have upward phases in time if
the eastward wind accelerates in time. Additionally, inertia-GWs (IGWs) with 𝜆H ∼ 500–800 km and
ground-based periods of 𝜏r ∼ 5–6 hr are generated in the troposphere from unbalanced, large-scale flow.
The density-scaled GW amplitudes are ∼10 times smaller at z ∼ 80–100 km than at z < 50 km because of
severe wave dissipation. “Fishbone” structures are seen at z ∼ 30–60 km with upward (downward) phases
in time below (above) the “knee” at zknee. We horizontally filter the perturbations to isolate the GWs in
a fishbone structure for a particular MW event. We find that these GWs have strikingly similar parameters
below and above zknee = 46 km, with ground-based horizontal phase speeds of cH ∼ 40–60 m/s,
𝜏r ∼ 9–10 hr, 𝜆H ∼ 1,600–2,050 km, vertical wavelengths of 𝜆z ∼ 18–25 km, and azimuths of Υ = 145∘
–151∘ east of north. We show that these are secondary GWs excited by a body force at zknee created by
MW dissipation approximately 400 km northwest of McMurdo 2.5 hr earlier and that the secondary GW
scales and propagation directions are consistent with this force. Importantly, we show that most of the GWs
at z > 70 km are secondary GWs not primary GWs from the troposphere.

1. Introduction

Wind flow over orography excites GWs called mountains waves (MWs; Holton, 1992; Fritts & Alexander, 2003).
If the wind is constant in time and the flow is linear, the ground-based phase speed of a MW, cH, is 0 and the GW
solution is steady state. MWs have been observed over the southern Andes in South America and the Antarctic
Peninsula with the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (Eckermann
& Preusse, 1999; Ern et al., 2004), the Upper Atmosphere Research Satellite Microwave Limb Sounder (Jiang
et al., 2002; Wu & Jiang, 2002), the Atmospheric Infrared Sounder (AIRS; Alexander & Teitelbaum, 2007, 2011;
Gong et al., 2012; Hoffmann & Alexander, 2009; Wu et al., 2006), the High Resolution Dynamics Limb Sounder
and the Sounding of the Atmosphere using Broadband Emission Radiometry (Alexander et al., 2008; Ern et al.,
2011), the meteorological program of the Global Positioning System (Tsuda et al., 2000), Global Positioning
System radio occultation (de la Torre & Alexander, 2005), and superpressure balloons (Plougonven et al., 2008;
Vincent et al., 2007; Walterscheid et al., 2016). They have also been observed over New Zealand in the Deep
Propagating Gravity Wave Experiment (DEEPWAVE; Bossert et al., 2015, 2017; Fritts et al., 2016; Heale et al.,
2017) and near McMurdo Station in the Antarctic with superpressure balloons and AIRS (Hendricks et al., 2014;
Hoffmann et al., 2013; Vincent et al., 2007).

Yamashita et al. (2009) found that the GW potential energy density at z = 30–45 km was 6 times larger at
Rothera Station than at South Pole Station during the winter, while the energy densities were small and com-
parable at the two stations during the summer. They attributed the wintertime difference to the excitation
of (westward) MWs at Rothera, which propagated to z ∼ 30–45 km through the background eastward wind.
Kaifler et al. (2015) found that the GW potential energy density at z = 30–40 km was 3–5 times larger dur-
ing the winter than during the summer at Davis (69∘S, 78∘E), Antarctica. Chen et al. (2013) observed two
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simultaneous IGWs at z =80–100 km at McMurdo in June. One had 𝜏r ∼ 7.7 hr, 𝜆z ∼ 22 km, 𝜆H ∼ 2,200 km,
cH = 𝜆H∕𝜏r ∼ 80 m/s, and azimuth Υ ∼ 11∘ east of north and was traced back to a region of unbalanced
flow in the stratosphere. Murphy et al. (2014) analyzed the IGWs at Davis Station using radionsonde data and
found that ∼50% were downward propagating for z =13–30 km during May–October. They suggested that
the downward propagating IGWs (upward phase propagation) might have been generated by an unbalanced
flow in the lower stratosphere, which creates upward- and downward-propagating IGWs (e.g., Vadas & Fritts,
2001; Zhu & Holton, 1987). Chen et al. (2016) found that IGWs with 𝜏r ∼ 3–10 hr and 𝜆z ∼ 20–30 km were
persistent at McMurdo from the stratosphere to lower thermosphere. Due to the change in the slope of the
GW spectra with altitude, they postulated a stratosphere source for the IGWs observed in the mesosphere and
lower thermosphere (MLT). Using a 2-D Morlet wavelet transform technique, Chen and Chu (2017) estimated
that the IGWs in the MLT had 𝜆H ∼ 400–4,000 km and cH = 30–140 m/s at McMurdo. Zhao et al. (2017) found
that the GWs at z = 30–50 km had upward and downward phases in time during the winter at McMurdo,
with 𝜆z ∼ 3–13 km and 𝜏r ∼ 2–10 hr. They estimated 𝜆H ∼ 350–500 km during June–October, which is
significantly smaller than the estimated 𝜆H in the MLT (Chen et al., 2013; Chen & Chu, 2017). This strongly sug-
gests that during the wintertime at McMurdo, the GWs in the MLT might be different from the GWs in the
stratosphere. Indeed, observations have pointed toward stratospheric GW sources related to imbalances of
the polar night jet (Alexander et al., 2011; Chen et al., 2013; Sato & Yoshiki, 2008; Shibuya et al., 2017; Yoshiki
& Sato, 2000; Yoshiki et al., 2004).

When a GW breaks (e.g., when it approaches a critical level), the flow is nonlinear and there is a cascade to
smaller scales and eventually to turbulence. Small-scale “secondary” GWs are excited having smaller 𝜆H than
that of the breaking GW (e.g., Bacmeister & Schoeberl, 1989; Bossert et al., 2017; Chun & Kim, 2008; Franke &
Robinson, 1999; Satomura & Sato, 1999; Zhou et al., 2002). Because these GWs typically cannot propagate very
far before being reabsorbed by the fluid (although they may carry and transport significant momentum flux
in the process (Bossert et al., 2017)), they can be loosely thought of as being part of the transition to smaller
scales and to turbulence.

Along with wave breaking and the transition to turbulence, momentum and energy is deposited into the
background flow on a larger horizontal scale than 𝜆H of the breaking GW; indeed, this horizontal scale is set
by the horizontal scale of the wave packet (Vadas & Fritts, 2002). This momentum deposition corresponds to a
“local body force,” and results in a temporally and spatially localized horizontal acceleration of the background
flow. The zonal and meridional components of the body force are given by the convergence of the pseudo
momentum flux (derived in Appendix A):

Fx,tot = −1
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𝜕z

(
�̄�
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))
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Here u, v, and w are the zonal, meridional, and vertical velocities, respectively; 𝜌 is density; and T is tempera-
ture. The primes denote deviations from the background flow due to GWs, and the overlines denote averages
over several GW wavelengths. Additionally, g is the gravitational acceleration, Cp is the specific heat capacity
at constant pressure, and f is the Coriolis parameter in the f -plane approximation, that is, f = 2Ω sin 𝜃 with
Ω = 2π∕24 hr and 𝜃 being a fixed latitude. The temperature flux terms in equation (1) correspond to the
Stokes drift correction for atmospheric waves that are affected by the Coriolis force (Dunkerton, 1978). Note
that equation (1) is equivalent to the corresponding expression given in equation (41) in Fritts and Alexander
(2003) when using the polarization relations for a monochromatic GW.

Fx,tot and Fy,tot in equation (1) do not include small-scale nonlinearities that accompany the cascade to
turbulence. However, since the latter spread horizontally, the extent of the body force is estimated to be
approximately twice that of the breaking wave packet (Vadas & Fritts, 2002). For example, if a primary GW
packet consists of two wave cycles that are breaking, the horizontal extent of the body force is estimated
to be ∼4𝜆H, which is much larger than 𝜆H of the breaking GW (Vadas & Fritts, 2002). Because momentum
deposition occurs on timescales of ∼(1 − 2)𝜏r , where 𝜏r is the primary GW period, the body force accelerates
the background flow horizontally over the same timescales. This causes the flow to be unbalanced. The fluid
responds by (a) creating a 3-D horizontal mean flow that consists of two counter-rotating cells and (b) excit-
ing larger-scale secondary GWs (Fritts et al., 2006; Plougonven et al., 2008; Vadas & Fritts, 2001, 2002, 2013;
Vadas et al., 2003; Vadas & Liu, 2009, 2013). These secondary GWs propagate forward, backward, upward, and
downward away from the body force and have a broad spectrum of horizontal scales that peak at approxi-
mately twice the width of the body force (Vadas et al., 2003, 2018). For the above example, the secondary GW
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spectrum peaks at ∼8𝜆H. Even if the portion of the primary GW that breaks only consists of one-half of a wave
cycle, the secondary GW spectrum peaks at ∼2𝜆H, which is still larger than 𝜆H of the breaking GW.

The secondary GWs excited by a body force have 𝜆H much larger than that of the small-scale secondary GWs
mentioned above. This important feature typically allows them to propagate to much higher altitudes before
dissipating, because they have much larger horizontal phase speeds, cH = 𝜆H∕𝜏r , than both the primary GWs
and the small-scale secondary GWs. Because of this, it is likely that these latter (larger-scale) secondary GWs
are much more important for the transport of momentum and energy than the former small-scale secondary
GWs. It is unfortunate that the phrase “secondary GWs” has been applied to both of these different types of
GWs in the literature. The astute reader must therefore be careful to distinguish between these two types of
secondary GWs. Indeed, only if the secondary GWs have 𝜆H greater than that of the primary GWs can their
sources be identified as body forces from the primary breaking GWs. For the rest of this paper, we only use
the term “secondary GWs” to describe the (latter, larger-scale) GWs generated by a body force.

Over the past decade, high-resolution, GW-resolving general circulation models (GCMs) have modeled GWs
generated by orography, jet stream adjustment, and convection (Becker, 2009; Becker & Vadas, 2018;
Hoffmann et al., 2010; Liu et al., 2014; Sato et al., 2009, 2012; Watanabe et al., 2006, 2008). Because of reso-
lution constraints, these models can only simulate the medium-scale MWs created by flow over orography.
However, the omission of small-scale MWs may still result in realistic dynamical and thermal structures in the
stratosphere and mesosphere (Sato et al., 2012; Watanabe et al., 2008).

Using a high-resolution, GW-resolving GCM, Sato et al. (2012) found stratospheric MW hotspots leeward of the
southern Andes during winter. They showed a correlation between downward energy flux in the stratosphere
and orographic GW activity over the southern Andes. They postulated that this might be due to partial wave
reflection from the changing buoyancy frequency or to nonlinear processes (i.e., small-scale secondary GWs
created from wave breaking), although neither possibility was deemed as entirely satisfactory. They also found
orographic GWs near McMurdo in July and suggested that these GWs were created by katabatic winds at the
western edge of the Ross Sea (Watanabe et al., 2006).

Recently, Becker and Vadas (2018) analyzed the characteristics of GWs in the stratosphere and mesosphere
in the southern winter hemisphere using the high-resolution, GW-resolving Kühlungsborn Mechanistic gen-
eral Circulation Model (KMCM). They found that MWs created by eastward flow over the southern Andes and
Antarctic Peninsula broke and created temporally and spatially dependent wave drag in the stratosphere. At
higher altitudes in the MLT, they found GWs with predominantly eastward and westward components and
cH ∼ 60 m/s. They noted that strong MW events in the stratosphere preceded strong GW events in the MLT.
They identified the GWs in the MLT as being secondary GWs created from the intermittent body forces due
to MW breaking in the stratosphere. Additionally, they found that the eastward secondary GWs dissipated at
z ∼ 90–100 km and created a second eastward wind peak there.

Although Becker and Vadas (2018) examined the dynamical effect that secondary GWs have on the MLT for
the first time, they did not investigate their properties or sources in detail; in particular, they did not perform
a detailed analysis of 𝜆H, they did not look for downward-propagating GWs with similar 𝜆H, vertical wave-
length 𝜆z , 𝜏r , and propagation directions nor did they locate specific body forces as sources of the identified
secondary GWs.

In this paper, we investigate the generation, propagation, and dissipation of primary and secondary GWs over
Antarctica and at McMurdo in the troposphere, stratosphere, and mesosphere during July when the polar
night jet is fairly well established. We briefly describe the KMCM in section 2. In section 3, we describe the
wave activity in July. We investigate the primary and secondary GWs during several large events in section 4.
Section 5 provides our conclusions. Appendix A contains our derivation of the GW pseudo momentum flux
needed to calculate the body forces. Appendix B contains the equations we use to transform from geophysical
to 2-D Cartesian coordinates, which allows for the straightforward determination of 𝜆H and the direction of
propagation of GWs at polar latitudes.

2. Description of the KMCM

We use results from the KMCM, which is a high-resolution, GW-resolving, hydrostatic, and free-running
global circulation model. It is based on a standard spectral dynamical core with a terrain-following hybrid
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vertical coordinate. We use a triangular spectral truncation at total horizontal wave number 240 and 190 full
model layers (T240L190) up to ∼3 × 10−5 hPa (z ∼ 130 km). The resulting horizontal and vertical grid spac-
ings are ∼55 km and ∼600 m, respectively, for z≤100 km. The smallest horizontal wavelength resolvable is
𝜆H = 165 km.

The KMCM includes explicit computations of radiation and the tropospheric moisture cycle (Becker et al.,
2015, Becker, 2017). Land-sea contrasts are included via orography and land-sea masks (albedo, relative
humidity, heat capacity, and roughness length). A simple slab ocean is included to close the surface energy
budget.

