
The importance of spatial variability in the generation of secondary

gravity waves from local body forces

Sharon L. Vadas and David C. Fritts
NorthWest Research Associates, CoRA division, Boulder, CO, USA

Received 30 May 2002; revised 1 August 2002; accepted 8 August 2002; published 26 October 2002.

[1] We hypothesized earlier that the zonal mean body
force required to close the mesospheric jets is sporadic in
time, and is composed of a large number of spatially and
temporally localized body forces. To explore the effects of
such localization, we randomly generate a series of
localized, 3D body forces in the mesosphere which create
a mean acceleration of �100 m s�1 day�1 over this forcing
volume. Secondary waves are also generated, and because
they have large vertical scales, phase speeds, and vertical
group velocities, they may induce important variabilities in
the lower thermosphere where they dissipate. We find that
the secondary waves from spatially smoothed body forces
have much smaller momentum fluxes, frequencies, and
vertical group velocities. Thus, global models having
coarse resolution may be missing a significant source of
sporadic wave drag and its effect throughout the middle
atmosphere and lower thermosphere. INDEX TERMS: 3384

Meteorology and Atmospheric Dynamics: Waves and tides; 3367

Meteorology and Atmospheric Dynamics: Theoretical modeling.
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1. Introduction

[2] Mean decelerations of the mean wind of �30–100
ms�1 day�1 have been inferred near the mesopause during
summer and winter months in radar measurements and
modeling studies [Fritts and Vincent, 1987; Tsuda et al.,
1990; Holton, 1983; Roble and Ridley, 1994; Hamilton et
al., 1995]. This drag force is sufficiently large to close the
mesospheric jets and reverse the latitudinal gradient of
temperature near the mesopause under solstice conditions.
It is generally accepted that gravity wave breaking in the
mesosphere applies this drag force. For dissipation depths of
a scale height, this requires daily mean gravity wave
momentum fluxes of �5–10 m2s�2 [Fritts and Yuan,
1989; Tsuda et al., 1990]. This force is generally para-
meterized in general circulation models (GCMs) and large-
scale models as a slowly varying force with large spatial
extents. However, the nature of the mesospheric wave
breaking processes is likely highly variable spatially and
temporally due to the localization of the tropospheric
sources, the wave scales most important in momentum
transport, and the nature of wave instability processes. For
example, momentum fluxes as large as �60 m2s�2 for
hourly intervals have been measured by radar [Fritts and

Yuan, 1989; Reid et al., 1988], while estimates derived from
airglow measurements [Yamada et al., 2001] may be as
large as �900 m2s�2 locally [Fritts et al., 2002]. Thus,
mesospheric wave breaking clearly results in spatially and
temporally-localized body forces.
[3] It is generally thought that a body force only creates

an altered mean wind and residual circulation. However,
Vadas and Fritts [2001] showed that secondary waves are
also created if a body force is localized spatially and
temporally. Our past work focused on the characteristics
of secondary waves from single as well as multiple, equi-
distant, identical body forcings. Here, we generate a random
distribution of spatially and temporally localized 3D, zonal
body forces. These forces are directed zonally, and their
magnitudes vary in x, y, and z. We also generate artificially-
smoothed body forces to simulate how a GCM or large-
scale model with large grid spacings would describe the
gravity wave response.

2. Variable Body Forces

[4] We randomly generate 20, spatially- and temporally-
localized, Gaussian, zonal body forces that occur within an
hour and over a small volume of the mesosphere. The
number of forces was chosen to yield a mean zonal accel-
eration of ’100 ms�1 day�1. Unlike our previous work, the
individual body forces here have differing diameters,
depths, and force strengths. Each body force center is
chosen randomly to lie within x�x0 = [�300, 300] km,
y�y0 = [�300, 300] km, and z�z0 = [�2.5, 2.5] km, where
(x0, y0, z0) is the central location of the 3D volume. The
starting time of each force is chosen randomly within t = [0,
1] h. Each body force is introduced smoothly in time and is
given by

