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Abstract

Shear turbulence induced by the Kelvin-Helmholtz (KH) instability in a strati-
fied fluid is simulated in support of the Air Force High-Energy-Laser Joint Tactical
Office (HEL-JTO) project using the new 3000-processor NAVO IBM Power 4+ sys-
tem (Kraken). The results are used to 1) compare with and improve a dynamic LES
method we have developed, and 2) provide the high-resolution simulation component of
a new subgrid-scale (SGS) model we have developed for optical turbulence forecasting.
We also discuss the relative performance of Kraken and the new 2000-processor Intel
XEON EM64T cluster (Jvn) at ARL, pointing out differences which amount primarily
to inter-node network performance. We suggest “% of wall time spent communicating”
as a standard DoD benchmark criterion for very large distributed systems, as other
more conventional criterion do not necessarily represent this important system and
algorithm metric.

1 Introduction

The main objective of our Air Force HEL-JTO project is to help develop a reliable Atmo-
spheric Decision Aid (ADA) to support high-altitude platforms, such as the Airborne Laser
(ABL), the High Altitude Airship (HAA), and Unmanned Aerial Vehicles (UALs). The ADA
will be integrated with the Air Force Weather Agency (AFWA) mesoscale forecasting model,
i.e., the WRF (Weather Research and Forecasting) model (www.wrf-model.org). The ma-
jor challenge for this effort is description of the small vertical length scales associated with
atmospheric clear air turbulence (CAT). In the upper troposphere and lower stratosphere,
CAT results from internal gravity-wave breaking and shear instability with vertical scales
predominantly between 1 m and 100 m, with larger layers reaching O(km). These are the
length scales of the initiating wave and shear phenomena. Turbulence occurs on smaller
scales and can reach larger horizontal scales via backtransfer. Since weather forecast models
typically operate with approximately 300 m vertical resolution aloft, they cannot explicitly
resolve the relevant dynamics, and such dynamics must therefore be modeled with an SGS
model. Furthermore, because the mesoscale model’s 300 m vertical resolution is too coarse to
even describe the outer scales of motion for wind-shear- and wave-instability processes, the
modeling challenge is much more severe than in conventional turbulence parameterization
algorithms designed to filter resolved-scale motions in the inertial range of turbulence.
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Our approach is to include the effects of wave breaking and shear instability via a prob-
abilistic SGS model. We feel this is the most appropriate framework given the coarseness of
the mesoscale-model resolution. An example of such a model for unresolved Reynolds stress
τij under stable atmospheric conditions is

[ τij, Ri |RiM ] ∝ [ RiM |Ri , τij ] [ τij |Ri ] [ RiM ] (1)

where quantities in brackets represent probability density functions (PDFs) and vertical bars
indicate conditional probabilities. Equation (1) is derived from Bayes Theorem (see e.g.,
Bernardo and Smith, 1994). The joint posterior distribution [τij , Ri|RiM ] is our SGS model
for the unresolved Reynolds stress τij and stability profile Ri(z) given the model-predicted
stability profile RiM . The likelihood distribution [RiM |Ri, τij ] is the stability profile RiM(z)
predicted by the model when the actual stability profile and Reynolds stress are Ri(z) and
τij . We can estimate [RiM |Ri, τij] ≈ [RiM |Ri] from observational data (e.g., by filtering raw-
insonde data). The remaining distributions [τij |Ri] and [Ri] are prior distributions which we
can estimate from high-resolution DNS/LES results and atmospheric measurements, respec-
tively. The method is flexible. For example, other SGS models can also be constructed, e.g.,
[uiθ, Ri|RiM ], [C2

n, Ri|RiM ], [ai, Ri|RiM ], [σ2, Ri|RiM ], etc., where uiθ is the heat flux, C2
n is

the index-of-refraction 2nd-order structure constant, ai is an HAA acceleration component,
and σ2 is the Rytov variance along a path from a particular location, to name just a few.

In order to develop the needed physics prior distributions using a sufficient parameter
survey (i.e., appropriate ranges of Ri and possibly Reynolds number Re as well as back-
ground flow profiles and coupled stratified phenomena), an efficient and flexible large-eddy
simulation (LES) code is needed. But before computing LES solutions to populate the re-
quired frequency distributions (e.g., [τij |Ri], etc.), we must first validate the LES algorithm
used for atmospheric instability and turbulence dynamics under stably stratified conditions.

We have begun this process for a dynamic LES code we have developed via comparisons
with very-high-resolution direct numerical simulations, DNS (Werne and Fritts 1999a,b,
2000), which have been validated previously (e.g., Werne and Fritts 2000, Gibson-Wilde
et al. 2000, Kelley et al. 2005). With this procedure, we have significantly improved the
LES model presented in §3 from its initial formulation, but our results so far indicate that
further improvement is possible and likely necessary. Unfortunately, further progress with
existing DNS solutions is virtually impossible given their relatively small size, and hence,
the relatively small spatial statistical sample the solutions represent.

The DoD CAP program has allowed us to overcome this difficulty by facilitating signif-
icantly larger DNS solutions (i.e., a factor of 24 times larger than we achieved previously).
The solutions obtained under the CAP program represent the largest and highest-resolution
stratified wind-shear turbulence simulations ever conducted. They are an invaluable resource
for our Air Force project, sufficient to further guide our LES developments, but also capable
of directly evaluating physics prior distributions for the few cases we were able to obtain
under the CAP program. This introduces a significant advantage over our original research
plan, because it allows us to implement an end-to-end validation path for critical components
of our modeling program.
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2 Direct Numerical Simulations

2.1 Problem formulation

The problem studied is shear instability initiated with a hyperbolic tangent velocity profile
U = Uo tanh (z/h) and linear temperature profile T = βh. Uo, h, and β are the wind ampli-
tude, initial half-shear-layer depth, and mean background temperature gradient, respectively.
z denotes the vertical direction; we use the convention that x and y are the streamwise and
spanwise horizontal components. We also use (u, v, w) for the (x, y, z) velocity components.
Below we employ units for space, time, velocity and temperature of h, h/Uo, Uo and βh,
respectively. Vorticity has units of Uo/h.