Subgrid-scale parameterizations consist of (a) a local boundary diffusion scheme, (b) a simple tropospheric
moist convection scheme, and (c) a Smagorinsky-type horizontal and vertical diffusion scheme for the whole
atmosphere, with both diffusion coefficients dependent on the Richardson number, Ri, such as to give rise
to wave damping when Ri ≤ 0.25 (Becker, 2009; Becker & Vadas, 2018). Additionally, there is a sponge layer
at z > 100 km owing to linear harmonic horizontal diffusion. The entire momentum diffusion (including the
sponge layer) conserves angular momentum since it is based on a symmetric stress-tensor formulation.
The model thermosphere also includes a simple ion drag scheme. All subgrid-scale momentum tendencies
are energetically balanced by the corresponding frictional heating terms (see discussion in Becker, 2017).
A former version of the KMCM with high resolution and resolved GWs was used, for example, in Becker (2009),
Hoffmann et al. (2010), and Becker (2012).

The KMCM simulates (spatially and temporally localized) momentum deposition. This wave-mean flow inter-
action occurs in response to the dynamical instability of the resolved GWs and subgrid-scale turbulent
diffusion, as mentioned above. Note that the subgrid-scale diffusion is essential to induce wave-mean flow
interaction. This notion is in accordance with the Wentzel-Kramers-Brillouin solution for GWs damped by
turbulent diffusion (Becker, 2012; Lindzen, 1981).

In this study, we employ the same model version that was used in Becker and Vadas (2018). Our resolution
of the KMCM data is Δt = 45 min, Δ𝜙 = 1.875∘ in longitude from 0∘E to 360∘E, and Δ𝜃 = 0.8∘ in latitude
from 89.6∘S to 50.4∘S. We extrapolate the data to an altitudinal (geometric height) grid having a vertical grid
spacing of Δz = 2 km for z ≥ 4 km.

3. Wave Activity Over McMurdo During July

Figure 1 shows the temperature, T , zonal velocity, u, and meridional velocity, v, at McMurdo during July. The
polar night jet in the stratosphere is strong and eastward: u ∼60–120 m/s. Daily to weekly variability caused
by Rossby waves is visible in all three components at z ∼ 40–70 km (Lu et al., 2013, 2017). Figure 2 shows
a “blowup” at z = 70–100 km for 3–11 July. This altitudinal range includes that of the Fe Boltzmann lidar
measurements at McMurdo (Chen et al., 2013, 2016; Chen & Chu, 2017; Chu et al., 2011). Although the semid-
iurnal tide is strong and variable in u and v at z ∼ 80–100 km, it is weak in T . Instead, GWs with 𝜏r ∼ 3–11 hr
and T ′ ∼ 10–40 K are easily visible in T (unlike in u and v). These amplitudes, as well as the lack of a signifi-
cant semidiurnal tide in the temperature, agree well with observations (Chen et al., 2013). Note that the GW
periods seen over McMurdo during midwinter are shorter than those inferred by Shibuya et al. (2017) in the
lower mesosphere above Syowa Station (39.6∘E, 69∘S) during a particular week in March 2015. Those authors
obtained quasi 12-hr periods for large-scale IGWs from radar measurements and a numerical simulation
initialized by Modern-Era Retrospective Analysis for Research and Applications data.

We remove the semidiurnal and diurnal tides and planetary waves by applying a Fourier filter and eliminat-
ing all waves with 𝜏r > 11 hr. (Note that this also removes stationary and quasi-stationary MWs with 𝜏r > 11 hr.)
Figure 3 shows the resulting density-scaled (or “scaled”) GW perturbations, which are T ′, u′, and v′ multi-
plied by the scaling factor

√
�̄�∕�̄�0, where �̄�0 is an arbitrary constant value. Here we choose the value of �̄�0

to be the value of �̄� at 0∘E, 90∘S and z = 5 km on 1 July at 0UT: �̄�0 = 880 gm/m3. Note that we show the
scaled perturbations in Figure 3 to see the GW perturbations at all altitudes “equally,” since a GW’s ampli-
tude grows exponentially with height (Hines, 1960). Thus, a conservative, linear, nondissipating upward or
downward-propagating GW in an isothermal atmosphere in a uniform wind would have a constant scaled
amplitude with height.
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Figure 1. Temperature T (a), zonal velocity u (b), and meridional velocity v (c) at McMurdo during July from the Kühlungsborn Mechanistic general Circulation
Model. Maximum and minimum values are shown at the top of each panel.

GWs are ubiquitous in Figure 3 and have both upward and downward phases in time. As we show in
section 4.2.2, the large-amplitude, upward-propagating GWs with upward phases in time at z < 50 km
on 5 July are MWs that traveled through a “ramp-up” (acceleration) of the background eastward wind.
(Upward-propagating MWs with upward phases in time are also seen in Figure 3 of Watanabe et al., 2006.)
Although GWs are easily visible for z < 60 km, it is difficult to see them for z > 60 km. Figure 4 shows the scaled
perturbations at z = 80–100 km. The scaled GW amplitudes are about 10 times smaller than at z < 50 km.
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Figure 2. Same as in Figure 1, but for 3–11 July at z = 70–100 km. Additionally, (a) shows T − 224.5 K, where 224.5 is the average temperature at z = 90 km for
this time period.

This suggests that severe wave dissipation occurs at z∼ 50–80 km, in agreement with lidar and satellite obser-
vations (Lu et al., 2015; Preusse et al., 2006). Figure 4 also shows that the GW amplitudes are somewhat more
uniform in time at z = 80–100 km than at z < 60 km. Finally, the GW vertical wavelengths are much larger

here than in the stratosphere. Figures 3, 4 show that GWs are ubiquitous at all altitudes and times at McMurdo
and have amplitudes that vary strongly with altitude and time.
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Figure 3. Scaled perturbations at McMurdo obtained via removing waves with 𝜏r > 11 hr from Figure 1 and multiplying by
√
�̄�∕�̄�0. T ′√�̄�∕�̄�0 (a), u′

√
�̄�∕�̄�0 (b), and

v′
√
�̄�∕�̄�0 (c). Maximum and minimum values are shown at the top of each panel.

Although it is somewhat difficult to see, the scaled GW horizontal velocity amplitudes,
√
�̄�∕�̄�0 u′ and

√
�̄�∕�̄�0 v′,

are relatively constant in time for z ≤ 10 km in Figure 3, with phase lines that are typically downward in time.

For 10 < z < 20 km, however, these amplitudes vary significantly in time because of strong wave events, and

the phase lines can be upward in time (e.g., on 5 July) or downward in time (e.g., on 9 and 20–22 July).

Strong wave events occur on 4–10 and 19–23 July. During these times, GWs with large amplitudes are visible
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Figure 4. Same as in Figure 3 but for z = 80–100 km and using different color scales.

at z ∼ 5–60 km. Comparing with Figure 4, however, this enhanced GW activity at z < 60 km does not appear
to continue into the mesosphere, although there is some variation in the GW activity in the MLT.

4. Wave Activity on 3–11 July at McMurdo

We now analyze the GW activity at McMurdo on 3–11 July in detail. This period contains several strong events
whereby large-amplitude GWs are present from the troposphere to z ∼ 60 km (see Figure 3).
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Figure 5. Scaled variables at McMurdo for 3–11 July. T ′√�̄�∕�̄�0 (a), u′
√
�̄�∕�̄�0 (b), v′

√
�̄�∕�̄�0 (c), and w

√
�̄�∕�̄�0 (d). White and black arrows show the locations and

times for select mountain wave events and fishbone structures, respectively. Maximum and minimum values are shown at the top of each panel.

VADAS AND BECKER 9334



Journal of Geophysical Research: Atmospheres 10.1029/2017JD027974

Figure 6. Theoretical compressible solution of the secondary gravity waves
excited by a zonal body force centered at x = y = 0 and z = 45 km in an
isothermal, windless atmosphere. The body force begins at t = 0 and has
full horizontal width H = 800 km, full depth z = 8 km, and duration
𝜒 = 6 hr. (a) Height-time cross section of the scaled temperature
perturbation,

√
�̄� T ′∕T̄ (colors), at x = 800 km and y = −800 km. The altitude

of the knee of the structure is at the force center (i.e., zknee = 45 km).
(b) Horizontal cross section of T ′∕T̄ at z = 55 km and t = 10 hr.

4.1. Overview of the Primary and Secondary GWS at McMurdo
Figure 5 shows T ′, u′, v′, and w scaled by

√
�̄�∕�̄�0 on 3–11 July, where

w is the vertical velocity. Here �̄�0 = 868 gm/m3 is the value of �̄� at
0∘E, 90∘S and z = 5 km on 3 July at 0 UT for this and all remaining
KMCM figures in this paper. Here we show the scaled w rather than the
scaled w′ in order to see all waves (including those with periods ≥ 11 hr).
On 4 July at 18 UT through 5 July at 12 UT, coherent GWs with upward
phases in time are seen at z ∼ 10–50 km in T ′, u′, and w (see white
arrows at z ∼ 20 km). As we will see in section 4.2.2, these are upward
propagating MWs created by a downslope wind; the upward phases occur
because the background eastward wind “ramps up” (accelerates) during
this event. At z < 10 km, the GWs primarily have downward phases in time.

Figure 5d includes three distinct events in w: 4.5–6 July, 7–9.5 July, and
9.5 July to at least 11 July. The durations of these events, 1.5–2.5 days, is
consistent with Watanabe et al. (2006) who found that typical downslope
wind events lasted for ∼1–4 days near McMurdo.

We overlay black arrows at z ∼ 40–60 km in Figure 5 to highlight a few
locations where “fishbone” (or “>”) structure is seen in the perturbations.
A fishbone structure is particularly clear in u′ at 12 UT on 9 July through
12 UT on 10 July at z ∼ 40–60 (see Figure 5b). This fishbone structure
looks very similar to the theoretically derived structure that arises from
secondary GWs excited by a body force (see below).

To illustrate this point, we solve the linear, f -plane compressible fluid
equations given by Vadas (2013) and show the analytical solution for
the secondary GWs and mean response created by an idealized Gaus-
sian zonal body force centered at z = 45 km. We assume that the body
force is 800 km wide, is 8 km deep, lasts for 6 hr, and has an ampli-
tude of 40 m⋅s−1⋅day−1. We also assume an isothermal background atmo-
sphere with T̄ = T0 = 231 K, resulting in a buoyancy frequency of
NB = 0.02 rad/s and �̄� = �̄�0 exp(−z∕) with  = 6.9 km, where
 is the density scale height. Further details concerning this theoreti-
cal solution can be found in Vadas et al. (2018). In Figure 6a, we show√
�̄�T ′∕T0 for a horizontally fixed observer

√
2 × 800 = 1,130 km south-

east of the center of the body force. A striking fishbone structure appears
in this z − t plot; it is created as different spectral components of the
excited secondary GWs propagate away from the body force with dif-
ferent horizontal and vertical velocities. This structure is asymmetric in
z about z = 45 km (which we dub the knee of the structure), with
upward-propagating GWs having downward phases in time above the
knee and downward-propagating GWs having upward phases in time
below the knee. Importantly, the upward and downward secondary GWs
have the same amplitudes at the excitation altitude; it is only when they
propagate away from the body force that the downgoing GW ampli-
tudes decrease as 1∕

√
�̄�, while the upgoing GW amplitudes increase as

1∕
√
�̄�. Note that the fishbone structure is visible in any horizontal direc-

tion except perpendicular to the force direction (Vadas et al., 2018). Figure 6b shows T ′∕T̄ at z = 55 km
and t = 10 hr. Partial concentric rings are visible and are asymmetric about the axis perpendicular to the
force direction (i.e., x = 0 here); these partial rings appear to radiate away from the force center in time
(not shown). The amplitude of the fishbone structure maximizes in the direction parallel or antiparallel to the
body force (i.e., y = 0 here) and is 0 in the direction perpendicular to the body force (i.e., x = 0 here). We show
in section 4.3 that the GWs in the fishbone structures in Figure 5 are indeed secondary GWs and that they are
excited by the body forces created by MW dissipation.
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Figure 7. Scaled temperature perturbations, T ′√�̄�∕�̄�0, at McMurdo. (a) Upward phases in time. (b) Downward phases
in time. Solid black contours show the dissipation rate multiplied by �̄�∕�̄�0 at the values 0.015 × (0.003, 0.01, 0.03,
0.1, 0.3, 1.) K/day. Black arrows show select bursts of upward- and downward-propagating gravity waves.

We separate the GWs with upward and downward phases in time by performing a 2-D fast Fourier transform
(FFT) in z and t on the scaled temperature perturbations in Figure 5a, separating out the wave components,
and then applying the inverse FFTs. Figures 7a and 7b show the scaled temperature perturbations for GWs
having upward and downward phases in time, respectively. Coherent wave packets are seen. On 4.0–6.0 July,
the MWs in Figure 7a have 𝜆z ∼ 5–12 km and 𝜏r ∼ 5–9 hr at z ∼ 30–50 km, consistent with observations
(Zhao et al., 2017). Additionally, 𝜆z increases with altitude, because the westward MWs propagate into an
increasing eastward wind (see Figure 1b and section 4.2.1). (Note that a medium-scale MW observed in
DEEPWAVE had 𝜆z ∼ 10 km at z < 30 km and 𝜆z ∼ 20–30 km at higher altitudes [Bossert et al., 2015].)