DF ¼ u0=stð Þ 1� cos 2pt=stð Þ½ �

	 exp �0:5
x� xð Þ2

s2x
þ y� yð Þ2

s2y
þ z� zð Þ2

s2z

 !" #
ð1Þ

for t � st, and is zero for t � st, where u0 is the body force
amplitude and (x; y; z) is the force center. We choose sx = sy .
The full horizontal diameter 4.5sx is chosen randomly
between 60 and 200 km along a boxcar probability
distribution, (60 + 140a) km, where a is a random number
between 0 and 1. The full depth, Dz = 4.5sz is chosen to lie
between 10 and 30 km, but along a probability distribution
that heavily emphasizes 10 km full depths over 30 km full
depths: Dz ¼ 10þ 20apð Þ km, p = 3. The time duration of
each force, st, is chosen to equal tc, where tc is the
characteristic period formed by inserting the spatial scales
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of the body force into the dispersion relation. This is a
reasonable choice, given that the temporal variability
associated with the deposition of momentum is expected
to be of order or greater than the primary wave period.
[5] The body force amplitude for each force is determined

as follows. Suppose a primary wave has horizontal and
vertical wavelengths lx and lz and horizontal and vertical
wavenumbers k = 2p/lx and m = 2p/lz, respectively. This
wave’s intrinsic phase speed is then |c0�U|’Nlz/2p using
the Boussinesq dispersion relation, where c0 is its phase
speed in the ground frame of reference and U is the back-
ground wind velocity. Assuming it breaks according to
saturation theory, its horizontal velocity is constrained in
amplitude to u0p’ |c0�U| [Hodges, 1967]. Using the Bous-
sinesq continuity equation, ku0p + mw0

p = 0, to determine the
wave’s vertical velocity (w0

p), the primary wave’s time-
averaged momentum flux per unit mass is

u0pw
0
p ’ N2l3

zl
�1
x = 8p2
� �

: ð2Þ

[6] As is well known, the vertical divergence of the
average momentum flux of the primary wave leads to the
horizontal acceleration of the fluid:

DF x; tð Þ ¼ � 1=rð Þ@ ru0pw0
p

� �
=@z; ð3Þ

where r̄ / exp(�z/H) is the background density and H is
the scale height. Assuming that equation (3) holds by
averaging only over a single horizontal wavelength and that
u0pw

0
p is approximately constant with height over the entire

breaking region (under the saturation theory assumption),
the resulting body force is

DF ’ u0pw
0
p=H: ð4Þ

If the primary wave deposits its momentum over the time
interval st/2, then the spatially-averaged body force
amplitude created by this wave is DF st/2, and the body
force amplitude is twice this average value, or

u0 ¼
N 2stl3

z

8p2lxH
: ð5Þ

[7] It is reasonable to assume that the full depth at half-
maximum of the body force equals the primary wave
vertical wavelength, 4.5sz/2’lz, because wave breaking
is often confined vertically by density stratification or shear.
There is no similar confinement, however, in the horizontal.
As an example, we set the full width at half-maximum of
the body force equal to twice the primary wave’s horizontal
wavelength, 4.5sx/2’ 2lx, characteristic of a relatively

compact wave packet. However, the primary wave packet
may extend 5 or 10 times the horizontal wavelength of the
primary wave. In addition, we choose x0 = y0 = 0, z0 = 90
km, N = 0.02 s�1, and f = 0. These secondary waves are not
due to geostrophic adjustment. We employ the linear,
Boussinesq model of Vadas and Fritts [2001] to determine
the solution analytically, with 128, 128, and 256 grid points
in x, y, and z, respectively. This model neglects the gen-
eration of secondary waves through nonlinear interactions.
For the body force amplitudes used here, the secondary
wave-wave interactions are unlikely to be important [Vadas
et al., 2002]. For the unsmoothed distribution, the grid point
spacings are dx = dy = 27 km and dz = 2.2 km, while for the
spatially smoothed distribution, dx = dy = 107 km and dz =
2.2 km. The zonal and meridional momentum flux (per unit
mass) at (k, l, m) with spectral resolution dk, dl, and dm is
Muw = euGWew*GWdkdldm/V and Mnw = enGW ew*GWdkdldm/V
where euGW, enGW and ewGW are Fourier transforms of the
secondary wave velocity perturbations, an asterisk denotes
the complex conjugate, and V is the 3D volume that
contains all of the body forcings. The total momentum flux
is
R R R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
uw þM2

�w

p
.