We apply the Boussinesq approximation to the Navier-Stokes equations, and solve the re-
sultant equations of motion in a Cartesian geometry. Side boundaries are periodic, while top
and bottom boundaries are impenetrable and stress-free. Three non-dimensional parameters
specify the flow. They are the Reynolds number Re = Uo h/ν, which quantifies the relative
magnitude of the non-linear and diffusion terms; the Richardson number Ri = gαβh2/U2

o ,
which is a measure of the fluid layer’s stability; and the Prandtl number Pr = ν/κ, which is
a ratio of diffusion coefficients for momentum and heat. Here g, α, ν, and κ are acceleration
due to gravity, thermal expansion coefficient, molecular viscosity, and molecular diffusivity,
respectively. We choose the values Re = 2500, Pr = 1, and the following three values for Ri:
0.05, 0.15, and 0.2. We note that when Ri > 0.25, the flow is stable and Kelvin-Helmholtz
roll-up will not occur.

We employ domains of size 4λ×2λ×2λ, where λ is the wavelength for the most unstable
asymptotic eigen mode for the KH instability. The streamwise length of the domain is chosen
to admit four KH vortex tubes (i.e., four KH billows). The spanwise width is selected to
be sufficiently large to describe the breakdown of the KH billows at late times. The domain
depth is selected so as to displace the numerical boundaries sufficiently from the turbulent
mid-layer. Motion is initiated with the most unstable eigen mode with a vorticity amplitude
of 0.07 (i.e., 7% of the maximum initial mean vorticity) and a Kolmogorov noise field with
vorticity amplitude 0.014.

The algorithm we use to solve the equations of motion is a pseudo-spectral method in
which field variables are represented by their Fourier series, and time integration is handled
by the 3rd-order Runga-Kutta (RK3) method of Spalart et al. (1991). Incompressibility is
enforced via a two-streamfunction formalism in which the streamfunctions used are related
to the vertical velocity and vertical vorticity fields. Nonlinear terms are treated explicitly by
multiplication in physical space, while linear terms are handled implicitly. Real FFTs are
conducted to move between physical and Fourier space. In order to take full advantage of
the speed associated with cache memory, FFTs are always performed on contiguous data.
This requires data transposes to successively rotate the x, y, and z directions into the first
array index. For the last step, a global transpose requiring all-to-all communication among
processors is needed. For more details of the numerical algorithm, please refer to Julien et al.

(1996).
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2.2 Validation of the DNS Solutions

Results obtained previously with the DNS in a much smaller domain of size λ × λ/3 × 2λ
duplicated atmospheric turbulence measurements for the 2nd-order structure constants C2

U

and C2
T associated with the streamwise velocity U and the temperature T . The 2nd-order

structure functions for V and W (spanwise and vertical velocities) were also obtained, though
no atmospheric measurements were available at the time for validation. The slope of the
2nd-order structure functions and the inner scale were also reported, and they reproduced
available atmospheric measurements, though they also reported a tendency to vary between
the expected value of 2/3 and a smaller value of 2/5. See Werne and Fritts (2000) for details
and references. Subsequent to our first publication, new aircraft measurements have been
reported (Wroblewski et al. 2003) which verify our computed C2

V and C2
W values, as well

as the occurrence of structure-function exponents of both 2/5 and 2/3 (compare results in
Wroblewski et al. 2003 with Werne and Fritts 2000).

Because of these and other validation results comparing our DNS solutions with atmo-
spheric measurements, we are confident that the DNS can be used as an effective guide for
our LES modeling efforts, but the smaller domain originally used proved to be too small to
adequately constrain the statistics needed for our LES work. This is not the case with the
new DNS solutions reported here.

2.3 Time Evolution for Ri=0.05 and 0.2

Figure 1a shows the time evolution of the volume-integrated kinetic (KE, solid curve) and an
estimate of the potential energy (PE, dashed curve) per unit volume for our most turbulent
solution, i.e., the case with Ri = 0.05. The background mean velocity and temperature have
been removed, hence,

KE = (LxLyh)−1
∫

[

(

U − U(z)
)2

+ V 2 + W 2
]

d3x (2)

PE = (LxLyh)−1Ri
∫

(

T − T (z)
)2

d3x . (3)

The normalization factor LxLyh includes the horizontal extent of the layer LxLy in order to
correct for the effect domain size has on the integrated energy. We use h for the vertical
length instead of Lz because the turbulent motions do not fill the full depth of the simulated
domain. Figure 1b shows the time evolution of the maximum values of the three vorticity
components ωi, which indicate when turbulent fluctuations and mixing are active.