In the regions where fishbone structures occur (i.e., z ∼ 30–60 km on 5.25–6.5 and 9.5–10.5 July in Figure 5),
Figure 7 shows “bursts” of simultaneously occurring upward- and downward-propagating GWs with similar
𝜏r and 𝜆z that originate at z ∼ 35–50 km, highlighted with black arrows (e.g., at 8.0–10.0 July). In fact, our
Fourier decomposition shows that such upward- and downward-propagating waves are persistent during
the whole period from 5.5 to 11 July at z ∼ 30–60 km. (The GWs with downward phases in time are persis-
tent from earlier: 4.0 July.) The scaled amplitudes of these waves strongly decrease with decreasing z below
∼30 km; the stratospheric waves are separated from the waves in the troposphere. Thus, the stratospheric
GWs seen in Figure 7 from 5.5 to 11 July are most likely secondary waves that are generated by the inter-
mittent body forces created by dissipating primary GWs. The black contour lines in Figure 7 show the scaled
dissipative (frictional) heating rate, indicating regions of dynamically unstable GWs. (The frictional heating
rate indicates dynamically unstable GWs because the diffusion coefficients in the KMCM are scaled by a crite-
rion of dynamic instability.) The structure of the dissipation rate suggests that the first burst of upward- and
downward-propagating waves in the stratosphere is induced by the breakdown of the transient MWs having
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Figure 8. Power spectral density (PSD) of the scaled temperature perturbation, | ̃T ′
√
�̄�∕�̄�0|2, at McMurdo during 3–11

July. (a) z = 4–30 km. (b) z = 30–60 km. (c) z = 60–100 km. The quadrants are combined so that gravity waves
(GWs) with upward phases in time are shown for 𝜏r > 0, and GWs with downward phases in time are shown for 𝜏r < 0.
Each panel is scaled by its (arbitrary) maximum value. Yellow labels show the percentage of the integrated PSD in GWs
with upward phases in time (at 𝜏r > 0) and downward phases in time (at 𝜏r < 0).

upward phase propagation (around 5 July). The strong dissipation in the stratosphere after about 7 July is
due to MWs that are approximately stationary and are therefore visible in Figure 5d, but are not visible in
Figures 5a, 5b, 5c and 7 due to our filtering in frequency space (since only periods <11 hr are included; e.g.,
see section 4.3.2).

Figure 8 shows the power spectral density (PSD) of the scaled temperature perturbations, | ̃T ′
√
�̄�∕�̄�0|2, for

3–11 July. Here the “̃” denotes taking the 2-D FFT. The PSD produces power in all four quadrants (±m, ±𝜔r),
where m = −2π∕𝜆z is the vertical wave number and 𝜔r = 2π∕𝜏r is the ground-based frequency. The spectrum
is symmetric regarding the sign of m𝜔r , where m𝜔r > 0 (< 0) indicates upward (downward) phase propaga-
tion. We combine the GWs from the two quadrants with m> 0 and show the GWs with upward phases in time
as 𝜏r > 0 and those GWs with downward phases in time as 𝜏r < 0.

In the troposphere and lower stratosphere (z = 4–30 km), Figure 8a shows that 58% (42%) of the GWs have
upward (downward) phases in time with 𝜏r ∼ 9–11 hr and 𝜆z ∼ 4–9 km. These GWs include MWs and IGWs
from unbalanced flow associated with large Rossby-wave amplitudes (this process is often called spontaneous
emission in the literature). In the stratosphere (z = 30–60 km), 47% (53%) of the GWs have upward
(downward) phases in time. These GWs have a larger range of periods and vertical wavelengths, 𝜏r ∼ 7–11 hr
and 𝜆z ∼ 6–30 km and include MWs, secondary GWs (see section 4.3), and IGWs from unbalanced flow. In
the upper stratosphere and mesosphere (z = 60–100 km), only 29% of the GWs have upward phases in time.
Seventy-one percent of the GWs have downward phases in time, with 𝜏r ∼ 3–11 hr and 𝜆z ∼ 9–40 km. We
show in section 4.4 that these latter GWs are mainly upward-propagating secondary GWs. We note that some
of the downward-propagating GWs might be reflected GWs. However, Sato et al. (2012) showed that only 10%
of the GWs reflect from a jump in N2

B in the southern winter stratosphere in their hydrostatic KANTO model and
that the reflected GWs are quite weak. Because the KMCM is also hydrostatic and is similar to the KANTO model
regarding numerical methods and applied resolution, it is possible that few of the downward-propagating
GWs here are reflected GWs.

The percentage of GWs with downward phases in the stratosphere is 53% from Figure 8b. This is signifi-
cantly smaller than the 70.4% measured by Zhao et al. (2017) at 30–50 km during the McMurdo winter. We
also note from Figures 8b and 8c that the peak periods are 𝜏r ∼ 4–10 hr, which are somewhat longer than
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Figure 9. The vertical velocity, w, (color contours) at 77.6∘S as a function of longitude and time at z = 4 km (a),
10 km (b), and 16 km (c). Solid (dashed) lines show positive (negative) zonal wind, u, in 5-m/s intervals at the same
altitudes. The dotted lines show the location of McMurdo.

in the observations (Chen et al., 2016; Zhao et al., 2017), although our peak 𝜆z agrees well with these obser-
vations. These differences might occur because (a) we included the PSD from all GWs (rather than selecting
only the largest-amplitude GWs), (b) we only included the PSD from GWs during a large MW event (rather than
including all the data for the entire winter), and (c) we utilized a somewhat larger vertical range. Also note that
Yamashita et al. (2009) found that 51% and 62% of the stratospheric GWs had downward phase progression
in the winter at the South Pole and Rothera Stations, respectively.

4.2. Primary GWS at McMurdo: Mountain Waves and Inertia-GWS
4.2.1. MWS and IGWS in the Troposphere and Stratosphere
In Figure 9a, we show w at 77.6∘S and z = 4 km as a function of longitude and time. A narrow band containing
one or two upward/downward cycles of a strong quasi-stationary MW are seen slightly west of McMurdo. To
understand how these MWs are created, we also show the zonal wind u at z = 4 km. We see that the strong
quasi-stationary MWs have large amplitudes when the wind is eastward with u> 10 m/s, such as occurs on
5.0 July. In Figure 10a, we show a stereographic projection of w at z = 4 km on 5.0 July. The phase lines of the
MWs are parallel to the coastline at McMurdo (i.e., northwest to southeast). Therefore, we conclude that the
narrowband of strong MWs created near McMurdo in Figure 9a are created by a downslope wind that flows
downslope from the Transantarctic Mountains to the Ross Sea, as first modeled by Watanabe et al. (2006). Note
that Watanabe et al. (2006) found that the MWs have 𝜆H ∼ 220 km and 𝜆z ∼ 11 km and that the near-surface
zonal wind speed needed to be >13 m/s to excite these MWs, which agrees well with our results. We also see
in Figure 9a that the MW amplitude increases rapidly to w ∼ 0.05–0.1 m/s on 4.5 July; this corresponds to the
beginning of one of the strong MW events in Figure 5.

In Figures 9b and 9c, we show w and u at z = 10 and 16 km, respectively. Here the quasi-stationary MWs
have 𝜆H ≃ 230 km and are broken up into distinct wave packets, which extend upstream (windward) and
downstream (leeward) from McMurdo with 2–5 cycles zonally. Note that Plougonven et al. (2008) mod-
eled the MWs excited by wind flow over the Antarctic Peninsula during a strong event and found that the
MWs are located upstream and downstream of the mountain. Walterscheid et al. (2016) studied the MWs
excited by wind over the Antarctic Peninsula and found that steady state flow creates upstream MWs that
tilt into the wind. They also found that the downstream MWs mainly correspond to high-flux wave events
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Figure 10. The vertical velocity w at z = 4 km on 5.0 July (color contours). (a) w using a stereographic projection.
McMurdo is south of New Zealand, just west of 180∘ longitude. (b) w on a 2-D plane parallel to the Earth’s surface at
McMurdo using the transformation from Appendix B. McMurdo is located at x′′ = y′′ = 0. The horizontal wind uH is
shown at z = 4 km with red arrows, with lengths proportional to the maximum horizontal wind of uH = 60 m/s.
The height of the topography above sea level is shown as black lines in 0.5-km intervals from 50 m.
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and are therefore likely associated with transcient flow. Finally, Sato et al. (2012) found leeward advection of
MWs that extended thousands of kilometers over the southern Andes and Antarctica Peninsula because of
the mean wind component perpendicular to the GW wave number vector (Preusse et al., 2002).

The segmentation of the quasi-stationary MWs into distinct wave packets is seen to be caused by the change
in u in Figures 9b and 9c; when the eastward wind intensifies in the upper troposphere and lower stratosphere,
the MWs intensify because 𝜆z increases (see below), which allows them to propagate to higher altitudes. We
see this relationship as follows. The dispersion relation for midfrequency GWs with |𝜆z| << 4π is

𝜔Ir = NBkH∕m, (2)

where k, l, and m are the zonal, meridional, and vertical wave numbers, respectively, and kH =
√

k2 + l2 =
2π∕𝜆H. The intrinsic frequency is

𝜔Ir = 𝜔r − kU − lV = 𝜔r − kHUH, (3)

where U and V are the zonal and meridional background wind components and UH = (kU + lV)∕kH is the
horizontal wind speed along the direction of propagation of the GW. Rearranging equation (3), we obtain

𝜆z =
2π(cH − UH)

NB
=

2πcIH

NB
, (4)

where cH = 𝜔r∕kH and cIH = cH −UH is the intrinsic horizontal phase speed. Since cH = 0 for an MW generated
by a steady state wind, the intrinsic horizontal phase speed of the MW is opposite to the wind, cIH = −UH (i.e.,
westward if the wind is eastward). Additionally,

|𝜆z| = 2π|UH|
NB

. (5)

Thus, |𝜆z| is proportional to the background wind (e.g., Alexander & Teitelbaum, 2007). If |UH| increases
with altitude, then |𝜆z| increases as well, thereby allowing the MWs to propagate to higher altitudes before
dissipating.

We now check the consistency of the KMCM model data with equation (5). We set NB ∼ 0.01 rad/s in the
troposphere. From Figures 9a and 1, we estimate U ∼ 10 m/s and V ∼ 0, respectively, which yields 𝜆z = 6 km
from equation (5). This value is consistent with 𝜆z ∼ 6–7 km from our model data in Figures 7a and 8a.

We now wish to accurately determine the horizontal scales, phase speeds, and propagation directions of all
GWs at McMurdo, including those with small amplitudes. This is difficult to accomplish near the pole in geo-
physical coordinates, because the distance between adjacent longitudinal grid points decreases rapidly near
the pole. Although the MW parameters can be estimated from stereographic projections when they have
large amplitudes (e.g., Figure 10a), it is difficult to determine the parameters of smaller-amplitude GWs (such
as IGWs and secondary GWs), because they cannot be easily identified “by eye” in these figures.

Here we introduce a new technique that enables Fourier filtering in the horizontal direction in order to isolate,
identify, and quantify the parameters of all GWs. We first transform from geophysical coordinates to Cartestian
coordinates on a 2-D plane that is tangent to Earth at the desired location using a series of rotations, dot
products and cross products. This transformation is described in Appendix B. We then create an equally spaced
grid on this 2-D plane and populate the cells with interpolated values from the model data. Figure 10b shows
the results of transforming w from Figure 10a onto a 2-D plane that is tangent to Earth at McMurdo. This 2-D
plane has coordinates (x′′, y′′) and grid spacings Δx′′ = Δy′′ = 50 km. McMurdo is located at x′′ = y′′ = 0.
Positive x′′ (y′′) corresponds to the geophysical eastward (northward) directions at McMurdo only. Comparing
with Figure 10a, we see that this transformation technique works quite well, even ∼4,000 km from McMurdo.
Note that we can easily see the MWs excited parallel to the coastline at McMurdo.

In addition to w, we overlay vectors showing the horizontal wind, uH =
√

u2 + v2, at z = 4 km in Figure 10b,
as well as the topography in 0.5-km intervals. (Note that the wind vector is transformed to this 2-D plane via
equation (B11).) The wind at McMurdo is northeastward during this event. Additionally, the MWs begin part-
way down the slope, before the downslope wind reaches the Ross Sea. Supporting information A shows a
movie of uH at z = 4 km (vectors) and w at z = 16 km (colors) during 3–11 July. We see large-scale swirls
within the baroclinic waves that create temporally and spatially variable wind around and over Antarctica.
When the wind amplitude is small, upslope, or parallel to the coastline, MWs are not seen at McMurdo. How-
ever, when the wind is strong and has a large eastward component (i.e., downslope), MWs are generated
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Figure 11. The vertical velocity, w, (color contours) at z = 30 km and the horizontal wind, uH , (red arrows) at z = 4 km
on 5.18 July on a 2-D plane centered at McMurdo. The maximum value of uH is 60 m/s. The height of the topography
above sea level is shown as black lines in 0.5-km intervals from 50 m. The center of the white diamond is McMurdo.
Maximum and minimum values of w are shown at the top.

at McMurdo. Multiple significant events occur at McMurdo on 4.8–5.4, 6.9–8.6, 9.0–9.6, and 10.3–10.8 July.
Although the first event continues after 5.4 July, the MWs are swept downstream (eastward), out of McMurdo’s
field of view. The large-scale horizontal wind in Figure 10b is caused by synoptic-scale weather systems that
are comprised of baroclinic Rossby waves. These waves move in vortex-like patterns around the circumpolar
ocean surrounding Antarctica and also extend onto the Antarctic continent.

In Figures 9b and 9c, the baroclinic waves (seen in the zonal wind) are strong at z = 10 km but are weak
by z = 16 km. This is because the Rossby waves do not propagate into the stratosphere but grow to large
amplitudes in the troposphere, thereby generating horizontal accelerations/decelerations that lead to unbal-
anced flow and the excitation of IGWs (O’Sullivan & Dunkerton, 1995; Plougonven & Zhang, 2014; Zhang,
2004). Because the Rossby waves are strongest over the circumpolar ocean (Hendricks et al., 2014), IGW
generation from this mechanism is stronger there than over the Antarctic continent. These IGWs appear as
mesoscale fine structure (shorter than ∼1,000 km) in w within the circumpolar ocean surrounding Antarctica
(see supporting information A). These IGWs make up for ∼33% of the total density-weighted zonal mean
momentum flux (Vincent et al., 2007). Note that Wu and Jiang (2002) also observed substantial GW momen-
tum flux over the oceans surrounding Antarctica, although they did not diagnose their source. Finally,
Plougonven et al. (2008) showed that upward-propagating IGWs are created in the lower stratosphere from
the breaking of a large-amplitude MW; they postulated that these are larger-scale secondary GWs from body
forces from MW breaking.