[8] In Figure 1, we show the primary wave momentum
fluxes for the 20 body forces using equation (2). Only a few
of the primary waves have large associated momentum
fluxes. Figure 2 shows a horizontal slice of the body forces
at z = z0 integrated over the entire duration of the forcings,
t = [0, 2.2] h. We also overlay the resulting mean zonal
wind, which looks very similar to the integrated body forces
and is highly localized spatially. Nearly all of the body
forces occur within a depth of 14 km and a time span of an
hour: t ’ [0.3–1.3] h or �t ’ 1 h. Averaging the zonal
mean wind generated by these localized body forces over
the volume V = 600 km � 600 km � 14 km, and multi-
plying by 24 hours, the mean zonal acceleration is ’100
ms�1 day�1. Thus, this distribution of body forces yields a
mean acceleration consistent with observations at the mes-
opause in summer and winter months.
[9] We integrate equation (4) over the volume and

temporal duration of a force, and divide by the total volume
and temporal duration for all of the forces. The average
primary wave flux which leads to this body force is then

u0pw
0
p ’ 2pð Þ3=2sxsyszu0H= V�tð Þ; ð6ÞFigure 1. The primary wave momentum fluxes.

Figure 2. The integrated body forces (shading) in
increments of 25% of the maximum value, which is 72
ms�1. The mean zonal wind (solid contours) in intervals of
25% of the maximum value, which is 35 ms�1. The dash
box shows the region enclosing the force centers.
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using equation (1). We apply this formula separately for
each body force and bin. The primary wave momentum flux
spectrum is shown in Figure 3 where wi is the wave intrinsic
frequency. It is sharply peaked at lz ’ 15 km and wi ’ N/3.
The total, average primary wave momentum flux which
leads to these body forcings is u0pw

0
p ¼ 8m2s�2.

[10] Because these body forces are temporally and spa-
tially variable, upgoing and downgoing secondary gravity
waves are created. (No secondary waves are created from a
force with no temporal variability [Vadas and Fritts, 2001]).
Here, 26% of the total energy of the forces goes into the
generation of secondary waves. 25% of the secondary
waves propagate upward and eastward (and northward
and southward), while 25% propagate upward and west-
ward (and northward and southward). Because our model is
Boussinesq, the long-vertical-wavelength tail of the secon-
dary wave spectrum has unrealistically large frequencies
and phase speeds. To partly correct for this effect, we
assume that the momentum fluxes calculated in our model
are the same as in a compressible model. We estimate a
wave’s corrected intrinsic frequency by solving for the
smaller root of the compressible dispersion relation:

w4
i � c2s k2H þ m2 þ 1=4H2

� �
w2
i þ c2s k

2
HN

2 ¼ 0; ð7Þ

where cs ’ 300 ms�1 is the sound speed and kH
2 = k2 + l2

[Gossard and Hooke, 1975]. We note that the momentum
fluxes for the larger vertical wavelength waves may differ.
The corrected spectrum is not very different from the
uncorrected spectrum because there is little momentum flux
associated with waves having very large vertical wave-
lengths.
[11] In Figure 3, we overlay the secondary wave spec-

trum which depends on the spatial and temporal character-
istics of the forces. The temporal variability used here yields
a spectrum that is similar to that for impulsive body
forcings, but with somewhat smaller wave frequencies,

vertical wavelengths and momentum fluxes [Vadas et al,
2002]. Overall, the total upgoing, radiated secondary wave
momentum flux is 0.3 m2s�2 at z = z0. Thus, only 4% of the
momentum flux of the primary waves is re-radiated as
upgoing secondary waves. This is small, and would be
insignificant if the secondary wave spectrum were identical
to the primary wave spectrum. However, Figure 3 shows
that the secondary wave spectrum is shifted significantly
towards much larger vertical wavelengths than is the pri-
mary wave spectrum. (i.e., lz ’ 46 km).
[12] We also overlay the horizontal phase speed, cx� wi/k,

in Figure. 3. Many of the secondary waves have much larger
phase speeds than the primary breaking waves, and so can
more easily penetrate into the thermosphere by escaping
existing shears that would otherwise lead to dissipation near
critical levels. We also overlay the vertical group velocity,
cgz � @wi/@m in Figure 3. Significant portions of the
secondary waves have vertical group velocities of 15–30
ms�1. Waves with large vertical group velocities can prop-
agate quickly into the lower thermosphere, and can dissipate
(and deposit momentum) at higher altitudes than waves with
smaller group velocities. Because the density decreases with
height (and therefore the secondary wave momentum flux
per unit mass increases with height), those secondary waves

Figure 3. Vertical flux of zonal momentum in variance
content form for the secondary waves in a quadrant (i.e.,
propagating upward and eastward, northward and south-
ward) as light solid contours in increments of 0.005 m2 s�2.
Light, short dashes indicate cx when l = 0 in ms�1. Thick,
long dashes indicate cgz in ms�1. The shaded contours show
the primary wave momentum flux spectrum in increments
of 25% of the maximum value, which is 11 m2 s�2.