The initial peaks in KE and PE occur at time t ≈ 37 when the primary KH billows
reach their maximum amplitude. For Ri = 0.05, this amplitude, as measured by the depth
of the billows, is approximately 6h. By this time the billows have completed roughly two
revolutions in near-solid-body rotation and effectively wrapped four alternating layers of
vorticity and temperature around their outer edges. This occurs when the flow is still laminar
and predominantly two dimensional (2D), though weak 3D variation is evident inside each
of the billow cores; see Figure 2a. Strong three dimensionality develops for Ri = 0.05 during
45 < t < 55 when the layers of alternating vorticity and temperature enveloping the billows
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Figure 1: Time evolution of fluctuation kinetic energy KE and an estimate for the potential energy PE
(panels a and c) and the maximum of each vorticity component (panels b and d). Panels a and b are for
Ri=0.05. Panels c and d are for Ri=0.2.

become unstable to pairs of counter-rotating vortex tubes, which are oriented orthogonally
relative to the billow cores (see Figure 2b). This secondary instability triggers the onset of
turbulence in the outer edges of the KH billows (see Figure 2c), which expands laterally until
the full horizontal extent of the layer becomes turbulent.

The second peak in KE and in PE exhibited in Figure 1a at t ≈ 85 coincides with
the moment turbulence reaches the interior of the billow cores; see Figure 2d. It indicates
when the combined intensity of turbulence and the KH billows is maximal. At this point the
billow energy rapidly decreases, while the energy of the fluctuations grows more slowly. The
turbulent fluctuations peak at t ≈ 111, precisely when the maximum vorticity is realized;
see Figure 2e. This time also coincides with the local minimum in PE because the vigorous
turbulent mixing homogenizes the temperature field and eradicates temperature variance for
the billow and fluctuations (see Figure 1a), and for the mean as well.

After time t ≈ 111, the maximum vorticity fluctuations begin to decay. After t ≈ 130 the
billows break up (see Figure 2f) and the turbulence becomes more horizontally homogeneous.
During this transition to turbulent decay, the fluctuation PE grows weakly, from t ≈ 111
to t ≈ 150. After t ≈ 150, all fluctuations decay, turbulence length scales expand, and
the formation of high- and low-speed streaks occurs, organizing larger horizontal scales of
motion.
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Figure 2: Vorticity slices for the Kelvin-Helmholtz instability with Ri=0.05 at seven distinct times during
the flow evolution. For each time, two panels are shown: 1) a side view of the four billows and 2) a top view of
40% of the mid-plane. The times chosen correspond to when (a) billows reach maximum amplitude, t = 37;
(b) secondary instability triggers the transition to turbulence, t = 54; (c) KE and PE dip to local minima
before secondary peaks in KE and PE occur, t = 68; (d) KE and PE exhibit secondary maxima, t = 85;
(e) turbulence intensity and vorticity magnitude attain maximum values, coincident with a local minimum
in PE, t = 111, (f) turbulence first becomes horizontally homogeneous, t = 130; and (g) turbulence decay
exhibits a change in character, t = 251. Panels a-d appear on the preceding page.
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Figure 3: Vorticity slices for the Kelvin-Helmholtz instability with Ri=0.2. Seven times are presented, as
in Figure 2, but because the two Ri cases differ, some of the times correspond to different stages in flow
evolution and morphology. The times associated with (a) and (b) are the same as in Figure 2, i.e., t = 37 and
54; they serve to demonstrate the different flow evolutions at early time. In panel (a) the flow is laminar, but
with significant fluctuations in the core regions of the billows. In panel (b) we see turbulence developing in
the billow cores. Panel (c) shows t = 75 when KE and PE are maximal. Turbulence is beginning to migrate
from the cores at this time. Panel (d) at t = 86 shows the time when turbulence intensity and vorticity
fluctuations are maximal, coincident with a local minimum in PE. Panel (e) depicts the time when KE and
PE both begin to decay exponentially, t = 95. Panel (f) shows the moment when the flow first becomes
horizontally homogeneous, t = 105, and Panel (g) depicts the evolution at t = 130 late in the decay phase.
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Figures 1c,d and 3 present similar information for Ri = 0.2, i.e., our most stable case.
The evolution is notably different. First, and most importantly, because stratification is
more effective in impeding vertical motions, the primary KH billows are much more shallow
and less circular in cross section. Second, the Ri = 0.2 billows do not sustain laminar
motion; instead they exhibit turbulent fluctuations immediately upon formation. We believe
the enhanced stability of the billow cores for Ri = 0.05 results from their near-solid-body
rotation. For discussion of the stabilizing influence of flow rotation, see Bradshaw (1969).

Figure 1c shows that the Ri = 0.2 case evolves in a somewhat simpler manner than the
Ri = 0.05 case, due primarily to the rapid appearance of turbulence for Ri = 0.2. Because the
billows are unstable immediately, they are not sufficiently coherent to experience secondary
instability. This explains the lack of a second peak in KE and PE after the initial peak forms
at t ≈ 73. Also note that the maximum values attained for KE and PE are significantly
lower than for the more turbulent Ri = 0.05 case. This occurs for two reasons. First, the
higher stratification impedes vertical motions. Second, the enhanced stability of the billow
cores for the Ri = 0.05 case allows the billows to continue developing coherently long after
they would have succumbed to turbulence had the stabilizing influence of billow rotation not
been present. This allows the billow energy to initially surge to very high values when Ri is
small. Both of these effects are nonlinear because they operate on the KH billows after they
have attained finite and large amplitudes. The combination of the two effects results in KE
which is nearly 9 times larger for Ri = 0.05 than for Ri = 0.2.