Figure 11 shows uH (vectors) at z = 4 km and w at z = 30 km on 5.18 July. The MWs excited by the northeast-
ward downslope wind propagate to the stratopause region (see Figure 7a) and still have phase lines parallel
to the coastline. Additionally, large-amplitude MWs are visible over and in the lee of the Antarctic Peninsula
at x′′ ∼ 1,000–2,500 km and y′′ ∼ −4, 500 to −2, 000 km. These MWs have large amplitudes because the
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Rossby waves have a strong eastward wind component there. These hotspots (i.e., McMurdo and the Antarctic
Peninsula) were observed with the AIRS satellite (Hendricks et al., 2014; Hoffmann et al., 2013) and superpres-
sure balloon experiments (Vincent et al., 2007) and are also a general feature of the KMCM (Becker & Vadas,
2018). We also see some IGWs created from accelerations/decelerations associated with large-amplitude
Rossby waves over the circumpolar ocean surrounding Antarctica (Figure 11), although these IGWs are weak
at z > 25 km (see section 4.2.3).

Supporting information B shows a movie of uH at z = 4 km (vectors) and w at z = 30 km (colors) on 3–11 July.
Two large MW events reach z = 30 km during this time: 5.0–5.5 and 7.1–8.8 July. A smaller event occurs on
9.2–9.7 July. Note that MWs are nearly continuously present above and in the lee of the Antarctic Peninsula,
although their locations and amplitudes vary significantly in time. Additionally, MWs from the southern Andes
are often visible over the southern part of South America and in the Drake Passage (e.g., on 7.2–11 July).

4.2.2. Mountain Waves With Upward Phases in Time
It is known that a change in the background wind in time creates a change in the ground-based GW fre-
quency𝜔r in time (Eckermann & Marks, 1996; Senf & Achatz, 2011). If a GW propagates in the background wind
V(x) = (V1, V2, V3) = (U, V,W), then the change in its location x and wave number k in time t calculated along
the raypath is (Lighthill, 1978) as follows:

dxi

dt
= Vi +

𝜕𝜔Ir

𝜕ki
= Vi + cgi

, (6)

dki

dt
= −kj

𝜕Vj

𝜕xi
−

𝜕𝜔Ir

𝜕xi
, (7)

d𝜔r

dt
= ki

𝜕Vi

𝜕t
+

𝜕𝜔Ir

𝜕t
, (8)

where the components of the vector group velocity, cg, are cgi
= 𝜕𝜔Ir∕𝜕ki, and

𝜕𝜔Ir

𝜕xi
=

𝜕𝜔Ir

𝜕NB

𝜕NB

𝜕xi
+

𝜕𝜔Ir

𝜕

𝜕

𝜕xi
,

𝜕𝜔Ir

𝜕t
=

𝜕𝜔Ir

𝜕NB

𝜕NB

𝜕t
+

𝜕𝜔Ir

𝜕

𝜕

𝜕t
.

(9)

Here the indices i, j = 1, 2, 3 indicate the components of the vector quantities x, V, k, and cg, repeated indices
imply a summation, 𝜕∕𝜕ki are computed for fixed x and t, 𝜕∕𝜕xi are computed for fixed k and t, and 𝜕∕𝜕t are
computed for fixed k and x.

The MWs excited at McMurdo on 5 July are westward-propagating because they are excited by eastward
winds. If the background wind U is constant in time, the GW solution is stationary in time. This is stated math-
ematically as the GWs having ground-based zonal phase speed cx ≃ 0 and 𝜔r ≃ 0, where cx = 𝜔r∕k is the
ground-based zonal phase speed. The MW’s intrinsic zonal phase speed, cIx = cx − U, however, is not 0. If U
is constant in time, then cIx ∼ −U. However, if U increases significantly in time (i.e., 𝜕U∕𝜕t > 0) by the total
amount ΔU > 0 over the time Δt, then because k < 0 for westward GWs, equations (8) and (9) show that
d𝜔r∕dt = k𝜕U∕𝜕t < 0 (assuming 𝜕NB∕𝜕t = 𝜕∕𝜕t = 0). We assume that U is independent of x, y, and z in the
region where U increases. After U increases by ΔU, the change in the GW’s ground-based frequency (along
the raypath) is then

Δ𝜔r ≃ kΔU. (10)

Since ΔU > 0, this causes 𝜔r to become negative. Since a GW’s phase is mz −𝜔rt (at a fixed location), the slope
of the phase line in a z − t plot is

dz
dt

=
𝜔r

m
. (11)

Therefore, 𝜔r becoming negative has the result that the upward-propagating MW (negative vertical wave
number, positive intrinsic frequency) now has an upward phase in time in the ground-based reference frame
(i.e., dz

dt
> 0). This ramp-up effect was also mentioned in Yamashita et al. (2009). Because this effect involves an

acceleration of the background wind, it is somewhat different from the effect that 𝜔r can have the opposite
sign of 𝜔Ir if UH is comparable to or larger than the GW intrinsic phase speed (Fritts & Alexander, 2003).
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In addition to the change in 𝜔r , the MW will also gain a nonzero ground-based phase speed. From
equation (10), the total change in cx along the raypath over the time Δt is

Δcx = Δ𝜔r∕k ∼ ΔU. (12)

Therefore, a westward MW will gain an eastward ground-based phase speed and an upward phase in time if
U increases in time. This will result in the MW being swept downstream in time.

As an example, U increases from 20 to 37 m/s over Δt = 12 hr on 4.5–5.0 July at z = 10 km at McMurdo
(see Figure 9b). This yields ΔU = 17 m/s and an average acceleration of 𝜕U∕𝜕t ∼ 1.4 m⋅s−1⋅hr−1. We assume
that this increase in U occurs at all heights equally at z ≥ 10 km. Assuming 𝜆H = 230 km and zonal propaga-
tion, the total change in the GW’s ground-based frequency over Δt (along the GW raypath) for z ≥ 10 km is
Δ𝜔r ≃ kΔU ∼ −4.6 × 10−4 rad/s. For z < 10 km, the quasi-stationary MW has a downward phase in time (see
Figures 5a, 5b, and 7), with 𝜏r ∼ 9 hr (or𝜔r = 1.9×10−4 rad/s) and cx = −7.1 m/s. (Note that this MW likely has a
nonzero ground-based zonal phase speed because the downslope wind varies in time.) After propagating to
z ≥ 10 km, we estimate a ground-based frequency of 𝜔r ∼ (1.9−4.6) ×10−4 rad/s ∼ −2.7×10−4 rad/s, which
corresponds to 𝜏r ∼ −6.5 hr. This is quite similar to the observed value of 𝜏r ∼ −(7–8) hr for z ∼ 10–15 km (see
Figures 5a and 5b). Note that the change in sign for𝜔r corresponds to a shift from downward to upward phases
in time at z ≥ 10 km (see equation (11)). Additionally, we predict an eastward change in the ground-based
zonal phase speed (along the GW raypath) of Δcx ∼ ΔU ∼ 17 m/s from equation (12), which results in an
eastward phase speed of cx ∼ (−7.1 + 17.0)m/s ∼ 10 m/s at z ≥ 10 km. We will see in section 4.2.3 that this
estimate for cx agrees quite well with the model result.
4.2.3. Horizontal Parameters of Primary GWS in the Lower Stratosphere
We now determine the horizontal parameters (i.e., 𝜆H, cH, and direction of propagation) of the primary GWs
in the lower stratosphere at McMurdo. Figures 12a and 12b show u′ at z = 20 km on 5.0 July for GWs with
upward and downward phases in time, respectively. Large-amplitude MWs with upward phases in time and
𝜆H ≃ 230 km are seen at McMurdo. Figures 12c and 12e show “keograms” of u′ as functions of time and x′′

at y′′ = −22 km, and Figures 12d and 12f show keograms of u′ as functions of time and y′′ at x′′ = −0.6 km.
The MWs have large amplitudes of u′ ∼ 3 m/s, 𝜏r ∼ 8–9 hr, and cx ∼ 9 m/s on 5.0–5.6 July at x′′ = 0–500 km
(the solid line in Figure 12c highlights an MW phase line). The value of cx agrees well with the predicted value
in section 4.2.2. Additionally, smaller-amplitude IGWs with upward and downward phases in time are seen
with u′ ∼ 0.5–1 m/s, cx ∼ 50 m/s, cy ∼ 50 m/s, and 𝜏r ∼ 5–6 hr (the dashed lines in Figures 12c–12f highlight
several IGW phase lines).

The horizontal phase speed of a GW is

cH =
𝜔r

kH
= 1√

(k∕𝜔r)2 + (l∕𝜔r)2
= 1√

1∕c2
x + 1∕c2

y

, (13)

where cx and cy are the speeds of the GW phase in the x and y directions, respectively (e.g., from a keogram):
cx = 𝜔r∕k = 𝜆x∕𝜏r and cy = 𝜔r∕l = 𝜆y∕𝜏r . Since cH = 𝜔r∕kH = 𝜆H∕𝜏r ,

𝜆H =
𝜏r√

1∕c2
x + 1∕c2

y

. (14)

For the MW (assuming zonal propagation), we predict 𝜏r = 𝜆H∕cx ≃ 7.1 hr at z ∼ 20 km, which agrees well with
the valued obtained from Figure 12c. For the IGWs (𝜏r ∼ 5–6 hr), we estimate cH ∼ 35 m/s from equation (13),
and 𝜆H ∼ 600 to 800 km from equation (14). Note that 𝜆x = 𝜏rcx ∼ 𝜆y ∼ 900 to 1,080 km. This range of 𝜆H

is typical for IGWs from unbalanced flow associated with large Rossby wave amplitudes (Nicolls et al., 2010;
O’Sullivan & Dunkerton, 1995).

We apply 2-D FFTs on selected horizontal slices of u′ at z = 20 km and extract those GWs with 𝜆H =
400–2,000 km in order to remove the large-amplitude MWs. Figure 13a shows the inverse FFT on 4.0 July.
Although MWs are no longer present, it is difficult to see the individual GWs because of constructive and
destructive interference. Figures 13b and 13c show the result where we filter for k∕l > 0 (southwestward- or
northeastward-propagating GWs) and k∕l < 0 (northwestward- or southeastward-propagating GWs), respec-
tively, before applying the inverse FFT. GW packets are now easily seen. Rows 2 and 3 show the corresponding
results on 5.0 and 6.0 July, respectively. In order to determine the propagation directions of the GW packets,
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Figure 12. u′ at z = 20 km on a 2-D plane centered at McMurdo. Gravity waves (GWs) with upward (a) and downward
(b) phases in time on 5.0 July. (c) u′ as function of time and x′′ at y′′ = −22 km for GWs with upward phases in time.
The solid black line shows cx = 9 m/s. (d) u′ as function of time and y′′ at x′′ = −0.6 km for GWs with upward phases in
time. (e, f ) Same as (c) and (d) but for GWs with downward phases in time. The dashed black lines in (c) and (e) show
cx = 50 m/s. The dashed black lines in (d) and (f ) show cy = ±50 m/s. The maximum value in (c) is u′ ∼ 3 m/s. The white
diamonds and triangles in (a) and (b) are centered at McMurdo and the Antarctic Peninsula (at 50∘W and 73∘S),
respectively.

we show separate keograms in Figure 14. The IGWs with k∕l > 0 propagate northeastward on 4.0–4.7 July at

McMurdo with 𝜏r ∼ 5–6 hr. These IGWs are located at x′′ = − 2,500 to 200 km and y′′ = − 2,000 to 500 km with

𝜆H ∼ 500–700 km in Figures 13b and 13e. Comparing with Figure 11, we conclude that these IGWs are created

from Rossby waves over the circumpolar ocean at x′′ ∼ − 3,500 to −1,500 km and y′′ ∼ − 3,500 to −2,500 km.

From Figures 14b and 14d, the IGWs with k∕l <0 propagate southeastward on 4.0–5.3 July at McMurdo with

𝜏r ∼ 5–6 hr. These IGWs are located at x′′ = − 1,500 to 1,000 km and y′′ = − 2,000 to 1,500 km with 𝜆H ∼ 500

to 800 km in Figures 13c and 13f. These IGWs are also created from Rossby waves over the circumpolar ocean,

although their source region is located at x′′ = − 3,000 to −2,000 km and y′′ = 1,000 to 2,000 km in Figure 11.
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Figure 13. u′ at z = 20 km on a 2-D plane centered at McMurdo for gravity waves with 𝜆H = 400 to 2,000 km. Row 1: 4.0 July. Left to right panels show u′, u′

Fourier filtered so that k∕l > 0, and u′ Fourier filtered so that k∕l < 0, respectively. Rows 2 and 3: Same as row 1 but for 5.0 and 6.0 July, respectively.
Maximum and minimum values of u′ are shown at the top of each panel. The height of the topography above sea level is shown as black lines in 0.5-km
intervals from 50 m.