Figure 4. Same as in Figure 2, but for 320 spatially
smoothed body forces. The maximum value of the
integrated body forces is 11 ms�1, while the maximum
value of the zonal mean wind is 6 ms�1.

Figure 5. Same as in Figure 3, but for 320 spatially
smoothed body forces. Light solid contours are in
increments of 0.00025 m2s�2. The maximum value of the
primary wave momentum flux spectrum is 9 m2s�2.
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with large vertical group velocities, large horizontal phase
speeds, and relatively large momentum fluxes may cause
significant body forcing in the lower thermosphere where
they dissipate sporadically in space and time.

3. Spatially Smoothed Body Forces

[13] In order to calculate the secondary wave spectrum
from body forces which are smoothed by 550 km horizon-
tally, we increase the length of the simulated region by 4 in
both x and y. We also correspondingly generate 4� 4� 20 =
320 random body forces to fill this larger area. Each force
center is chosen randomly to lie within x � x0 = [�1200,
1200] km, y � y0 = [�1200, 1200] km, and z � z0 = [�2.5,
2.5] km. The resulting body force distribution is smoothed
horizontally by a 5 degree boxcar window. The starting time
and temporal duration of each force is as determined
previously (prior to smoothing). Figure 4 shows a horizontal
slice of the sum of all of the body forces integrated over the
entire duration of the forcings, t = [0, 2.2] h, along with the
resulting mean zonal wind. As before, the mean zonal wind
is strongest where the forces are strongest, although it is
relatively spatially homogeneous as compared to Figure 2.
Nearly all of the body forces occur within a 14 km depth
and for a duration of an hour. Averaging the zonal mean
wind generated by these body forcings over V = 2400 km �
2400 km � 14 km and multiplying by 24 hours, the average
mean zonal acceleration here is ’110 ms�1 day�1.
Although this average is a little high, this distribution of
body forces approximately yields the observed mean accel-
eration at the mesopause in summer and winter months.
[14] Figure 5 shows the primary and secondary wave

spectra. The total, average primary wave momentum flux
which leads to these body forcings (prior to smoothing) is
u0pw

0
p ¼ 9m2s�2. The total upgoing, radiated secondary

wave flux is 0.030 m2s�2 at z = z0, which is about 10 times
smaller than that for the unsmoothed (body force) distribu-
tion. In addition, the secondary wave frequencies are much
smaller, centering on approximately 2.8 hour periods rather
than the 42 minute average period for the unsmoothed
distribution. The vertical group velocities are much smaller
also, and are centered on 3.5 ms�1 as compared to 15 ms�1

for the unsmoothed distribution. It is expected that this
decrease in wave frequency and vertical group velocity will
cause these waves to dissipate much lower in the thermo-
sphere and therefore lead to even smaller responses in the
lower thermosphere. We note that if these mesospheric body
forces are smoothed zonally instead, the resulting secondary
wave momentum fluxes are even smaller at mid and high
latitudes, because the secondary waves generated in this
case are a result of geostrophic adjustment which very
inefficiently creates high-frequency secondary waves for
these deep body forcings [Vadas et al., 2002].

4. Discussion

[15] We have discussed a mechanism whereby secondary
gravity waves are generated by a linear process; namely the
deposition of momentum by primary breaking waves and

the creation of spatially and temporally variable body
forces. We found that many of these secondary waves have
much larger vertical wavelengths, larger horizontal phase
speeds, and larger vertical group velocities than the break-
ing primary waves. Because of this, many of these secon-
dary waves may be able to escape the shears in the upper
mesosphere and penetrate well into the lower thermosphere.
Because the generation of these secondary waves is spora-
dic in space and time, the accelerations that are produced in
the lower thermosphere where these waves dissipate will
likely also be sporadic in space and time.
[16] In order to simulate how a large-scale model or

GCM would describe such effects, we also investigated
the effect of smoothing these body forces. We found that the
momentum fluxes, vertical wavelengths, and frequencies of
the resulting secondary waves decrease a substantial
amount, thereby artificially reducing the effect these waves
would have at greater altitudes.
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