An interesting aspect of the dynamics for Ri = 0.2 is the appearance of very coherent,
horizontally propagating vortex rings from t ≈ 65 to t ≈ 80, i.e., during the development
of the dominant peak in KE. These coherent vortices form when the billow cores are
vigorously turbulent, but the braid regions between billow cores are still laminar. A braid
region contains a strong vortex sheet which connects the top of one billow to the bottom
of its upstream neighbor. Figure 3c, lower panel, exhibits a horizontal slice through three
of these horizontally propagating vortex rings, two of which can be seen at the upper left
and right edges of the third billow from the left. Because the higher stratification present
for Ri = 0.2 impedes vertical mixing, turbulent motion is effectively channeled along the
horizontal, and well-formed vortex rings are the most efficient means of horizontal migration
of kinetic energy.1

Vorticity reaches its maximum level, then begins to decay, at time t ≈ 86; see Figure 3d.
As with the Ri = 0.05 case, PE dips when mixing is most vigorous; this occurs when
vorticity is maximal (i.e., t ≈ 86). Also as in the Ri = 0.05 case, PE grows very weakly (or
merely plateaus) immediately as the turbulence begins to subside. After t ≈ 95 (Figure 3e),
all turbulence velocity and temperature fluctuations decay. At t ≈ 105 (Figure 3f), the
turbulence becomes horizontally homogeneous.

1We note that the number of individual vortex rings observed is less than the size increase from our
previous smaller simulations and the new CAP simulations; i.e., we observe fewer than 24 vortex rings.
Hence, the previous simulations were too small to observe even one of these vortex rings on average.
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Figure 4: Ri=0.05 – Horizontally averaged profiles for the mean temperature (upper left) and mean
streamwise velocity (lower left) and for the normalized temperature variance (upper middle) and normalized
velocity variance (lower middle). The variance normalization factors used in the middle panels are shown in
the rightmost panel. The solid (dashed) curve depicts the velocity variance 〈qq〉 = 〈u2+v2+w2〉 (temperature
variance 〈TT 〉).

2.4 Flow Profiles for Ri=0.05 and Ri=0.2

The left panels of Figure 4 show the time evolution of the mean temperature deviation T −z
and the streamwise velocity as functions of height for Ri = 0.05. z is the initial profile for T ,
therefore T − z is the deviation of T from its initial profile. The curves are separated by 20
time units. The middle panels show the normalized temperature and velocity variance, i.e.,
the variance divided by its maximum. The right panel shows the maximum used to normalize
the variance curves in the middle panels. In the figure, 〈qq〉 = 〈(U − U(z))2 + V 2 + W 2〉 is
the sum over the three velocity components. Also, max 〈TT 〉 has been multiplied by Ri in
the right panel so that each of the two curves represents a contribution to the total energy,
which is approximated by E = (q2 +Ri T 2)/2. As is evident from the decay with time shown
in the right panel, normalizing the variance curves is necessary to see the variation with
height of the profiles at late times.

The figure shows that the mean velocity and temperature are modified significantly dur-
ing the course of the flow evolution. The deviation in the mean temperature exhibits a
characteristic S-shape, with the layer rapidly growing from 2h to roughly 6h in depth. The
mean velocity approaches a nearly constant gradient, though deviations from a strictly linear
profile at late times are easily discernible. This occurs because of the vigorous mixing at
midlayer (see the lower middle panel), which produces positive curvature in U(z) at z = 0.
The variance in temperature (upper middle panel) exhibits peaks near the top and bottom
of the turbulent layer. This occurs because the mean temperature gradient is expelled from
the middle of the layer by turbulent mixing, and it accumulates at the edges as a result.
Where the mean temperature gradient is large, so too is the potential for producing tempera-
ture variance. Note the inverse relationship between the temperature and velocity variances:
whereas the velocity variance peaks near midlayer and is understandably weaker near the
layer edges, the temperature variance has the opposite behavior, i.e., it attains its maximum
near the layer edges, and is minimal near the middle of the layer.

Figure 5 shows similar data for Ri = 0.2. Here the buoyancy time, which is proportional
to

√
Ri, is half that for Ri = 0.05, so the profiles are separated by only 10 time units. The

profiles are in stark contrast to the lower Ri case. First, the evolving turbulent layer is
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Figure 5: Ri=0.2 – Horizontally averaged profiles for the mean temperature (upper left) and mean stream-
wise velocity (lower left) and for the normalized temperature variance (upper middle) and normalized veloc-
ity variance (lower middle). The variance normalization factors used in the middle panels are shown in the
rightmost panel. The solid (dashed) curve depicts the velocity variance 〈qq〉 = 〈u2 + v2 + w2〉 (temperature
variance 〈TT 〉).

significantly shallower. It reaches only approximately half of the depth of the Ri = 0.05
layer. Second, the deviation T − z is significantly smaller: note that the scale of the upper
left panel of Figure 5 is four times smaller than that used for Figure 4. Also notice that
the mean velocity gradient is more uniform at midlayer. And, perhaps most significantly,
note that there is a fundamental difference between the shapes of the variance profiles in
Figures 4 and 5. The Ri = 0.2 case does not exhibit the “inverse relationship” between
max 〈qq〉 and max 〈TT 〉 that we see for the lower Richardson number. On the contrary, the
two profiles for Ri = 0.2 appear nearly identical in shape. The reason for the stark difference
is 1) the relative efficiency of mixing for the two cases (mixing is initially much more efficient
for the lower value of Ri) and 2) the relative depths of the two layers (the lower Ri results
in a deeper layer). The second effect insures that the higher Ri case will retain strong
velocity gradients, especially in the edge regions of the flow (see lower left panel of Figure 5
at the middle time shown, which is t = 80). As a result, the local stability profile (i.e.,
the diagnosed Richardson number versus height) for this case dips back below the stability
limit of Ri(z) = 0.25 near the edges, reinvigorating the dynamics in the edge regions and
giving rise to renewed turbulence KE production there. This is remarkable because at a
slightly earlier time (t = 70) the entire stability profile had already been elevated above 0.25,
indicating that the time of active dynamics had already passed.