Figure 15a shows u′
√
�̄�∕�̄�0 at McMurdo for all GWs for z = 6 to 36 km on 4–6 July. (As before, these GWs

have periods <11 hr.) Figure 15b shows the result for GWs with 165 < 𝜆H < 400 km. Strong MW activity is
seen, with downward/upward phases in time for z < 10 km (z > 10 km). Figure 15c shows the result for GWs
with 400<𝜆H <2,000 km. While strong IGW activity is present in the troposphere and lower stratosphere with
𝜆z ∼ 5–10 km, it is small for z > 25 km, thereby implying that most of the IGWs dissipate below z ∼ 20–25 km.
This can also be seen from v′ in Figure 5c. Figure 15d shows the result for GWs with 2,000 < 𝜆H < 5,050 km.
Although these GWs may be generated at z ∼ 13 km (possibly from Rossby waves), most appear to reflect
downward at z ∼ 20–25 km.
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Figure 14. Keograms of u′ at z = 20 km for gravity waves (GWs) with 𝜆H = 400 to 2,000 km. (a): u′ as a function of time
and x′′ at y′′ = −22 km for GWs with k∕l > 0. (b): Same as (a) but for GWs with k∕l < 0. (c): u′ as a function of time and
y′′ at x′′ = −0.6 km for GWs with k∕l > 0. (d): Same as (c) but for GWs with k∕l < 0. McMurdo is located at x′′ = y′′ = 0.

4.2.4. Dissipation of Mountain Waves in the Stratosphere
As noted previously, during most of July, most of the MWs dissipate at z ∼ 10–20 km (see Figure 3). During
strong events, however, MWs can propagate to z ∼ 40–60 km. This occurs on 4.5–6 and 7–11 July, for example
(see Figure 5d). In section 4.1 we noted that strong dissipation rates at z ∼ 40–70 km (black contour lines
in Figure 7) indicate wave instability and wave-mean-flow interaction during MW events, because both the
horizontal and vertical turbulent diffusion coefficients in the KMCM depend on the Richardson number, Ri ,
giving rise to strong wave damping for Ri < 0.25 (Becker, 2009). Here we further illustrate the instability of the
MWs at McMurdo in terms of the saturation condition, which is a weaker condition for wave instability than
the Ri criterion utilized in the turbulence model of the KMCM.

Figure 16 shows T ′ on 4–7 July at McMurdo. At z ∼ 50–70 km, the temperature perturbations are large: T ′ ∼
5–15 K. The condition for convective instability of a stationary monochromatic MW yields the temperature
amplitude (Lindzen, 1981; McFarlane, 1987)

T ′
break ∼

(
dT̄
dz

+ Γa

)
U

NB
(15)

where Γa is the adiabatic lapse rate (Γa = 9.8 K/km). We overplot T ′
break in Figure 16. T ′ ∼ T ′

break on 4.4–5.1
July at z ∼ 50–70 km, which implies that strong GW damping by turbulent diffusion (corresponding to GW
breaking in the real atmosphere) and the accompanying body forces have very likely occurred there. Impor-
tantly, we note that T ′ ∼ T ′

break occurs slightly before the occurrence of the fishbone structures in Figure 5 at
z ∼ 40–70 km on 4.8–5.5 July.

4.3. Secondary GWS at McMurdo in the Stratosphere
4.3.1. Fishbone Structures and Partial Concentric Rings in GW Perturbations
As mentioned previously, fishbone structures are frequently seen at z ∼ 30–60 km on 4.5–11 July in
Figure 5. Theory shows that fishbone structures occur in z-t plots when secondary GWs propagate away
from the horizontal body force, which generates them, and when the observer is horizontally displaced from
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Figure 15. u′
√
�̄�∕�̄�0 at McMurdo. (a) Gravity waves (GWs) with 165 < 𝜆H < 5,050 km. (b) GWs with 165 < 𝜆H < 400 km.

(c) GWs with 400 < 𝜆H < 2,000 km. (d) GWs with 2,000 < 𝜆H < 5,050 km.

the force (see Figure 6). Because body forces are created from the dissipation of GWs, we now investigate
in detail if the fishbone structures seen in Figure 5 are indeed secondary GWs generated from body forces.
Figure 17a shows w at z = 30 km and uH at z = 4 km on 9.31 July. At this time, strong northeastward downs-
lope winds excite MWs that propagate well into the stratosphere. Another MW event that occurs on 8.09 July is
depicted in Figure 17b and will be discussed in section 4.3.4. In the following, we concentrate on the MW event
on 9–11 July.

Figure 16. T ′ at McMurdo (color contours). Black contour lines show T ′
break

from equation (15) in 10-K intervals.
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Figure 17. w at z = 30 km (color contours) ranging from −0.2 to 0.2 m/s.
uH is shown at z = 4 km as red arrows, with lengths proportional to the
maximum horizontal wind. McMurdo is located at x′′ = y′′ = 0. (a) 9.31 July.
(b) 8.09 July. Maximum and minimum values of w and uH are shown at the
top of each panel.

Figure 18a shows a close-up of u′
√
�̄�∕�̄�0 at z = 30–60 km. The fishbone

structure occurs from 9.5 to 10.75 July, with an average knee altitude of

z ∼ 46 km. The GWs below and above the knee have𝜆z ∼ 18–25 km; these

values are nearly twice as large as those for the MWs at z ∼ 30–50 km

of 𝜆z ∼ 12 km (see Figure 7). Figure 18b shows the same GWs from

Figure 18a but having 165< 𝜆H < 700 km. Although MWs and small-scale

GWs are present, they do not contribute significantly to the fishbone

structure. Figures 18c and 18d show GWs with 700 < 𝜆H < 3,000 km and

3,000 < 𝜆H < 5,050 km, respectively. Most of the fishbone structure is

created from GWs with 700 < 𝜆H < 3,000 km.

Figures 19a–19c show horizontal cross sections of u′
√
�̄�∕�̄�z=50 for GWs

with 700 < 𝜆H <3,000 km on 9.5 July at z = 42, 46, and 50 km, respectively.

Here �̄�z=50 denotes �̄� evaluated at z = 50 km. Rows 2–4 show the same

quantities but on 9.75, 10.0, and 10.25 July, respectively. Dozens of partial

concentric ring structures are visible in Figure 19; black arrows highlight a

few of the most prominent structures. Perhaps the clearest ring structure is

located at x′′ = −1,000 to 1,000 km and y′′ = 0 to 2,500 km on 10.25 July at

z = 46 km, with a yellow (blue) inner (outer) ring. The center of these rings

are located at x′′ ∼ −100 to −200 km and y′′ ∼ 1,200 km. These partial

ring structures are an important clue for the presence of secondary GWs

from body forces, since secondary GWs excited by body forces have par-

tial concentric ring structures in a uniform background wind (Vadas & Liu,

2009, 2013; Vadas et al., 2003, 2018), as shown earlier (see Figure 6b). (To

our knowledge, only body forces and heat/coolings can excite GWs with

concentric ring structure in the middle atmosphere.) Furthermore, the last

row in Figure 19 indicates that in the region from x′′ = − 1,000 to 2,000 km

and y′′ = − 1,000 to 1,000 km, the GW phases are aligned from southwest

to northeast and have similar horizontal wavelengths below (panel j)

and above (panel l) the knee of the fishbone structure in Figures 18a and

18c, which is located at zknee ∼ 46 km at and after 10 July. This is another

indication that these GWs are secondary GWs generated by a body force

at ∼46 km. Note that the partial concentric ring structures are only notice-

able near the center of the structures; this is likely due to wind filtering

(see below). Indeed, it is likely that because of wind filtering, only a few

GWs with curved wavefronts not arising from deep convection have been

observed in the MLT (Vargas et al., 2016).

To obtain quantitative estimates of the horizontal phase speeds and prop-

agation directions of the secondary GWs, Figure 20 shows keograms of

u′
√
�̄�∕�̄�z=50 for the GWs with 700 < 𝜆H < 3,000 km. Figures 20a and 20b

are ∼4 km below the knee, while Figures 20c and 20d are ∼4 km above the

knee. From Figures 20a and 20c, the GWs above and below the knee propagate eastward on 9.0–11.0 July at

McMurdo, with similar values of 𝜏r ∼ 9–10 hr and cx = 90-100 m/s. From Figures 20b and 20d, GWs above and

below the knee propagate northward on 9.0–10.2 July and southward on 9.5–11.0 July at McMurdo. For the

southward GWs on 9.5–11.0 July, the GWs below and above the knee have similar values of 𝜏r ∼ 9–10 hr and

cy = −50 to −70 m/s. The overlap of northward and southward-propagating GWs at McMurdo can be seen on

10.0 July at z = 42 and 50 km in Figures 19g and 19i; here the northeastward-propagating GWs are located at

x′′ ∼ −2,000 to 2,000 km and y′′ ∼− 1,000 to 2,000 km, while the southeastward-propagating GWs are located

at x′′ ∼ − 1,000 to 2,500 km and y′′ ∼ − 2,500 to 1,000 km. Thus, there are two separate GW packets propa-

gating in different directions at this time over McMurdo. After 10.2 July, only southeastward-propagating GWs

are seen over McMurdo (see Figures 19j and 19l).
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Figure 18. u′
√
�̄�∕�̄�0 at McMurdo. (a) Gravity waves (GWs) with 165 < 𝜆H < 5,050 km. (b) GWs with 165 < 𝜆H < 700 km.

(c) GWs with 700 < 𝜆H < 3,000 km. d) GWs with 3,000 < 𝜆H < 5,050 km.

We now determine cH and 𝜆H for the southeastward GWs on 10.0–10.75 July. Below the knee, we use
cx = 100 m/s, cy = −70 m/s, 𝜏r = 10 hr, and equation (13) to obtain cH = 57 m/s and 𝜆H = cH𝜏r ∼ 2,050 km.
Additionally, the azimuth of propagation is

Υ = tan−1
(k

l

)
= tan−1

( cy

cx

)
, (16)

which yields Υ = 145∘ east of north or southeastward. Above the knee, we use cx = 90 m/s, cy = −50 m/s,
and 𝜏r = 10 hr to obtain cH = 44 m/s, 𝜆H ∼ 1,600 km and Υ = 151∘. The striking similarity in 𝜆z , 𝜏r , 𝜆H, cH,
and Υ below and above the knee, and the fact that 𝜆H is much larger than that of the MWs, strongly indicates
that the GWs in the fishbone structure in Figure 18 are secondary GWs created by a single body force (Vadas
et al., 2018).

The reason that no westward-propagating GWs are seen in Figures 20a and 20c is because the structure of
the background wind favors eastward-propagating GWs. The secondary GWs are excited near the peak of
the polar night jet, where the eastward wind is large. In this frame of reference, the eastward and westward
GWs are created with equal intrinsic phase speeds for each |k|, |m|, and 𝜔Ir (Vadas et al., 2003). However, the
eastward secondary GWs have much larger ground-based phase speeds than the westward secondary GWs.
Below and above the excitation altitude, the eastward background wind decreases significantly. Relative to
the wind at the excitation altitude, this is akin to the secondary GWs propagating through an increasing
“westward wind.” This causes the westward (eastward) propagating secondary GWs to have decreasing
(increasing) |𝜆z| and leads to the westward secondary GWs breaking and/or reaching critical levels and dis-
sipating closer to the body force than the eastward secondary GWs. For the upward-propagating secondary
GWs, this leads to the westward secondary GWs dissipating at lower altitudes than the eastward secondary
GWs, as was seen in Becker and Vadas (2018).
4.3.2. Secondary GWS Excited by a Body Force From MW Dissipation
We now estimate the location of a body force that could have excited the southeastward secondary GWs
in the fishbone structure after about 9.5 July (see Figure 18). As is well known, GWs propagate horizontally
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Figure 19. Gravity waves with 700 < 𝜆H < 3,000 km. McMurdo is located at x′′ = y′′ = 0. Row 1: 9.5 July. The left panel shows u′∕(0.53) at z = 42 km, the middle
panel shows u′∕(0.75) at z = 46 km, and the right panel shows u′ at z = 50 km. Here

√
�̄�z=50∕�̄�z=42 = 0.53 and

√
�̄�z=50∕�̄�z=46 = 0.75. Rows 2–4: Same as in row

1 but on 9.75, 10.0, and 10.25 July, respectively. Arrows show locations and times for important gravity wave features (see text). Maximum and minimum values
are shown at the top of each panel.
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Figure 20. Keograms for gravity waves with 700 < 𝜆H < 3,000 km. (a): u′∕(0.53) at z = 42 km and y′′ = 0, where√
�̄�z=50∕�̄�z=42 = 0.53. The dashed line shows cx = 100 m/s. (b): u′∕(0.53) at z = 42 km and x′′ = 0. The dashed line

shows cy = −70 m/s. (c) u′ at z = 50 km and y′′ = 0 . The dashed line shows cx = 90 m/s. (d) u′ at z = 50 km and x′′ = 0.
The dashed line shows cy = −50 m/s.

and vertically at the same time (Hines, 1960). If the background wind (U, V) is approximately constant along
the raypath, then a GW propagates at an angle 𝜂 from the horizontal of (Vadas et al., 2009):

sin(𝜂) ≃ 𝜏B∕𝜏Ir, (17)

where 𝜏Ir = 2𝜋∕𝜔Ir = 2𝜋∕(𝜔r−kU− lV) is the intrinsic period and 𝜏B = 2π∕NB is the buoyancy period. Inserting
the midfrequency GW dispersion relation (given by equation (2)) into equation (17), we obtain

𝜂 ≃ sin−1(|𝜆z|∕𝜆H). (18)

From Figure 18c, the secondary GWs above the knee at 9.75 July have |𝜆z| ∼ 18 km. Using 𝜆H ∼ 1,600 km,
we estimate 𝜂 ∼ 0.6∘. Because the vertical distance traveled from z = 46 km to z = 50 km is Δz ∼ 4 km,
we estimate that the secondary GWs at z = 50 km over McMurdo would have propagated the horizontal
distance ΔL ∼ Δz∕ tan 𝜂 ∼ 400 km away from the center of the body force and that the body force would
have occurred 400 km∕cH ∼ 2.5 hr (or 0.1 day) earlier. Here we have used cH = 44 m/s.

Figure 21 shows w at z = 16, 30, and 42 km on 9.5, 9.75, 10.0, and 10.25 July, and Figure 22 shows w at z = 46,
60, and 76 km at the same times. On 9.5–9.75 July, relatively stationary MWs are seen at z ∼ 16–60 km.
(Note that it is because these MWs have relatively stationary phases in time that filtering GWs with 𝜏r ≥ 11 hr
removed most of their signal on 9.5–10.25 July in Figures 5a, 5b, and 5c.) At later times, little MW activity
is seen at z > 40 km. On 9.5 July in particular, MWs are strong 100− 1,000 km northwest of McMurdo from
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Figure 21. (a) w at z = 16 km on 9.5 July (color contours from −0.02 to 0.02 m/s). White solid (dashed) lines indicate positive (negative) zonal body force in
0.05-m⋅s−1⋅day−1 intervals. The black diamond shows McMurdo. (b) Same as in (a) but at z = 30 km; w ranges from −0.1 to 0.1 m/s, and the body force intervals
are 0.2 m⋅s−1⋅day−1. (c) Same as in (a) but at z = 42 km; w ranges from −0.4 to 0.4 m/s, and the body force intervals are 1.5 m⋅s−1⋅day−1. Row 2: Same as in
row 1 but on 9.75 July. Row 3: Same as in row 1 but on 10.0 July. Row 4: Same as in row 1 but on 10.25 July. Maximum and minimum values of w (in m/s) and the
body force (in m⋅s−1⋅day−1) are shown at the top of each panel.
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Figure 22. (a) w at z = 46 km on 9.5 July (color contours from −0.6 to 0.6 m/s). White solid (dashed) lines show positive (negative) values of the body force in
3.0-m⋅s−1⋅day−1 intervals. The black diamond shows McMurdo. (b) Same as in (a) but at z = 60 km; w ranges from −1.0 to 1.0 m/s, and the body force intervals
are 12 m⋅s−1⋅day−1. (c) Same as (a) but at z = 76 km; w ranges from −1.0 to 1.0 m/s, and the body force intervals are 17 m⋅s−1⋅day−1. Row 2: Same as in row 1
but on 9.75 July. Row 3: Same as in row 1 but on 10.0 July. Row 4: Same as in row 1 but on 10.25 July. Maximum and minimum values of w (in m/s) and the body
force (in m⋅s−1⋅day−1) are shown at the top of each panel.
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z = 16 to z = 42 km. At z = 46 km, the MWs are weaker at y′′ > 500 km. At z = 60 km, there are no
MWs 400–1,000 km northwest of McMurdo (Figure 22b), although there are still MWs closer to McMurdo. At
z = 76 km, no MWs are seen (Figure 22c). This implies that the MWs 400–1,000 km northwest of McMurdo
dissipated at 42 < z < 60 km on 9.5 July.

To determine the body force resulting from the dissipation of these MWs, we calculate the pseudo momen-
tum flux convergence (see equation (1)). Since the MWs propagate mainly zonally, it is sufficient to compute
the zonal component, Fx . We define the mean components (�̄�, U, V , W , T̄) at each grid point by applying a
750 km × 750 km horizontal average that is centered at each grid point. The scale of this horizontal aver-
age corresponds to ∼3𝜆H for the MWs. The MW-related wind perturbations are then defined as u′ = u − U,
v′ = v −V , w′ = w −W , and T ′ = T − T̄ , and the zonal pseudo momentum flux, (u′w′ − f

Cp

g
T ′v′), is computed

by applying a centered horizontal average of 450 km × 450 km to (u′w′ − f
Cp

g
T ′v′) at each grid point. The

vertical derivative is computed using a centered finite differencing in z. The resulting zonal body force is shown
in Figures 21 and 22 with white contour lines (note the different contour intervals for the different panels).
Overall, there is huge variety in amplitude and location of the body forces, which at z = 60 and 76 km also
include the effects of dissipating secondary GWs (Becker & Vadas, 2018).

We now focus on 9.50 July at z = 46 km (Figure 22a). There is a significant westward body force of
∼28 m⋅s−1⋅day−1 located ∼400 km northwest of McMurdo at (x′′, y′′) =(−150,400) km. This force is cre-
ated by the dissipation of the (westward) MWs. There is also an eastward body force of ∼32 m⋅s−1⋅day−1

located ∼700 km northeast of McMurdo. This change in sign of the body force can be explained by the
transient change in cx (see equation (12)) caused by the acceleration/deceleration of the mean wind due to
synoptic-scale tropospheric Rossby waves as discussed earlier in this paper. Note, however, that the mean
body force in the stratosphere over McMurdo for the present model simulation is westward, as expected (see
Figures 5 and 8 in Becker & Vadas, 2018).

According to theory (Vadas et al., 2003, 2018), a westward body force excites eastward- and westward-
propagating secondary GWs, which radiate away from the body force like dual “headlights”; other than purely
northward or southward, secondary GWs are excited in all directions (see Figure 6b). Thus, the southeastward
GWs in the fishbone structure in Figures 18–20 could have been created by the westward body force north-
west of McMurdo on 9.5 July (Figure 22a). In conclusion, the altitude, location, and time of this body force
agree well with our previous estimate that the secondary GW source occurred 0.1 days earlier at z ∼ 46 km
and ΔL ∼ 400 km northwest of McMurdo.
4.3.3. Comparison of Secondary GW Scales With Body Force Scales
We now investigate if the secondary GW horizontal and vertical wavelengths and periods as determined from
the horizontal velocity perturbations agree with the spatial and temporal extents of this body force. The hori-
zontal extent of the body force is LH ∼ 800 km from Figure 22a. This agrees well with the horizontal wavelength
of the secondary GWs, 𝜆H ∼ 1,600–2,050 km, because even though the secondary GW spectrum is broad, it
peaks at 𝜆H ∼ 2LH in the horizontal velocity spectrum for a force duration of 𝜒 < 6 hr (Vadas et al., 2018).
The vertical extent of the body force is coarsely estimated from Figures 21 and 22 to be Lz ∼ 8 km, since
half of the force extends from z ∼ 42 to 46 km. This agrees with the vertical wavelength of the secondary
GWs, 𝜆z ∼ 18–25 km, because although the secondary GW spectrum is broad, it peaks at 𝜆z ∼ 2.5Lz in the
horizontal velocity spectrum for a force duration of 𝜒 < 6 hr (Vadas et al., 2018).

We now determine the so-called characteristic period of the body force, 𝜏c, by assuming that the dominant GW
excited by this force (if impulsive) would have wavelengths that are twice the widths and depth of the force:|𝜆x| ∼ 2Lx , |𝜆y| = 2Ly and |𝜆z| ≃ 2Lz , where Lx and Ly are the full zonal and meridional extents of the force,
respectively. Thus, 𝜏c is the period of this assumed dominant GW. We substitute Lx = 4.5𝜎x , Ly = 4.5𝜎y and
Lz = 4.5𝜎z into equation (3.3) of Vadas et al. (2003). The characteristic period of the body force is then

𝜏c = 2π
⎡⎢⎢⎢⎣

L−2
x + L−2

y + L−2
z(

L−2
x + L−2

y

)
N2

B + L−2
z f 2

⎤⎥⎥⎥⎦
1∕2

= 2π

[
2L−2

H + L−2
z

2L−2
H N2

B + L−2
z f 2

]1∕2

, (19)

where the second expression holds if LH = Lx = Ly . As before, f = 2Ω sin 𝜃, 𝜃 is latitude and Ω = 2𝜋∕24 hr is
Earth’s rotation rate. Using 𝜃 = −80∘, we obtain f = −0.00014 rad/s, which corresponds to an inertial period
of |2π∕f | = 12.5 hr. Assuming NB = 0.02 rad/s and using LH = 800 km and Lz = 8 km, we obtain 𝜏c = 5.5 hr.
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Figure 23. Same as in Figure 21 but for 8.312 July (row 1), 8.562 July (row 2), 8.812 July (row 3), and 9.062 July (row 4). Color contour ranges for w are −0.05 to
0.05 m/s, −0.2 to 0.2 m/s, and −1 to 1 m/s at z = 16, 30, and 42 km, respectively. The body force intervals are 0.08, 0.9, and 7 m⋅s−1⋅day−1 at z = 16, 30, and
42 km, respectively.
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Figure 24. Same as in Figure 22 but for July 8.312 (row 1), 8.562 July (row 2), 8.812 July (row 3), and 9.062 July (row 4). Color contour ranges for w are −2 to 2 m/s,
−2 to 2 m/s, and −1 to 1 m/s at z = 46, 60, and 76 km, respectively. The body force intervals are 12, 32, and 16 m⋅s−1⋅day−1 at z = 46, 60, and 76 km, respectively.
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Figure 25. Same as Figure 3 but for 8–11 July at z = 60–100 km.

If 𝜒 <𝜏c, the secondary GW spectrum peaks at 𝜏Ir ∼ 𝜏c; whereas if 𝜒 > 𝜏c, the secondary GW spectrum peaks

at 𝜏Ir ∼ 𝜒 , since the higher-frequency GWs are cutoff (Vadas et al., 2003). We estimate 𝜒 very roughly to be

𝜒 <12 hr from Figures 22a and 22d (since the westward force is gone in Figure 22d).

We now estimate the intrinsic period, 𝜏Ir of the southeastward-propagating secondary GWs. These GWs are

created in the reference frame of the background wind at the excitation altitude with intrinsic horizontal

phase speeds of cIH = 𝜔Ir∕kH = 𝜆H∕𝜏Ir = cH − UH. At z ∼ 46 km, U ∼ 30 m/s and V ∼ 0 on 9.5 July from

Figure 1. Therefore, the background wind in the southeastward direction is UH ∼ 15 m/s. Since cH ∼50 m/s,

cIH ∼35 m/s, which corresponds to 𝜏Ir = 𝜆H∕cIH ∼14 hr. Since 𝜏Ir ≤ 2𝜋∕f , we estimate 𝜏Ir ∼ 12.5 hr. This agrees

with the rough estimate from the previous paragraph.

VADAS AND BECKER 9357



Journal of Geophysical Research: Atmospheres 10.1029/2017JD027974

Figure 26. T ′√�̄�∕�̄�0 at McMurdo for gravity waves (GWs) with downward phases in time. (a) GWs with
165 < 𝜆H < 5,050 km. (b) GWs with 165 < 𝜆H < 1,000 km. (c) GWs with 1,000 < 𝜆H < 3,000 km. (d) GWs with
3,000 < 𝜆H < 5,050 km.

In conclusion, we have shown that the southeastward-propagating secondary GWs in the fishbone structure
on 9.5–10 July at z ∼ 30–60 km were likely generated by the body force ∼400 km northwest of McMurdo at
z ∼ 46 km, 2.5 hr earlier. We also showed that this body force was created by MW dissipation.
4.3.4. Prevalence of Fishbone Structures and Body Forces in the Stratosphere
Fishbone structures occur from z ∼ 30–60 km at many times and altitudes in Figures 5 and 7. This suggests
that secondary GWs and body forces are prevalent in the stratosphere. For example, for the MW event on
7.0–8.5 July, secondary GWs can be seen starting on 7.0 July at lower altitudes in Figure 7 and increasing by
∼10 km in altitude by 8.0 July. Figure 17b shows w at z = 30 km and uH at z = 4 km on 8.09 July. At this time,
there are northeastward (downslope) winds west of McMurdo, which excite MWs that propagate to z = 30 km.
Figure 23 shows w at z = 16, 30, and 42 km on 8.312, 8.562, 8.812, and 9.062 July, and Figure 24 shows w at
the same times at z = 46, 60, and 76 km. As before, MWs are seen northwest to northeast of McMurdo for
z = 16 to 60 km, although their amplitudes decrease rapidly above 42 km. These MWs are strong on 8.312 and
8.562 July and decrease rapidly after this time. The body forces on 8.312 and 8.562 July are mainly westward
at z = 16 to 60 km. These body forces occur often around McMurdo at z ∼ 30–60 km, with amplitudes up
to several hundred m⋅s−1⋅day−1. Although we do not investigate the resulting secondary GWs here because
of lack of space, they likely have significant amplitudes (see Figure 7) and can cause significant variability and
affect the mean circulation at higher altitudes (Becker & Vadas, 2018).

4.4. Secondary GWS in the Mesosphere at McMurdo
Figure 25 shows T ′, u′, and v′ (as defined in section 3 according to filtering in frequency space) scaled by√
�̄�∕�̄�0 at z = 60–100 km on 8–11 July at McMurdo. We see that many of the phase lines that are downward

in time at z = 60 km in Figures 5 and 18 (corresponding to upward-propagating secondary GWs) extend up
to z = 100 km in Figure 25. For example, extensions are seen on 9.1–9.7 July in Figure 25a, 9.5–10.5 July in
Figure 25b, and 9.3–11 July in Figure 25c.
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Figure 27. Gravity waves with downward phase lines in time having 1,000 < 𝜆H < 3,000 km. Row 1: 9.75 July. The left panel shows T ′∕(0.21) at z = 70 km,
the middle panel shows T ′∕(0.45) at z = 80 km, and the right panel shows T ′ at z = 90 km. Here

√
�̄�z=90∕�̄�z=70 = 0.21 and

√
�̄�z=90∕�̄�z=80 = 0.45. Rows 2–4:

Same as in row 1 but on 9.875, 10.0, and 10.12 July, respectively. Maximum and minimum values of the plotted quantity are shown at the top of each
panel.
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If a phase line extends uniformly and continuously from z = 60 to 100 km as seen by a vertically pointing
observer (such as in Figure 25), then this phase line does not “map out” a single monochromatic GW unless|𝜆z|> 40 km; instead, it maps out the z-t profile of a spectrum of GWs excited by the same coherent source,
such as occurs in Figure 6a. This is because a GW propagates obliquely to the zenith (see equation (18)); if an
upward-propagating GW is seen by an observer at z = 60 km and has |𝜆z| << 40 km, then this GW is out of the
field of view of the observer (horizontally) at z ∼ 60 km + |𝜆z|. However, at that altitude, a higher-frequency,
faster GW from the same source is then visible. Because the GWs are from the same coherent source, the GW
phase lines are continuous with altitude (as in Figure 6a). (Note that in Figure 6a, |𝜆z| clearly increases with
altitude; this is not a wind effect because the background wind is 0.)