The right panels of Figures 4 and 5 posses the same scale for the abscissa; hence, the
magnitudes of 〈qq〉 and Ri 〈TT 〉 can be compared for the two cases. The scale for the
ordinate axes differs by a factor of two because the buoyancy time scale is proportional to√

Ri. The most evident difference between the Ri = 0.05 and 0.2 cases is the extremely
rapid instability growth and higher energies attained in the Ri = 0.05 case. In contrast, the
Ri = 0.2 case develops more gradually. We also note that stratification has a much more
evident impact on the developing dynamics for the higher Ri case because PE is larger than
KE during the initial growth phase for Ri = 0.2; this is not the case for Ri = 0.05. Finally,
the decay in energy is exponential and rapid for Ri = 0.2, while it is much more gradual for
Ri = 0.05 (even when the

√
Ri factor is accounted for), and it appears to experience a shift

in the controlling dynamics at t ≈ 250 (see the change in the decay behavior in the upper
right panel of Figure 4).
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Figure 6: Horizontal wave-number spectra at mid-layer for velocity magnitude (solid) and temperature
(dotted). The temperature spectra have been multiplied by Ri to adjust their relative magnitude in propor-
tion to their approximate contribution to the total energy. (a) streamwise spectra for Ri = 0.05 (b) spanwise
spectra for Ri = 0.05, (c) streamwise spectra for Ri = 0.2, (d) spanwise spectra for Ri = 0.2. Panels (a)
and (b) show spectra at t = 54 (the time of secondary instability), t = 85 (secondary peak in KE and PE),
t = 111 (peak vorticity and minimum PE), and t = 130 (first time of horizontal homoegneity). Panels (c)
and (d) show spectra at t = 75 (primary peak in KE and PE), t = 86 (peak vorticity and minimum PE),
and t = 105 (first time of horizontal homogeneity). Earlier times are shown higher on the plot. Later times
are shifted down successively by 10−6.

2.5 Turbulence Spectra and Resolution Requirements

Figure 6 presents horizontal spectra at mid-layer. Panels (a) and (b) show results for Ri =
0.05, while panels (c) and (d) show results for Ri = 0.2. Four times are shown for Ri = 0.05,
including the time of secondary instability of the primary billows (top curve) occurring at
t = 54. An equivalent spectrum is not shown for Ri = 0.2, since this case does not exhibit
secondary instability and instead transitions directly from the primary billows to a turbulent
state.

The time of secondary instability for Ri = 0.05 is characterized by strong peaks at
kx = 2π/λx ≈ 0.5 and higher harmonics, where λx = 12.566 is the most unstable asymptotic
eigenmode computed from linear stability theory. A broad and much weaker spanwise peak
also occurs from ky = 2π/λy ≈ 3 to 8. The initial mode appeared near ky ≈ 8 at t = 45,
and by time t = 54 this initial peak has spread to lower wavenumbers. We note that at
t = 54, the temperature spectrum (multiplied by Ri) is larger than the velocity spectrum
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at high wavenumber, indicating the importance of stratification at this very early time. At
later times (lower) curves, the temperature assumes a less significant role.

Note that as time progresses, the primary mode is reduced in magnitude as turbulence
overcomes the billows (Panel a). By t = 130, the flow is horizontally homogeneous, and the
primary mode is barely visible.

Near the lower two sets of spectra in Panels (a) and (b), i.e., times corresponding to
peak vorticity (or maximum mixing) and horizontal homogeneity (or billow break up) we
have added lines with slopes of −5/3 and −7/5. It appears that t = 111 has a kinetic energy
spectrum with a near k−5/3 form and a temperature-variance spectrum that is somewhat
shallower, and t = 130 has a weaker slope for both kinetic energy and temperature that is
consistent with k−7/5. These slopes have been reported previously for simulations of stratified
shear flow (Werne and Fritts 2000) and in aircraft spectra at the edge of the jet stream over
Australia (Wroblewski et al. 2003). Using the slope indicators in Figure 6a,b as guides, it is
clear that when turbulence peaks, the Ri = 0.05 simulations contain as much as 1.0 to 1.5
decades of inertial range turbulence; e.g., see Panels (a) and (b).

The spectra for Ri = 0.2 look very different from those for Ri = 0.05. First, no secondary
instability in span is observed (neither in physical space, see Figures 2 and 3, nor via peaks in
the spanwise spectra). Second, the primary mode at kx = 2π/9.5 and its harmonics exhibit
relatively much stronger peaks in temperature variance than in kinetic energy when compared
to the Ri = 0.05 results. Finally, no clear power-law behavior is observed, and therefore
no inertial range spectrum can be clearly identified. The lack of secondary instability for
Ri = 0.2 results because the primary billows succumb to small-scale turbulent motions as
soon as the billows form. The relatively stronger peaks in the temperature spectrum result
due to the relatively greater importance of the buoyancy field for the higher stratification
level. And finally, the lack of an inertial range results because buoyancy is much more
effective at inhibiting turbulent-kinetic-energy growth for the Ri = 0.2 case.

Resolution requirements for the simulations are determined by the largest energetic
wavenumbers that develop. Resolutions satisfying kmaxη = πη/δx = 1.45 − 1.75 (or δx/η =
1.8 − 2.2) produce acceptable results. Here η = (ν3/ǫ)1/4 is the Kolmogorov length scale,
and δx is the grid spacing. Figure 7 presents δx/η for the Ri = 0.05 and Ri = 0.2 solutions.
The finest grid resolution used for Ri = 0.05 was δx = 0.0168, with the number of x grid-
points given by Nx = 3000, while Ri = 0.2 required only δx = 0.019 and Nx = 2000. Note
that the domain size for Ri = 0.05 is Lx = 50.26, while Lx = 38 is all that is required for
Ri = 0.2. This is because the most unstable asymptotic eigen mode is 32% smaller for the
higher-stratification case.

Significantly less resolution (a factor of 1.5 less in each spatial direction) is required for
the high stratification case because the domain is smaller and the level of turbulence attained
is less. As a result, the Ri = 0.2 case is 1.54 ≈ 5 times less expensive to compute than the
Ri = 0.05 case. Twenty days of computing on as many as 1500 processors were required for
the Ri = 0.05 case, while only 10 days of computing on at most 500 processors were required
for the Ri = 0.2 case.
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Figure 7: Resolution evaluation for the DNS simulations using δx/η for (a) Ri = 0.05 and (b) Ri = 0.2.
δx is the grid spacing and η is the minimum Kolmogorov scale evaluated by averaging on horizontal planes.
Values between 1.8 and 2.2 are acceptable; however, care must be taken at early times when the flow is
not horizontally homogeneous. Vertical dotted lines indicate the initial times for separate runs required to
complete the simulation sequence.

3 Large Eddy Simulations

We shift now to a brief discussion of preliminary results obtained with the LES code for
the Ri = 0.05 case. We also discuss some results for solutions obtained for the smaller
domains computed previoiusly. The problem addressed is challenging for LES methods in
general because it encompasses two transitions: 1) from an initial high-Reynolds-number
laminar state to the development of instability and turbulence, and 2) from the resulting
turbulent state to turbulence decay, restratification, and relaminarization. We will examine
the successes and challenges of our current LES model and describe steps we plan to take to
further improve the algorithm.

3.1 Numerical Procedure

The LES algorithm has evolved since conducting our initial comparisons with the DNS on
the smaller domains used previously. Originally we employed a turbulent kinetic energy
(TKE) model for the eddy viscosity νt, and we modeled the eddy diffusivity κt by specifying
a turbulent Prandtl number Prt = νt/κt = 1/ (1 + 2ℓ/∆). Here ℓ is a model length scale
and ∆ is the spectral cut-off filter width. For details, see Moeng (1984). Based on our initial
comparisons with the DNS, we have migrated to a dynamic procedure (Germano et al. 1991)
employing two filter widths ∆ and 2∆ in order to determine the constants in the Smagorinsky
model for the turbulent stress, τij = −2Cτ∆

2|S|Sij, and in a similar gradient transport model
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for the eddy diffusivity, qi = −Cq∆
2|S|∂T/∂xi. Here Cτ and Cq are the model constants,

∆ is the primary filter size (taken to be the grid spacing), and |S| is the magnitude of the
resolved-scale strain rate. By using Germano’s identity (Germano et al. 1991) and similar
expressions for tauij and qi, but written for the second filter width 2∆, we can solve for Cτ

and Cq as a function of space and time. Our solution procedure involves a least-squares fit to
the filtered fields averaged on horizontal planes. Such horizontal averaging is appropriate at
late times when turbulence becomes horizontally homogeneous, but the impact of this choice
should be evaluated at early time when the flow is organized coherently into well-defined
KH billows which exhibit strong streamwise variation.

The numerical algorithm we employ is a hybrid pseudo-spectral/finite-difference method
in which the periodic horizontal directions are treated with Fourier-series representations,
and the vertical direction employs a staggered 2nd-order finite-difference algorithm which
conserves resolved-scale mass, momentum, kinetic and thermal energy exactly. Time step-
ping is as with our DNS code, i.e., we use the RK3 scheme of Spalart et al. (1991). Part
of the time-stepping procedure unique to the LES code is a global Poisson solver for the
pressure field which insures incompressibility at each RK3 sub-step. Hence, the LES code
confronts the same data-flow issue as the DNS code, namely, FFTs are done most efficiently
on contiguous data, but so too is the Poisson inversion the LES performs for the pressure;
therefore, an all-to-all global communication pattern at each sub-step is required to move
between the two desired data layouts for the LES model, just as it is for the DNS code. This
has implications for the optimal parallel architecture on which both codes run efficiently.
See §4 for more discussion on this point.

3.2 LES-DNS Comparison

In this section we compare solutions obtained with the DNS and LES codes. Figure 8 shows
time evolutions for KE and PE for both models. The LES is computed with 6 times fewer
grid points in each spatial direction. It therefore requires roughly 63 ≈ 200 times less memory
and 64 ≈ 1300 times fewer CPU cycles than the DNS to complete.

The figure demonstrates that the dynamic LES procedure qualitatively tracks the volume-
integrated KE and PE time traces, managing to even describe the secondary maxima in
KE and PE at t ≈ 85. This is impressive given that the flow undergoes two transitions.
Nevertheless, at late times the LES systematically over-predicts both KE and PE by more
than 40%, and at early times (i.e., just before the secondary maxima in KE and PE) the LES
under-predicts KE by 14% and PE by 50%. We note that given the sensitive dependence on
initial conditions exhibited by turbulent flows, once the LES solution diverges significantly
from the DNS, it is unlikely that the LES can re-establish a time-accurate solution. Therefore
it is critically important that the LES tracks the initial evolution for as long as possible.

Careful examination of Figure 8 reveals that the LES departs from the DNS at t =
45, precisely when the secondary instability of the primary billows attains a non-linear
amplitude (see Figure 2b). This is perhaps expected, as the SGS turbulence model in the
LES is not designed to describe a high-Re laminar solution with extremely small spatial
scales. In addition, the horizontal averaging we currently use to evaluate model constants is
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Figure 8: KE and PE for Ri = 0.05 for the DNS (solid) and LES (dashed) solutions. KE is represented by
the upper two curves; PE is represented by the lower two curves.

inappropriate at this early time. As a result, our next planned improvement to the LES model
is to replace horizontal averages with spanwise averages. If the spanwise-average statistics
prove insufficient to provide a reasonably constrained description of the flow, we can combine
the results for the four individual billows to improve the statistical signal-to-noise ratio.