Figure 25 also shows that the GWs at z ∼ 90 km have |𝜆z| ∼ 20–40 km and 𝜏r ∼ 2.5–9 hr. These values are
consistent with Chen et al. (2016). Note that the GW amplitudes decrease above z > 90 km because the GWs
dissipate there from horizontal and vertical turbulent diffusion when the Richardson number is Ri < 0.25. This
is caused mainly by the background tidal wind variations (Becker & Vadas, 2018).

Figure 26a shows T ′
√
�̄�∕�̄�0 for all GWs with downward phases in time at z = 60–100 km. Figures 26b–26d

shows those GWs from Figure 26a with 165 < 𝜆H < 1,000 km, 1,000 < 𝜆H < 3,000 km, and 3,000 < 𝜆H <

5,050 km, respectively. We see that for z > 70 km, Figure 26a is composed almost entirely of GWs with 1,000
< 𝜆H < 5.050 km for z > 70 km.

Figure 27 shows 2-D horizontal slices of those GWs with 1,000 < 𝜆H < 3,000 km and with downward phases in
time at z = 70, 80, and 90 km on 9.75, 9.875, 10.0, and 10.12 July. Large-scale GWs with 𝜆H ∼ 1,000–2,300 km
are apparent. Most are visible at all three altitudes, although some are “missing” at z = 90 km (presumably due
to dissipation). Additionally, many of the phase lines are curved (e.g., Figure 27k), indicative of secondary GWs
(see Figure 6). Importantly, because these are the scales of the secondary GWs determined in section 4.3.1
(which are much larger than 𝜆H for the MWs or IGWs generated in the troposphere), we conclude that most
of the GWs in Figure 26a at z > 70 km are secondary GWs generated in the stratosphere.

In Figure 27, the GW phase lines constructively and destructively interfere with each other, thereby creat-
ing a “soup” of secondary GWs propagating in different directions above McMurdo. Because these secondary
GWs are created by body forces scattered around McMurdo (see Figures 21–24), it is not surprising that GW
activity in the upper mesosphere at McMurdo is more uniform (and less characterized by strong downslope
MW events at McMurdo) than GW activity in the stratosphere (compare Figures 3 and 4). However, we do
note that a weak MW propagated into the mesosphere and dissipated at z ∼ 87 km in the DEEPWAVE cam-
paign (Bossert et al., 2015), although strong MWs were found to break in the stratosphere (D. C. Fritts, private
communication, 2017).

Thus, we conclude that most of the GWs in the mesosphere at McMurdo during July are large-scale secondary
GWs created in the stratosphere not primary GWs from the troposphere or lowermost stratosphere (such as
MWs or IGWs from unbalanced flow associated with large-amplitude Rossby waves). This is a paradigm shift
from previous ideas that assume that mesospheric GWs are primary GWs from the troposphere.

5. Conclusions

In this paper, we analyzed the GWs at McMurdo Station in the Antarctic during July using the high-resolution,
GW-resolving KMCM. This model resolves GWs with 𝜆H ≥ 165 km. We found that there are two dominant GW
“hot spots” in the Antarctic; the MWs created by eastward wind over the Antarctic Peninsula and the MWs
created by downslope eastward (and often northward) wind from the Transantarctic Mountains to the west
coast of the Ross Sea near McMurdo. This result agrees well with satellite and balloon measurements.

We removed the tides and planetary waves via Fourier filtering waves with periods >11 hr. We found that
(a) large-amplitude MW “events” from downslope winds occur at McMurdo every ∼1.5–2.5 days whereby
these MWs propagate up to z ∼ 40–60 km and (b) the downslope winds are caused by Rossby waves. Dur-
ing these events, the MW phase lines were upward in time if the background eastward wind accelerated.
We also found that the scaled GW amplitudes were smaller by a factor of ∼10 for z ∼ 80–100 km than for
z < 50 km, thereby implying that severe wave dissipation occurred at z ∼ 50–80 km. Additionally, we found
many “fishbone” structures at z ∼ 30–60 km, which suggested that secondary GWs were excitated by hor-
izontal body forces. We calculated the PSD and found that new upward- and downward-propagating GWs
were added to the GW spectra in the stratosphere.
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Because of the unequal grid spacing near the pole in geophysical coordinates, we developed a new method
to transform from geophysical coordinates to equally spaced Cartesian coordinates on a 2-D plane tangent
to Earth’s surface at McMurdo. We then utilized keograms and horizontal Fourier filtering to determine cH, 𝜆H,
and the propagation directions of the GWs. During a particular event, we identified two types of primary GWs
over McMurdo at z = 20 km: MWs and IGWs from Rossby waves over the circumpolar ocean. The MWs had
𝜆H ≃ 230 km, cH ∼ 9 m/s, and 𝜏r ∼ 7–8 hr, and the smaller-amplitude IGWs had cH ∼ 35 m/s, 𝜏r ∼ 5–6 hr, and
𝜆H ∼ 500–800 km. These IGWs had small amplitudes at z > 25 km.

We then examined a fishbone structure at z ∼ 30–60 km on 9.5–10.5 July. We found that most of the structure
was composed of GWs with 𝜆H much larger than that of the MWs: 𝜆H ∼ 700–3,000 km. We isolated those
GWs with 𝜆H ∼ 700–3,000 km and determined cH, 𝜆H, 𝜆z , 𝜏r , and the propagation direction for the GWs below
and above the knee of the structure at zknee = 46 km. We found that these GWs had similar cH = 40–60 m/s,
𝜆H ∼ 1,600–2,050 km, |𝜆z| ∼ 18–25 km, and propagation directions (southeastward) below and above zknee.
Because of this, we identified the GWs in this structure as secondary GWs generated by a body force. We
estimated this force to be ∼400 km northwest of McMurdo, ∼2.5 hr earlier.

In order to locate this force, we calculated the pseudo momentum flux convergence. We identified a
large-amplitude westward body force caused by severe MW dissipation at z = 46 km located ∼400 km
northwest of McMurdo, ∼2.5 hr before the beginning of the fishbone structure. We then showed that the
wavelengths and periods of the secondary GWs agreed with the temporal and spatial extents of the body
force, thus confirming that this force likely created the secondary GWs in this fishbone structure.

Finally, we showed that most of the GWs at 70 ≤ z ≤ 100 km have 𝜆H = 1,000 to 3,000 km; thus, most of the
GWs in the mesosphere were secondary GWs created in the stratosphere not primary GWs from the tropo-
sphere and lowermost stratosphere. This is a very important finding, as it strongly suggests that wintertime
GWs in the MLT at southern polar latitudes cannot be simulated by a GCM with GW parameterization that
only launches GWs from the troposphere; secondary GWs created in situ in the stratopause region must be
included in GCMs in order to properly account for realistic GW activity in the MLT. Note that this result is sup-
ported by wintertime observations at McMurdo; Zhao et al. (2017) estimated that the GWs at z = 30–50 km
had 𝜆H ∼ 350–500 km, which is significantly smaller than the estimated 𝜆H ∼ 400–4, 000 km in the MLT
(Chen & Chu, 2017; Chen et al., 2013).

Hence, this paper and Becker and Vadas (2018) provide a stunning new picture of the middle atmosphere
above McMurdo and at southern polar latitudes in general; (a) the GWs in the winter stratosphere are a com-
plicated and highly time and altitude-dependent mixture of primary GWs (MWs and IGWs from Rossby waves)
and secondary GWs (from primary GW dissipation), and (b) most of the GWs in the winter MLT are a compli-
cated mixture of secondary GWs from many different local body forces. This coupled dynamical picture can
now be simulated with high-resolution, GW-resolving GCMs. It represents a paradigm shift from the results
of non-GW-resolving GCMs whereby GWs in the middle atmosphere only include primary GWs (launched in
the troposphere) not secondary GWs. Importantly, secondary GW generation yields a significant new source
of GWs in the middle atmosphere, MLT and thermosphere. Because these GWs have small amplitudes ini-
tially (which allows them to propagate many density scale heights before breaking) and have larger 𝜆H, |𝜆z|,
and cH than the primary GWs, some of these secondary GWs have the potential to propagate well into the
thermosphere before dissipating, thereby potentially significantly influencing the variability and dynamics of
the wintertime thermosphere at southern polar latitudes. Secondary GWs (along with biproducts of their dis-
sipation in the thermosphere, e.g., “tertiary” GWs) may account for the large GW hotspot measured by the
Challenging Minisatellite Payload satellite (z ∼ 300–400 km) in June over the southern Andes (Park et al.,
2014). Whether secondary GWs play an important role during other seasons and at other locations is not yet
known but will be investigated in future works.

Appendix A: Pseudo Momentum Flux of Inertia-Gravity Waves

The wave-mean flow interaction of GWs having medium and high frequencies is described by the con-
vergence of the momentum flux (i.e., by the divergence of the GW-related Reynolds stress tensor). In the
single-column approximation, only the vertical flux of horizontal momentum is considered. The momentum
flux density is constant with height in the conservative case for medium-frequency and high-frequency GWs
in steady state (Lindzen, 1981). However, when the intrinsic period of a GW is comparable with the iner-
tial frequency, as is the case for (low-frequency) inertia-GWs (IGWs), the wave is accompanied by a Stokes
drift and by apparent wave-mean flow interaction, even in the limit of conservative waves in steady state.
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Both apparent effects (wave-mean flow interaction and Stokes drift) are balanced by an overturning circula-
tion (e.g., Bretherton, 1969; Dunkerton, 1978; Lindzen, 1971). If the horizontal GW propagation is the the x
direction on a local f plane, then this circulation lies in the y-z plane. This behavior is analogous to the Ferrel
cell that accompanies a baroclinic Rossby wave. Also, in analogy to baroclinic Rossby waves, the wave-mean
flow interaction is different from the divergence of the Reynolds stress tensor. In this appendix we derive the
wave-mean flow interaction of IGWs in the single-column approximation. We show below that equation (A25)
is equivalent to Equation (41) in Fritts and Alexander (2003) for a monochromatic IGW. A WKB analysis for
IGWs, however, is not performed here for the sake of brevity.

Our starting point is the isentropic primitive equations on the f plane in the anelastic approximation and in
flux form (Becker, 2017, his Appendix):

𝜕tv = −∇ ( v∘v ) − 𝜌−1
r 𝜕z ( 𝜌r v w ) + v × f ez − 𝜌−1

r ∇p̃, (A1)

𝜕z ( 𝜌−1
r p̃ ) = −g 𝜌−1

r �̃�, (A2)

0 = ∇ ⋅ v + 𝜌−1
r 𝜕z ( 𝜌rw ), (A3)

cp 𝜕t T̃ = −∇ ⋅ ( T̃ v ) − 𝜌−1
r 𝜕z ( 𝜌r T w ) − w g ( 1 + T̃∕Tr) . (A4)

Here v = (u, v) denotes the horizontal velocity field, f is the Coriolis parameter, and w and ez respectively
denote the vertical velocity and unit vector in the vertical direction. As usual, the scalar product is denoted
by a dot and the tensor product by an open circle. Furthermore, t is time, g is the gravitational acceleration,
and cp is the heat capacity per unit mass for constant pressure. In equations (A1)–(A4), we have expanded the
thermodynamic variables, pressure, density, and temperature as

p = pr(z) + p̃ (r, t),
𝜌 = 𝜌r(z) + �̃� (r, t),
T = Tr(z) + T̃ (r, t) ,

respectively. Here r = (x, y, z), the subscript r denotes a hydrostatic reference state that depends on height z
only, and the deviations from the reference state are denoted by p̃, �̃�, and T̃ . Note that we use the primitive
equations because IGWs fulfill the hydrostatic approximation.

We now expand the flow into a slowly varying zonal mean flow (denoted by U, Pu, 𝜌u, and Tu) plus deviations
from that mean flow, which are due to (a) the aforementioned mean circulation in the y-z plane (denoted by
vm and wm) and (b) quasi-linear GWs that propagate in the x-z plane (denoted by primes):

v = U(y, z, t) ex + vm(y, z, t)ey + wm(y, z, t)ez + v′(r, t),
p̃ = pu(y, z, t) + p′(r, t),
�̃� = 𝜌u(y, z, t) + 𝜌′(r, t),
T̃ = Tu(y, z, t) + T ′(r, t).