In order to better understand the discrepancies between the DNS and LES solutions
(especially at late times), Figure 9a,b presents KE and PE evaluated at mid-layer and in
the edge regions of the flow. The edges are located by the local maxima in the temperature
variance. Results for both edges are averaged together in Figure 9b. The figure shows that
at mid-layer PE is insignificant after t ≈ 68 (Figure 2c). This occurs because temperature
fluctuations are homogenized by vigorous turbulent motion early in the flow’s evolution for
Ri = 0.05. Temperature homogenization at mid-layer persists throughout the simulation,
and the LES predicts this reasonably well, i.e., it over-predicts the mid-layer KE by only
10% to 15%. In contrast, the edge regions exhibit significant temperature variance at all
times. This occurs because the mean temperature gradient in the edge regions is sharpened
by mixing in the core of the layer, and therefore turbulent production of temperature variance
〈wθ〉∂zT is enhanced near the edges. Enhanced edge-region mean thermal gradients result
because the temperature contrast that is eradicated in the middle of the layer by turbulent
mixing is forced to concentrate near the edges. The LES also predicts enhanced temperature
variance near the layer edges, but it significantly over-predicts both KE and PE here; e.g.,
the LES KE (PE) excess is 45% (50%) in the edges; see Figure 9b after t ≈ 100.

The lower two panels of Figure 9 compliment the upper two panels by presenting the flow’s
energy fractions, i.e., the relative contributions the temperature and velocity components
make to KE + PE. From panel (c) we can see that the correct relative proportions for
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Figure 9: Comparison of LES and DNS results. (a) Mid-layer KE (solid) and PE (dotted). (b) Edge-region
KE and PE. (c) Mid-layer velocity and temperature variances normalized by KE + PE. (d) Edge-region
variances normalized by KE + PE. For (c) and (d), line styles are solid 〈u2〉, dashed 〈v2〉, dot-dashed 〈w2〉
and dotted 〈θ2〉. LES results are shown with continuous curves. DNS data are shown with solid symbols. All
curves show averaged results, where averaging is conducted over the entire horizontal extent of the domain
and vertically over a limited range in z defined by ∆z = 1.0. The edge regions are defined by the location
of maximum temperature variance. Results for the top and bottom edges are averaged together in (b) and
(d).

〈u2〉, 〈v2〉, 〈w2〉, and Ri〈θ2〉 at mid-layer are all reasonably captured by the LES out to
t ≈ 250 (when the mid-layer dynamics become stratification dominated). Some discrepancy
is apparent for 〈u2〉 and 〈v2〉 for t > 130, but this is roughly 10% or less, whereas the
departure at t ≈ 250 grows to 100% for 〈v2〉 and 25% for 〈u2〉. The edge regions, shown in
panel (d), show near-perfect agreement for the 〈v2〉 and 〈w2〉 proportions, but 〈θ2〉 (〈u2〉)
appears to be systematically over (under) predicted by the LES (relative to KE +PE) after
t ≈ 100. We note that nearly all times are stratification dominated in the edge regions of
the mixing layer.

The results of Figure 9 indicate that the LES solutions falter when stratification domi-
nates the dynamics. It is important to note that when this occurs, the spectral shape differs
from that assumed by the SGS model. Hence, though the dynamic procedure we employ can
adjust the model constants as a function of space and time, it is not set up to also adjust
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the spectral slope. We suspect this may be an important cause of the remaining differences
between the DNS and LES solutions at late times. We therefore plan to modify the dynamic
procedure to adjust both the model constants and the spectral slope. This will require the
introduction of yet a third filter width to the dynamic procedure.

3.3 The Optimal Cut-off Filter Width ∆

By experimenting with the cut-off filter width ∆ used by the LES code, we have deduced
that the optimal value is approximately six times larger than the DNS Nyquist mode. This
produces the best overall agreement with the DNS, and it significantly reduces the compu-
tational cost. However, a noteworthy problem is the dependence the LES solutions exhibit
on ∆. In particular, we notice that as ∆ is increased, the predicted eddy-viscosity and eddy-
diffusivity values systematically drift above the same quantities obtained from filtered DNS
data. This might be expected if the larger values of ∆ happened to be outside the inertial
range of turbulence for the DNS. However, upon examining Figure 6a,b, it is quite apparent
that ∆ = 6 δx is barely at the high wavenumber end of the turbulence inertial range. Hence,
further increases in ∆ should sweep through the inertial range, and other values of ∆ should
produce satisfactory results. We do not know what is causing this anomalous dependence
on ∆ in the LES results, but we are hopeful that the two improvements we currently plan
(i.e., 1. spanwise rather than full horizontal averaging when evaluating model constants, and
2. the introduction of a third filter width) will help alleviate the problem.