(A5)

Here pu(y, z, t) is the slowly varying pressure perturbation that balances the mean flow; when there are no
GWs, this relation is fU = −𝜌r(z)−1 𝜕yp̃u. This pressure deviation is associated with the slowly varying density
and temperature deviations, 𝜌u and Tu, respectively, according to (A2) and the anelastic relation

T̃∕Tr = −�̃�∕𝜌r . (A6)

Since vm and wm are slowly varying and are of order the wave perturbations, we can neglect their deriva-
tives in the momentum and thermodynamic equations. However, we must take into account the Coriolis force
and the adiabatic heating due to vm and wm. We assume that the reference state is isothermal. In order to
obtain the mean-flow equations in the single-column approximation, we assume that the wave field is peri-
odic in the x direction. All mean flow variables and the mean circulation have slowly varying dependencies
on y, z, and t.
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Given the above approximations, the resulting equations that describe the total flow can be written as

𝜕tUex + 𝜕tv′ = −U 𝜕xv′ − v′𝜕y Uex − w′𝜕z Uex − ∇ ( v′∘v ′ )
− 𝜌−1

r 𝜕z ( 𝜌r v′ w′ ) + (Uex + v′ + vm ey ) × f ez − 𝜌−1
r (∇pu + ∇p′),

(A7)

𝜕z ( 𝜌−1
r (pu + p′) ) = −g 𝜌−1

r (𝜌u + 𝜌 ′), (A8)

0 = ∇ ⋅ v′ + 𝜕yvm + 𝜌−1
r 𝜕z ( 𝜌r(w′ + wm ) ), (A9)

𝜕tTu + 𝜕tT ′ = −U 𝜕xT ′ − v ′𝜕yTu − w ′𝜕zTu − ∇ ⋅ ( T ′ v ′ )
− 𝜌−1

r 𝜕z ( 𝜌r T ′ w′ ) − c−1
p g (w′ + wm ) ( 1 − 𝜌−1

r ( 𝜌u + 𝜌′ ) ) .
(A10)

The resulting linear wave equations are

( 𝜕t + U𝜕x ) u′ + v ′𝜕yU + w′𝜕zU = f v′ − 𝜌−1
r 𝜕x p′, (A11)

( 𝜕t + U𝜕x ) v′ = −f u′, (A12)

𝜕z ( 𝜌−1
r p′ ) = −g 𝜌−1

r 𝜌′, (A13)

0 = ∇ ⋅ v′ + 𝜌−1
r 𝜕z ( 𝜌rw′ ), (A14)

( 𝜕t + U𝜕x ) T ′ + v′𝜕yTu + w′𝜕zTu = −c−1
p g w′ . (A15)

These equations lead to the well-known dispersion and polarization relations for medium-frequency and
low-frequency (inertia) GWs if we neglect the advection of U and Tu by v′ and w′ in equations (A11) and (A15).
Indeed, these terms are negligible in the WKB approximation for the waves, but they must be retained when
considering the energy budgets of the waves.

The mean-flow equations are obtained by subtracting equations (A11)–(A15) from equations (A7)–(A10) and
averaging over the GW scales in x and t (indicated by X̄ for any variable X):

𝜕tU = −𝜌−1
r 𝜕z ( 𝜌r u′ w′ ) + f vm (A16)

0 = −f U − 𝜌−1
r 𝜕y pu (A17)

𝜕z ( 𝜌−1
r pu ) = −g 𝜌−1

r 𝜌u = g T−1
r Tu (A18)

0 = 𝜕yvm + 𝜌−1
r 𝜕z ( 𝜌rwm ) (A19)

𝜕tTu = −𝜕y( T ′ v′ ) − c−1
p g wm . (A20)

Here −𝜕x(u′u′) and −𝜕x(T ′u′) are omitted in equations (A16) and (A20), respectively, because of the single-
column approximation. Furthermore, we used u′v′ = 0, which follows from equation (A12), and we used
T ′w ′ = 0, which holds when we neglect v′𝜕yTu + w′𝜕zTu in (A15) according to the WKB approximation.
Furthermore, we considered only the leading term of the adiabatic heating.

For any conservative linear GW field in steady state and without critical levels, the wave-mean flow interac-
tion is 0. However, the heat flux term in equation (A20) is generally not 0. According to Bretherton (1969) and
Lindzen (1971), the momentum flux density, 𝜌r u′w′, is also not constant with height for IGWs subject to refrac-
tion by a slowly varying mean flow. Instead the vertical component of the so-called pseudo-momentum flux
density is constant with height for conservative IGWs in steady state. In the following, we exploit this insight
to recapitulate the general form of the momentum deposition and the pseudo-momentum flux density
from IGWs.

Since the left-hand side of equation (A20) must be 0 for conservative IGWs in steady state, we can eliminate
the vertical component of the circulation in the y-z plane,

wm = −g−1cp 𝜕y( T ′ v′ ) , (A21)
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where −𝜌r wm is the vertical Stokes drift of the waves. Then, the continuity equation (A19) is fulfilled for

vm = 𝜌−1
r 𝜕z ( 𝜌rg−1 cp T ′ v′ ) , (A22)

and −𝜌r vm is the Stokes drift in y direction. Using equation (A22), the mean-flow momentum equation (A16)
becomes

𝜕tU = −𝜌−1
r 𝜕z

(
𝜌r u′ w ′ − 𝜌rf cp g−1 T ′ v′

)
. (A23)

Note the analogy of equation (A23) to the transformed Eulerian mean zonal-mean zonal momentum equation
on the sphere (Andrews et al., 1987; Becker, 2017).

For a monochromatic wave with intrinsic frequency 𝜔I we obtain −i𝜔IT
′ = −g c−1

p w′ from equation (A15) and
−i𝜔Iv

′ = −fu ′ from equation (A12). In this case, equation (A23) reduces to

𝜕tU = −𝜌−1
r 𝜕z

(
𝜌r u′ w′ ( 1 − f 2 𝜔−2

I )
)
. (A24)

Indeed, the right-hand side of equation (A24) is 0 for an IGW that is linear and conservative.

Since all azimuthal (horizontal) directions are equivalent on the f plane, we can write down the general form
of the pseudo-momentum flux density of IGWs as

F = 𝜌r v′ w′ + 𝜌rf cp g−1 ez × T ′ v′ . (A25)

Here we used again the fact that the horizontal velocity component perpendicular to the horizontal prop-
agation direction is out of phase with w′ and is in phase with T ′. In the limit of a monochromatic GW,
we obtain

F = 𝜌r v′ w′ ( 1 − f 2 𝜔−2
I ) . (A26)

The drag per unit mass (horizontal acceleration of the mean flow) due to IGWs that are not conservative or
are not in steady state is generally given by −𝜌r 𝜕z F, with F given by equation (A25) in the general case and
by equation (A26) for a monochromatic wave.

Appendix B: Transformation from Geophysical to 2-D Cartesian Coordinates

In order to determine the parameters of small-amplitude GWs, it is necessary to employ horizontal filter-
ing techniques. However, geophysical coordinates are unequally spaced (especially near the pole), therefore
preventing simple Fourier filtering techniques.

In order to bypass this constraint, we develop a new method to transform our model data from geophysical
coordinates to a 2-D (equally spaced) Cartesian plane centered at the longitude 𝜙1 and latitude 𝜃1 of interest.
(For example, the plane could be centered at McMurdo: 𝜙1 = 166.69∘ and 𝜃1 = −77.84∘.) This 2-D plane
is perpendicular to a line extending from Earth’s center to this location and is therefore tangent to Earth’s
surface at 𝜙1 and 𝜃1. On this plane, we ascribe (x′′, y′′) coordinates, with positive x′′ in the eastward direction
and positive y′′ in the northward direction (towards the equator) at x′′ = y′′ = 0.

Consider a typical Cartesian coordinate system fixed to Earth, with longitude 𝜙 and latitude 𝜃. In this system,
the x axis lies from the center of the Earth through Greenwich (at the equator), the y axis is 90∘ from x (through
the equator), and the z axis is upward from the center of the Earth through the North Pole. Consider two points
on a sphere having radius r = REarth + z, where z is fixed. The first point has the coordinate (𝜙1, 𝜃1), and the
second point has the coordinate (𝜙2, 𝜃2). In Cartesian space, the vector for each point is given by

r = r cos 𝜃 cos𝜙 îC + r cos 𝜃 sin𝜙 ĵC + r sin 𝜃 k̂C , (B1)

where îC , ĵC , and k̂C are the Cartesian unit vectors in the x, y, and z directions, respectively. Note that these unit
vectors are fixed to Earth and do not depend on the latitude and longitude (as they do in geophysical spherical
coordinates—see below). Below, we refer to geophysical spherical coordinates as “geophysical” coordinates.
Figure B1a shows this Cartesian coordinate system, along with the two vectors r1 and r2. The radius of the
sphere is r = REarth + z. The distance between r1 and r2 along the sphere is l, and the angle between them is
𝜓 . Because

r1 ⋅ r2 = |r1||r2| cos𝜓, (B2)
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Figure B1. (a) Geometry of the vectors r1 (purple arrow) and r2 (red arrow) in Cartesian coordinates. The surface
of the sphere has a radius of r = REarth + z. Both vectors have radii r. The center of Earth is located at the intersection
of the x, y, and z axes. The longitude (𝜙) and latitude (𝜃) of r1 are displayed, along with the z component (r sin 𝜃) and the
projection in the x − y plane (r cos 𝜃). The distance between r1 and r2 along the sphere is l, and the angle between them
is 𝜓 . (b) Geometry of r1 and r2 in the (x′′, y′′) coordinates on a 2-D plane tangent to Earth at (𝜙1, 𝜃1). Positive x′′ and y′′

denotes east and north in geophysical coordinates, respectively, only at (𝜙1, 𝜃1). The center of the Earth is shown in the
lower left corner, and r1 and r2 are shown as the purple and red dotted arrows, respectively. The azimuth angle between
the line connecting r1 and r2 with north is 𝛽 . r1 × r2 is the brown arrow. The south pole is the black dot.

and |r1| = |r2| = r, the distance between r1 and r2 along the surface of this sphere is

l = r𝜓 = r cos−1
( r1 ⋅ r2

r2

)
= r cos−1(cos 𝜃1 cos 𝜃2 cos(𝜙2 − 𝜙1) + sin 𝜃1 sin 𝜃2).

(B3)

Figure B1b shows the geophysical coordinate system at r1, which depends on its longitude (𝜙1) and latitude
(𝜃1). Here east is positive x′′, and north is positive y′′. The azimuth angle (i.e., clockwise from north) that the
line connecting r1 and r2 makes with true north is 𝛽 . Note that r1×r2 lies in the 2-D plane tangent to Earth at r1.

To determine the azimuth 𝛽 , we note that

(−r1 × r2) ⋅ (îgeo) = |r1 × r2||îgeo| cos 𝛽, (B4)

where îgeo is the east unit vector in geophysical (geo) coordinates. Since |îgeo| = 1,

𝛽 = cos−1

(
−
(r1 × r2) ⋅ îgeo|r1 × r2|

)
. (B5)

Using equation (B1), the components of r1 × r2 in Cartesian coordinates are

r1 × r2 = r2
{
[cos 𝜃1 sin𝜙1 sin 𝜃2 − cos 𝜃2 sin𝜙2 sin 𝜃1] îC

− [cos 𝜃1 cos𝜙1 sin 𝜃2 − cos 𝜃2 cos𝜙2 sin 𝜃1] ĵC

+[cos 𝜃1 cos𝜙1 cos 𝜃2 sin𝜙2 − cos 𝜃1 sin𝜙1 cos 𝜃2 cos𝜙2] k̂C

}
.

(B6)

In order to evaluate equation (B5), we calculate r1 × r2 in Cartesian coordinates, then transform this vector
to geophysical coordinates at r1. To perform this transformation from Cartesian to geophysical coordinates
at (𝜙1, 𝜃1), we first rotate by 𝜉 = 𝜙1 + 90∘ counterclockwise in the x-y plane and then by 𝜁 = 90∘ − 𝜃1

counterclockwise in the y′-z′ plane.

We now formulate this transformation. Consider a vector with Cartesian coordinates (x, y, z) = xîC + yĵC + zk̂C.
We first rotate the coordinate system by 𝜉 = 𝜙1 + 90∘ counterclockwise in the x-y plane. The coordinates for
this vector in this new coordinate system is (x′, y′, z′):

x′ = x cos 𝜉 + y sin 𝜉,

y′ = −x sin 𝜉 + y cos 𝜉,

z′ = z.

(B7)
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Next we rotate the coordinate system by 𝜁 = 90∘ −𝜃1 counterclockwise in the y′-z′ plane. The coordinates for
this vector in this geophysical coordinate system is (x′′, y′′, z′′):

x′′ = x′,

y′′ = y′ cos 𝜁 + z′ sin 𝜁,

z′′ = −y′ sin 𝜁 + z′ cos 𝜁.

(B8)

Equations (B7) and (B8) apply to the transformation of any vector from Cartesian to geophysical coordinates
at (𝜙1, 𝜃1). We now apply these transformations to the vector (r1 × r2) to determine the angle from north
between the line bisecting r1 and r2. Using equation (B6), we find that

(r1 × r2) ⋅ îgeo = x′′ = x′ = x cos 𝜉 + y sin 𝜉

= r2{(cos 𝜃1 sin𝜙1 sin 𝜃2 − cos 𝜃2 sin𝜙2 sin 𝜃1) cos 𝜉+
(− cos 𝜃1 cos𝜙1 sin 𝜃2 + cos 𝜃2 cos𝜙2 sin 𝜃1) sin 𝜉},

(B9)

where x and y here are the îC and ĵC components of r1×r2 in equation (B6). Then we use equation (B5) to
determine 𝛽 .

It is then straightforward to determine the (x′′, y′′) coordinates of r2 in the 2-D Cartesian plane. We define
positive x′′ eastward and positive y′′ northward at x′′ = y′′ = 0 (as in Figure B1b). The coordinate of r2 in this
plane is

x′′ = l sin 𝛽,

y′′ = l cos 𝛽.
(B10)

To transform the vector v = (v1, v2), such as the horizontal velocity, in geophysical coordinates at (𝜙2, 𝜃2) to
the vector v′′ = (v′′

1 , v′′
2 ) in the 2-D x′′-y′′ plane tangent to Earth at (𝜙1, 𝜃1), we rotate v clockwise by the angle

𝜙2 − 𝜙1:
v′′

1 = v1 cos(𝜙2 − 𝜙1) + v2 sin(𝜙2 − 𝜙1),
v′′

2 = −v1 sin(𝜙2 − 𝜙1) + v2 cos(𝜙2 − 𝜙1).
(B11)

This is the procedure we use to convert the zonal and meridional velocities at (𝜙2, 𝜃2) to the “new” velocity
vector v′′ in the 2-D x′′-y′′ plane.
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