4 Parallel Performance on Kraken and Jvn

As part of the evaluation criteria for receiving CAP Phase II computer time, acceptable
parallel scalability must be demonstrated for jobs as large as those being proposed. The
results of our scalability tests demonstrate that our DNS code is extremely efficient. We
measured the asymptotic parallelization efficiency in two ways. The first method, which
employed Amdahl’s Law (Amdahl 1967, Gustafson 1998, Lewis and El-Rewini 1992), showed
the code to be 99.976% parallel when running on up to 2400 processors on the NAVO IBM
Power 4+ (Kraken). The second method used the scaled grind time gn to evaluate the
performance. The grind time is defined by gn = g1/n

m, where g1 is the time required to
complete a calculation on one processor, and gn is the time needed when n processors are
used. The parallelization efficiency reported by this method is m = 95%. Both of these
tests were conducted by fixing the problem size per processor, so that as larger numbers of
processors were employed, a larger total problem size was treated. Relative to the Cray T3E
which was previously at the ERDC Major Shared Resource Center (MSRC), the speed-up
we experienced on Kraken was 5.2. This is an acceptable level of performance given that
the theoretical speed-up for these two machines is 5.7. We achieve this high computational
efficiency by minimizing the amount of serial operations in the code, conducting efficient
parallel I/O (Werne et al. 2000), and using very fast one-sided communication calls available
via David Klepacki’s SHMEM library routines (Klepacki 2004).
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Figure 10: (a) Parallel scalability tests for the DNS code running on Kraken and Jvn. C = (walltime) ×
NCPU/(NtNg log Ng) is proportional to the ratio of the CPU seconds to the total number of operations
completed. Nt is the number of time steps, and Ng is the total grid size. The log Ng factor appears because
FFTs dominate the computational cycles, and the cost of a 3D FFT is proportional to Ng log Ng. (b)
Fraction of time DNS code spends performing inter-processor communication on Kraken and Jvn. All tests
are conducted with fixed problem-size per processor of 280 Mb.

Identical tests on the ARL Intel Xeon EM64T cluster (Jvn) produced similarly impressive
parallelization numbers; e.g., 99.89% when using Amdahl’s Law and m = 88% according to
the grind time. These results are presented in Figure 10a. We note that the per-processor
peak flop rate on Jvn is slightly higher than that on Kraken (7.2 versus 6.8 Gflops/processor).

We caution that the quoted parallelization measures do not effectively communicate the
entire performance assessment for a computer code and platform combination. For exam-
ple, Figure 10a demonstrates that, despite similar peak flop rates and high parallelization
efficiencies on both machines, our code requires nearly three times as much time to com-
plete on Jvn as Kraken when running on 2000 processors. This occurs because the code
consumes significantly more time conducting inter-processor communication on Jvn than on
Kraken. And since communication operations can execute in parallel, this explains why high
parallelization performance can be consistent with slower than expected execution times.

In an attempt to understand the performance deficit on Jvn compared to Kraken, we
measured the percentage of time spent conducting all-to-all communications associated with
our global transpose operation. We found that while Kraken can spend as much as 45% of
its time communicating when running on 2400 processors, Jvn spends as much as 75% when
running on 2000 processors. See Figure 10b. As a result, despite the slightly higher theoret-
ical peak flop rate on Jvn, simulations take significantly longer to complete. We note that
the upward drift in the communication fraction results because the all-to-all communication
pattern uses decreasing message sizes as NCPU is increased (i.e., message sizes scale with
1/NCPU).

It is understandable that Jvn spends more time in communication than Kraken, given
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that Jvn’s per-processor bandwidth (250 Mb/s) is nearly half that of Kraken (450 Mb/s).
However, the ratio, which is only 1.8, does not suggest the relative performance indicated
by Figure 10. In order to assess this performance difference in greater detail, we profiled
the inter-processor and inter-node send/receive communication speeds on the two systems
and compared the results with the theoretical limits suggested by the network hardware.
We found that when Jvn conducts communication between two processors located on sepa-
rate nodes, it nearly achieves its theoretical inter-node bandwidth of 500 Mb/s (it achieves
489 Mb/s), with a zero-message-size latency of 9.6 µsec. In contrast, Kraken manages
1.85 Gb/s, which is only about half the theoretical limit of 3.6 Gb/s possible with its two
links per node. Kraken’s latency was measured to be 7.6 µsec. When two processors per
node send and receive messages with two processors on another node, Jvn’s bandwidth per-
formance remains high, but its latency jumps by a factor of two, while Kraken’s latency
remains low, but its bandwidth nearly doubles to 3.45 Gb/s. It appears that when the IBM
performs send/receive communication between single processors on each of two nodes, it only
uses one network link per node, while communication between more processors per node is
required to trigger usage of both links.

We also conducted tests involving seven processors per node on Kraken (Jvn only has
two processors per node), because this reflects the communication pattern of our DNS code
on the IBM. The timing tests demonstrated that Kraken exceeds its quoted performance
figures, delivering up to 4.75 Gb/s total over the two communication links, while its latency
remains low at 8.2 µsec.

The dotted curve in Figure 10b incorporates information from these tests, including the
specific times measured when passing messages of the size used during the parallel scalability
tests. The magnitude of the curve indicates the relative performance difference between the
two systems based on the send/receive tests. As is apparent in the figure, Jvn’s performance
remains somewhat worse than expected, indicating that improvements should be possible
through communication-software improvements and/or an improved MPI implementation.
We estimate a theoretical speed increase for communication of 25% should be possible for
the current system.

The results of this analysis are a bit disappointing for the two new systems examined
because the inter-node network performance seems no better than that possible on the Cray
T3D circa 1994. This seems an unacceptable lag given the 45-fold increase in per-processor
flop rates between the T3D and these new systems, and it explains why such large fractions
of time are being spent communicating (see Figure 10b) as opposed to computing. For this
reason we feel “percent of time communicating” should be a criterion used when benchmark-
ing code performance on new parallel systems. Inter-processor network bandwidth will only
become more important as system size continues to grow.

We acknowledge useful guidance and instruction on the new computer systems by NAVO
and ARL staffmembers J. Cazes, J. Gosciniak, T. Kendall H. Keuhn, and J. Skinner. This
work was supported by AFRL F19628-02-C-0037 and DOE DE-FG02-04ER63706.
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